Sztuczne sieci neuronowe Ćwiczenia. Piotr Fulmański, Marta Grzanek

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Sztuczne sieci neuronowe Ćwiczenia. Piotr Fulmański, Marta Grzanek"

Transkrypt

1 Sztuczne sieci neuronowe Ćwiczenia Piotr Fulmański, Marta Grzanek

2 Piotr Fulmański 1 Wydział Matematyki i Informatyki, Marta Grzanek 2 Uniwersytet Łódzki Banacha 22, , Łódź Polska 1: 2: Data ostaniej modyfikacji: 13 marca 2007

3 Zanim zaczniemy... Tutaj kiedyś coś będzie Piotr Fulmański Marta Grzanek Łódź, 2007

4 ii ROZDZIAŁ 0. ZANIM ZACZNIEMY...

5 Spis treści Zanim zaczniemy... i 1 Sztuczny neuron - budowa i wykorzystanie 1 2 Badanie możliwości klasyfikacji Wprowadzenie Sieć jednowarstwowa Przygotowanie Przebieg eksperymentu Sieć dwuwarstwowa Sieć radialna Wnioski Najprostsza sieć Zadanie Konstrukcja sieci i przebieg nauki Architektura Nauka Algorytm Zadanie

6 iv SPIS TREŚCI

7 Rozdział 1 Sztuczny neuron - budowa i wykorzystanie Opisać budowę sztucznego neuronu. Opisać elementarne sieci. Funkcje aktywacji liniowa f(x) = x (1.1) progowa bipolarna progowa unipolarna sigmoidlana bipolarna sigmoidlana unipolarna radialna f(x) = f(x) = f(x) = f(x) = { 1 dla x 0, 1 dla x < 0. { 1 dla x 0, 0 dla x < 0. (1.2) (1.3) exp( λx) 1 (1.4) exp( λx) ( x c 2 ) f(x) = exp r 2 (1.5) (1.6)

8 2 ROZDZIAŁ 1. SZTUCZNY NEURON - BUDOWA I WYKORZYSTANIE

9 Rozdział 2 Badanie możliwości klasyfikacji 2.1 Wprowadzenie Jednym z najczęściej powierzanych sieciom neuronowym zadań jest klasyfikacja obiektów. Przez obiekt rozumieć będziemy tutaj wiele różnych rzeczy: litery, obrazy, dźwięki itd. Każdy z takich obiektów reprezentowany jest przez ciąg liczb. Skoro tak, to ciąg ten możemy utożsamiać z pewnym wektorem, czyli punktem w przestrzeni odpowiedniego wymiaru. Zatem możemy inaczej powiedzieć, że sieć uczy się klasyfikowania punktów pewnej przestrzeni do różnych klas. Interesującym zagadnieniem jest: jak sposób rozmieszczonia punktów w przestrzeni wpływa na konstrukcję sztucznej sieci neuronowej; w jakim stopniu przyjęte założenia co do sposobu konstrukcji determinują możliwą do rozwiązania klasę problemów. Aby znaleźć przynajmniej częściową odpowiedź na powyższe pytania, przebadamy kilka różnych sieci zwracając bacznie uwagę na sposób podziału przestrzeni sygnałów wejściowych. W kolejnych podrozdziałach będziemy badać: sieci jednowarstwowe: z neuronami o liniowej funkcji aktywacji, z neuronami o progowej funkcji aktywacji, z neuronami o sigmoidalnej funkcji aktywacji; sieci wielowarstwowe: z neuronami o liniowej funkcji aktywacji, z neuronami o progowej funkcji aktywacji, z neuronami o sigmoidalnej funkcji aktywacji; sieci radialne.

10 4 ROZDZIAŁ 2. BADANIE MOŻLIWOŚCI KLASYFIKACJI 2.2 Sieć jednowarstwowa Przygotowanie Przyjmujemy najprostszy z możliwych modeli sztucznej sieci neuronowej, tj. model sieci złożonej z jednego neuronu. Przyjmujemy, że neuron posiada dwa wejścia oraz bias. Ponieważ mamy dwa wejścia, więc wektory sygnałów wejściowych będą miały w tym przypadku tylko dwie zmieniające się współrzędne. Skoro tak, to łatwo możemy je interpretować jako pewien punkt na płaszczyźnie. Ponadto przyjmujemy dalej następujšce założenia: 1. sygnały wejściowe zmieniają się w zakresie od 5 do +5 z pewnym, wybranym indywidualnie krokiem, np. 0.1; 2. wagi są liczbami losowymi z przedziału [ 5, 5] Przebieg eksperymentu 1. Ustalmy wartość biasu na Wybieramy jedną z funkcji aktywacji: (1.1),(1.2) lub (1.4). 3. Losujemy wagi. W tym przypadku będą to wagi: w 1 związana z pierwszym sygnałem wejściowym x 1, w 2 związana z drugim sygnałem wejściowym x 2 oraz w 0 związana z biasem x b. 4. Podajemy na wejście sieci parę punktów (x 1, x 2 ) z przestrzeni sygnałów wejściowych ([ 5, 5] [ 5, 5]). 5. Dla pary sygnałów wejściowych obliczamy wartość wyjścia neuronu dla przyjętej funkcji aktywacji. 6. W zależności od wartości otrzymanej na wyjściu, w punkcie odpowiadającym wartości podanych na wejście sygnałów, stawiamy kropkę o odpowiednim kolorze. Sposób kolorowania podany zostanie poniżej. 7. Postępowanie z punktów 2 5 kontynuujemy tak długo aż wyczerpiemy wszystkie punkty z zadanego obszaru przy przyjętym kroku. 8. Jeśli nie przebadaliśmy jeszcze zachowania dla trzech funkcji aktywacji to powracamy do punktu 2, gdzie wybieramy kolejną funkcję aktywacji. 9. Jeśli przebadaliśmy zachowanie sieci dla trzech funkcji aktywacji, to powracamy do punktu 2, ustalając wartość biasu na 1.0. Całe powyższe postępowanie należy powtórzyć kilkakrotnie, aby móc zaobserwować pewne prawidłowości. Pozostało jeszcze ustalić sposób kolorowania. W przypadku funkcji progowej jako, że przyjmuje ona tylko dwie wartości, używamy tylko dwóch kolorów: czerwonego dla wartości równych 1 i niebieskiego dla wartosci równych 1. Liniowa funkcja aktywacji może przyjmujmować dowolną wartość rzeczywistą z przedziału [ 55.0, 55.0]. Dlatego przyjmujemy następujący sposób kolorowania (lub dowolny

11 2.3. SIEĆ DWUWARSTWOWA 5 inny będący jego rozszerzeniem im więcej kolorów, tym lepiej będzie widać zdolności sieci do podziału płaszczyzny) dla wartości większych lub równych 1.0 czerwony; dla wartości z przedziłu [0.0, 1.0) żółty; dla wartości z przedziłu [ 1.0, 0.0) zielony; dla wartości mniejszych od 1.0 niebieski. Sigmoidalna funkcja aktywacji może przyjmujmować dowolną wartość rzeczywistą z przedziału ( 1.0, 1.0). Dlatego przyjmujemy następujący sposób kolorowania (uwaga o sposobie kolorowania j.w.) dla wartości większych lub równych 0.8 czerwony; dla wartości z przedziłu [0.0, 0.8) żółty; dla wartości z przedziłu [ 0.8, 0.0) zielony; dla wartości mniejszych od 0.8 niebieski. 2.3 Sieć dwuwarstwowa Po przebadaniu możliwości jednego neuronu (sieci jednowarstwowej), zajmiemy się siecią dwuwarstwową. Przyjmujemy następującą strukturę sieci: dwa neurony w pierwszej warstwie oraz jeden w drugiej ostatniej (wyjściowej), połączone na zasadzie każdy z każdym. Dla tak zbudowanej sieci powtarzamy kroki 1 9 wykonywane podczas badania sieci jednowarstwowej. 2.4 Sieć radialna Dla sieci radialnej przyjmujemy strukturę taką jak przedstawioną w rozdziale 1, przy czym w wartwie radialnej używać będziemy trzech neuronów. Używać będziemy bardzo prostego sposobu kolorowania: czerwony dla wartości większych lub równych 0 i niebieski dla wartosci mniejszych od Wnioski Oto jakie wnioski powinno dać się wysnuć w wyniku przeprowadzonych eksperymentów. 1. Pojedyńczy neuron z progową funkcją aktywacji zawsze dzieli przestrzeń na dwie podprzestrzenie za pomocą prostej. Prosta ta zawsze przechodzi przez punkt (0, 0) jeśli bias ma wartość 0.0 (rys.??,??). 2. Sieć złożona z neuronów progowych dzieli przestrzeń za pomocą łamanej o ile występuje bias (rys.??). 3. Sieć złożona z jednostek liniowych zawsze dzieli przestrzeń w ten sam sposób niezależnie od ilości warstw. Podziałten wyznaczany jest przez równoległe do siebie linie proste (rys.??).

12 6 ROZDZIAŁ 2. BADANIE MOŻLIWOŚCI KLASYFIKACJI 4. Pojedyńczy neuron z sigmoidalną funkcją aktywacji dzieli przestrzeń podobnie do neuronu liniowego. 5. Sieć wielowarstwowa z sigmoidalnymi funkcjami aktywacji dzieli przestrzeń na podobszary za pomocą krzywych. Jeśli bias ma wartość 0.0, wówczas podział ten jest symetryczny względem punktu (0, 0) (rys.??,??). 6. Sieć radialna dzieli przestrzeń na podprzestrzenie będące kombinacją kół (rys.??).

13 Rozdział 3 Najprostsza sieć 3.1 Zadanie Zadanie postawione przed nami jest następujące: skonstruować sieć, która będzie mogła rozpoznawać wzorce graficzne należące do dwóch różnych klas. Jako wzorcy graficznych używać będziemy liter zapisanych w prostokątnym obszarze podzielonym na 7 wierszy i 5 kolumn. Każda komórka leżąca na przecięciu pewnego wiersza z jakąś kolumną może być czarna lub biała. W ten oto sposób, przyjmując za rozpatrywane wzorce litery A oraz C i przypisując im odpowiednio klasy oznaczane przez 0 oraz 1, możemy przedstawić je w następujący sposób XXXXX XXXXX X X X X X X XXXXX X X X X X X X X X XXXXX X - czarne pole Jeśli teraz nauczymy sieć tych dwóch wzorcy wówczas oczekiwać będziemy, że podanie zniekształconego wzorca A skutkować będzie odpowiedzią bliską 0, natomiast w przypadku zniekształconego wzorca C odpowiedzią bliską Konstrukcja sieci i przebieg nauki Aby osiągnąć pożądane zachowanie sieci, którego przejawem jest zdolność do klasyfikowania obiektów, musimy: określić architekturę sieci ile warstw? ile neuronów w każdej warstwie? jak połączyć neurony? jaki rodzaj funkcji aktywacji wybrać? określić sposób uczenia.

14 8 ROZDZIAŁ 3. NAJPROSTSZA SIEĆ Architektura Przyjmiemy najprostszą z możliwych architektur. Sieć będzie składała się z tylko jednej warstwy. W warstwie tej będzie tylko jeden neuron. Ilość wejść określamy na równą ilości punktów tworzących wzorce graficzne, plus jedno stałe wejście, na które bez względu na wzorzec zawsze podawany jest sygnał o wartości 1.0. Zatem neuron będzie miał 5*7+1=36 wejść numerowanych od 0 do 35, przy czym wejście numer 0 jest wejściem o stałym sygnale. Jako funkcję aktywacji wybieramy funkcję liniową lub sigmoidalną unipolarna Nauka Celem nauki jest dobranie takich parametrów sieci aby zachowywała się ona zgodnie z naszymi oczekiwaniami przypisując wzorcom podobnym do A wartość bliską 0 a wzorcom podobnym do C wartość bliską 1. Jedynymi parametrami, za pomocą których możemy sterować zachowaniem neuronu są wagi. To właśnie od ich doboru będzie zależało jakie zadania i w jakim stopniu neuron będzie w stanie wykonać. Na początku musimy zdefiniować dwa zbiory. 1. Zbiór pierwszy, to zbiór sygnałów jakie będą podawane na wejście neuronu; w naszym przypadku: sygnały reprezentujące litery A i C. 2. Zbiór drugi, to zbiór prawidłowych sygnałow wyjściowych neuronu; w naszym przypadku: odpowiednio 0 i 1. Oznaczmy pierwszy z tych zbiorów przez P, drugi przez T. Elementy tych zbiorów oznaczać będziemy małymi literami odpowiednio p i t, z ineksem wskazujacym na numer. Tak wiec mamy: P = {p 1, p 2 } oraz T = {t 1, t 2 } = {0, 1} gdzie p 1 i p 2 to wektory powstałe w oparciu o obrazy naszych wzorcy, według zasady: czarne pole = 1, białe = 1. Przyjmują one postać (odstępu co 5 dodane są dla czytelnosci): p 1 = p 2 = Oba zbiory P oraz T tworzą zbiór uczący L = {P, T }. Dążymy do tego, aby wyjście z sieci y i zależne od podanego wzorca p i, i = 1, 2 różniło się jak najmniej od odpowiedzi oczekiwanej przez nas, czyli aby różnica (t i y) dla i = 1, 2 była jak najmniejsza. Inaczej mówiąc, dążymy do minimalizacji określonej tym sposobem funkcji. Skoro jednak ma to być funkcja, to powinna mieć jakąś zmienną (lub zmienne). Powyżej powiedzieliśmy, że jedyne co może sie w neuronie zmieniać to jego wagi. Ostatecznie więc otrzymujemy nastepującą definicję funkcji E(w) = (t i y), gdzie w = [w 0,..., w 35 ] Po prawej stronie nie widać aby y zależało od w, ale łatwo jest to zmienić (a raczej pokazać). Zgodnie z wcześniej podanymi informacjami y definiujemy jako y = f(net), przy czym net określone jest jako net = 35 k=0 (x i k w k),

15 3.2. KONSTRUKCJA SIECI I PRZEBIEG NAUKI 9 gdzie x i k oznacza wartość k-te wejście w wyniku podania i-tego wzorca. Ostatecznie 35 E(w) = (t i f( x i k w k)). Zwykle aby zapewnić sobie, że funkcja E ma minimum i aby otrzymać w wyniku dalszych działań przyjemną postać, przyjmuje się ją jako k=0 E(w) = 1 2 (t i y) 2. Tak więc określiliśmy pewną funkcję i poszukujemy jej minimum. Do tego celu, przy założeniu różniczkowalności badanej funkcji, nadaje sie metoda gradientowa wyznaczania minimum funkcji. Pochodna funkcji policzona w pewnym punkcie, oznaczmy go przez w(t) 1, jej dziedziny wskazuje kierunek najszybszego wzrostu jej wartości. Tak więc minus pochodna w danym punkcie wskazuje kierunek najszybszego spadku jej wartości. Zatem szukając minimum przesuwamy się nieznacznie w tak wyznaczonym kierunku z punktu w którym jesteśmy obecnie, otrzymując nowy punkt oznaczany przez w(t + 1). Czyli, przyjmując za η niewielką liczbę rzeczywistą (np. 0.01) dokonujemy następującej modyfikacji: w(t + 1) = w(t) η kierunek, czyli Policzmy teraz gradient 2 funkcji E w(t + 1) = w(t) ηe (w(t)). E = [ E w 0,..., E w 35 (przyjąć musimy, że obliczenia prowadzone są dla pewnej pary (p i, t i )) ( ) E = E wk (w) = t i f( x i w k 2 mw m ) = wk ( t i f( 35 m=0 ( ) 35 t i f( x i mw m ) f w k ( m=0 m=0 ) ( ) 35 x i mw m ) t i f( x i mw m ) 35 m=0 x i mw m ) ] m=0 ( 35 m=0 ( ) t i f( x i mw m ) f ( x i mw m )x i k = m=0 m=0 (t i f(net))f (net)x i k. w k = x i mw m )wk = Iloczyn (t i f(net))f (net) oznaczamy przez δ i nazywamy sygnałem błędu delta. 1 Zmienna t oznacza w tym przypadku pewną, intuicyjnie rozumianą, zależność czasową, polegającą na tym, że wartość w(t) jest obliczana przed w(t + 1). 2 Gradient, czyli pochodna funkcji wielu zmiennych.

16 10 ROZDZIAŁ 3. NAJPROSTSZA SIEĆ W zależności od wyboru funckji aktywacji, inaczej będzie wyglądało wyrażenie f (x). Przyjmując liniową funkcję aktywacji (patrz wzór (1.1)) otrzymujemy f (x) = 1.0. Dla sigmoidalnej unipolarnej funkcję aktywacji (patrz wzór (1.5)) otrzymujemy f (x) = f(x)(1 f(x)). Postać ta jest o tyle ciekawa, iż widzimy, że pochodna sigmoidalnej funkcji unipolarnej w punkcie x wyraża się przez wartość tejże funkcji w tym samym punkcie x. Oznacza to, że nie musimy przeprowadzać prawie żadnych dodatkowych obliczeń w celu obliczenia pochodnej. 3.3 Algorytm Mamy dany zbiór uczący L postaci L = {P, T }, gdzie P = {p 1, p 2 } oraz T = {t 1, t 2 } zgodznie z opisem powyżej. 1. Wybór (a) η > 0 współczynnik uczenia, (b) E max > 0 maksymalny błąd jaki chcemy osiągnąć, (c) C max > 0 ilość kroków uczenia. 2. Losowy wybór początkowych wartości wag (zmienne w 0,..., w 35 ) jako niewielkich liczb (na przykład z przedziału [ 1, 1]). 3. Przyjmujemy c := Przyjmujemy l := 1, E := Losowy wybór liczby k {0, 1}. 6. Podanie k-tego obrazu ze zbioru P na wejscia neuronu: x i = p k,i, i = 0,..., Obliczenie sygnału wyjściowego neuronu y = f(net), gdzie net = 35 m=0 x mw m. 8. Uaktualnienie wartości wag według wzoru w i (t + 1) = w i (t) η E w k, k = 0,..., Obliczenie błędu b = (t k y) oraz zaktualizowanie sumarycznej wartości błędu dla danego cyklu uczącego: E = E b Jesli l < 2 to l := l + 1 i przejscie do kroku Jesli E < E max, to kończymy algorytm. 12. Jeśli c < C max, to c := c + 1 i przechodzimy do kroku 4. W przeciwnym razie kończymy algorytm.

17 3.4. ZADANIE 11 Drobne uwagi: 1. Zmienna c wskazuje na kolejne cykle uczące. 2. Powinno się zadbać aby w ramach każdego cyklu uczącego zaprezentować wszystkie wzorce uczące w losowej kolejności. Zatem losowy wybór liczby k musi wykluczać obrazy już wybrane w danym cyklu uczącym. 3.4 Zadanie Należy zaimplementować zaprezentowany algorytm dla identycznego zadania jak rozważanego w tekście (rozpoznawanie pewnych wzorcy graficznych). Program powinien mieć możliwość, po nauczeniu sieci, podawania przez użytkownika wartości sygnałów wejściowych i obliczenia dla nich odpowiedzi neuronu. Ilość rozpoznawanych klas można rozszerzyć wedle uznania.

18 12 ROZDZIAŁ 3. NAJPROSTSZA SIEĆ

8. Neuron z ciągłą funkcją aktywacji.

8. Neuron z ciągłą funkcją aktywacji. 8. Neuron z ciągłą funkcją aktywacji. W tym ćwiczeniu zapoznamy się z modelem sztucznego neuronu oraz przykładem jego wykorzystania do rozwiązywanie prostego zadania klasyfikacji. Neuron biologiczny i

Bardziej szczegółowo

Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta

Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta www.michalbereta.pl Sieci radialne zawsze posiadają jedną warstwę ukrytą, która składa się z neuronów radialnych. Warstwa wyjściowa składa

Bardziej szczegółowo

Zastosowania sieci neuronowych

Zastosowania sieci neuronowych Zastosowania sieci neuronowych aproksymacja LABORKA Piotr Ciskowski zadanie 1. aproksymacja funkcji odległość punktów źródło: Żurada i in. Sztuczne sieci neuronowe, przykład 4.4, str. 137 Naucz sieć taką

Bardziej szczegółowo

Uczenie sieci typu MLP

Uczenie sieci typu MLP Uczenie sieci typu MLP Przypomnienie budowa sieci typu MLP Przypomnienie budowy neuronu Neuron ze skokową funkcją aktywacji jest zły!!! Powszechnie stosuje -> modele z sigmoidalną funkcją aktywacji - współczynnik

Bardziej szczegółowo

Zastosowania sieci neuronowych

Zastosowania sieci neuronowych Zastosowania sieci neuronowych klasyfikacja LABORKA Piotr Ciskowski zadanie 1. klasyfikacja zwierząt sieć jednowarstwowa żródło: Tadeusiewicz. Odkrywanie własności sieci neuronowych, str. 159 Przykład

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka Adaline.

Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka Adaline. Wstęp do sieci neuronowych, wykład 3 Warstwy, jednostka Adaline. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 211-1-18 1 Pomysł Przykłady Zastosowanie 2

Bardziej szczegółowo

Metody Sztucznej Inteligencji II

Metody Sztucznej Inteligencji II 17 marca 2013 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką, która jest w stanie odbierać i przekazywać sygnały elektryczne. Neuron działanie Jeżeli wartość sygnału

Bardziej szczegółowo

Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe

Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Trening jednokierunkowych sieci neuronowych wykład 2. dr inż. PawełŻwan Katedra Systemów Multimedialnych Politechnika Gdańska

Bardziej szczegółowo

Temat: Sieci neuronowe oraz technologia CUDA

Temat: Sieci neuronowe oraz technologia CUDA Elbląg, 27.03.2010 Temat: Sieci neuronowe oraz technologia CUDA Przygotował: Mateusz Górny VIII semestr ASiSK Wstęp Sieci neuronowe są to specyficzne struktury danych odzwierciedlające sieć neuronów w

Bardziej szczegółowo

Najprostsze modele sieci z rekurencją. sieci Hopfielda; sieci uczone regułą Hebba; sieć Hamminga;

Najprostsze modele sieci z rekurencją. sieci Hopfielda; sieci uczone regułą Hebba; sieć Hamminga; Sieci Hopfielda Najprostsze modele sieci z rekurencją sieci Hopfielda; sieci uczone regułą Hebba; sieć Hamminga; Modele bardziej złoŝone: RTRN (Real Time Recurrent Network), przetwarzająca sygnały w czasie

Bardziej szczegółowo

Uczenie Wielowarstwowych Sieci Neuronów o

Uczenie Wielowarstwowych Sieci Neuronów o Plan uczenie neuronu o ci gªej funkcji aktywacji uczenie jednowarstwowej sieci neuronów o ci gªej funkcji aktywacji uczenie sieci wielowarstwowej - metoda propagacji wstecznej neuronu o ci gªej funkcji

Bardziej szczegółowo

Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe.

Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. zajecia.jakubw.pl/nai Literatura: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym. WNT, Warszawa 997. PODSTAWOWE ZAGADNIENIA TECHNICZNE AI

Bardziej szczegółowo

Oprogramowanie Systemów Obrazowania SIECI NEURONOWE

Oprogramowanie Systemów Obrazowania SIECI NEURONOWE SIECI NEURONOWE Przedmiotem laboratorium jest stworzenie algorytmu rozpoznawania zwierząt z zastosowaniem sieci neuronowych w oparciu o 5 kryteriów: ile zwierzę ma nóg, czy żyje w wodzie, czy umie latać,

Bardziej szczegółowo

Podstawy sztucznej inteligencji

Podstawy sztucznej inteligencji wykład 5 Sztuczne sieci neuronowe (SSN) 8 grudnia 2011 Plan wykładu 1 Biologiczne wzorce sztucznej sieci neuronowej 2 3 4 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką,

Bardziej szczegółowo

Sieci neuronowe w Statistica

Sieci neuronowe w Statistica http://usnet.us.edu.pl/uslugi-sieciowe/oprogramowanie-w-usk-usnet/oprogramowaniestatystyczne/ Sieci neuronowe w Statistica Agnieszka Nowak - Brzezińska Podstawowym elementem składowym sztucznej sieci neuronowej

Bardziej szczegółowo

Uczenie sieci neuronowych i bayesowskich

Uczenie sieci neuronowych i bayesowskich Wstęp do metod sztucznej inteligencji www.mat.uni.torun.pl/~piersaj 2009-01-22 Co to jest neuron? Komputer, a mózg komputer mózg Jednostki obliczeniowe 1-4 CPU 10 11 neuronów Pojemność 10 9 b RAM, 10 10

Bardziej szczegółowo

Sieci neuronowe w Statistica. Agnieszka Nowak - Brzezioska

Sieci neuronowe w Statistica. Agnieszka Nowak - Brzezioska Sieci neuronowe w Statistica Agnieszka Nowak - Brzezioska Podstawowym elementem składowym sztucznej sieci neuronowej jest element przetwarzający neuron. Schemat działania neuronu: x1 x2 w1 w2 Dendrites

Bardziej szczegółowo

Sztuczne sieci neuronowe (SNN)

Sztuczne sieci neuronowe (SNN) Sztuczne sieci neuronowe (SNN) Pozyskanie informacji (danych) Wstępne przetwarzanie danych przygotowanie ich do dalszej analizy Selekcja informacji Ostateczny model decyzyjny SSN - podstawy Sieci neuronowe

Bardziej szczegółowo

Definicja pochodnej cząstkowej

Definicja pochodnej cząstkowej 1 z 8 gdzie punkt wewnętrzny Definicja pochodnej cząstkowej JeŜeli iloraz ma granicę dla to granicę tę nazywamy pochodną cząstkową funkcji względem w punkcie. Oznaczenia: Pochodną cząstkową funkcji względem

Bardziej szczegółowo

FUNKCJA KWADRATOWA. Zad 1 Przedstaw funkcję kwadratową w postaci ogólnej. Postać ogólna funkcji kwadratowej to: y = ax + bx + c;(

FUNKCJA KWADRATOWA. Zad 1 Przedstaw funkcję kwadratową w postaci ogólnej. Postać ogólna funkcji kwadratowej to: y = ax + bx + c;( Zad Przedstaw funkcję kwadratową w postaci ogólnej Przykład y = ( x ) + 5 (postać kanoniczna) FUNKCJA KWADRATOWA Postać ogólna funkcji kwadratowej to: y = ax + bx + c;( a 0) Aby ją uzyskać pozbywamy się

Bardziej szczegółowo

Sztuczne siei neuronowe - wprowadzenie

Sztuczne siei neuronowe - wprowadzenie Metody Sztucznej Inteligencji w Sterowaniu Ćwiczenie 2 Sztuczne siei neuronowe - wprowadzenie Przygotował: mgr inż. Marcin Pelic Instytut Technologii Mechanicznej Politechnika Poznańska Poznań, 2 Wstęp

Bardziej szczegółowo

Podstawy Sztucznej Inteligencji

Podstawy Sztucznej Inteligencji Politechnika Łódzka Katedra Informatyki Stosowanej Podstawy Sztucznej Inteligencji Laboratorium Ćwiczenie 2 Wykorzystanie środowiska Matlab do modelowania sztucznych sieci neuronowych Opracowali: Dr hab

Bardziej szczegółowo

S O M SELF-ORGANIZING MAPS. Przemysław Szczepańczyk Łukasz Myszor

S O M SELF-ORGANIZING MAPS. Przemysław Szczepańczyk Łukasz Myszor S O M SELF-ORGANIZING MAPS Przemysław Szczepańczyk Łukasz Myszor Podstawy teoretyczne Map Samoorganizujących się stworzył prof. Teuvo Kohonen (1982 r.). SOM wywodzi się ze sztucznych sieci neuronowych.

Bardziej szczegółowo

FUNKCJA LINIOWA - WYKRES. y = ax + b. a i b to współczynniki funkcji, które mają wartości liczbowe

FUNKCJA LINIOWA - WYKRES. y = ax + b. a i b to współczynniki funkcji, które mają wartości liczbowe FUNKCJA LINIOWA - WYKRES Wzór funkcji liniowej (postać kierunkowa) Funkcja liniowa to funkcja o wzorze: y = ax + b a i b to współczynniki funkcji, które mają wartości liczbowe Szczególnie ważny w postaci

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-11 1 Modelowanie funkcji logicznych

Bardziej szczegółowo

Algorytmy sztucznej inteligencji

Algorytmy sztucznej inteligencji Algorytmy sztucznej inteligencji Dynamiczne sieci neuronowe 1 Zapis macierzowy sieci neuronowych Poniżej omówione zostaną części składowe sieci neuronowych i metoda ich zapisu za pomocą macierzy. Obliczenia

Bardziej szczegółowo

Sieć przesyłająca żetony CP (counter propagation)

Sieć przesyłająca żetony CP (counter propagation) Sieci neuropodobne IX, specyficzne architektury 1 Sieć przesyłająca żetony CP (counter propagation) warstwa Kohonena: wektory wejściowe są unormowane jednostki mają unormowane wektory wag jednostki są

Bardziej szczegółowo

6. Perceptron Rosenblatta

6. Perceptron Rosenblatta 6. Perceptron Rosenblatta 6-1 Krótka historia perceptronu Rosenblatta 6-2 Binarne klasyfikatory liniowe 6-3 Struktura perceptronu Rosenblatta 6-4 Perceptron Rosenblatta a klasyfikacja 6-5 Perceptron jednowarstwowy:

Bardziej szczegółowo

Rozdział 1 PROGRAMOWANIE LINIOWE

Rozdział 1 PROGRAMOWANIE LINIOWE Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 1 PROGRAMOWANIE LINIOWE 1.2 Ćwiczenia komputerowe Ćwiczenie 1.1 Wykorzystując

Bardziej szczegółowo

Sztuczna inteligencja

Sztuczna inteligencja Sztuczna inteligencja Wykład 7. Architektury sztucznych sieci neuronowych. Metody uczenia sieci. źródła informacji: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym, WNT 1996 Podstawowe architektury

Bardziej szczegółowo

Zastosowania sieci neuronowych - automatyka identyfikacja sterowanie

Zastosowania sieci neuronowych - automatyka identyfikacja sterowanie Zastosowania sieci neuronowych - automatyka identyfikacja sterowanie LABORKA Piotr Ciskowski ZASTOSOWANIA SIECI NEURONOWYCH IDENTYFIKACJA zastosowania przegląd zastosowania sieci neuronowych: o identyfikacja

Bardziej szczegółowo

Optymalizacja systemów

Optymalizacja systemów Optymalizacja systemów Laboratorium - problem detekcji twarzy autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, P. Klukowski Cel zadania Celem zadania jest zapoznanie się z gradientowymi algorytmami optymalizacji

Bardziej szczegółowo

SIECI NEURONOWE Liniowe i nieliniowe sieci neuronowe

SIECI NEURONOWE Liniowe i nieliniowe sieci neuronowe SIECI NEURONOWE Liniowe i nieliniowe sieci neuronowe JOANNA GRABSKA-CHRZĄSTOWSKA Wykłady w dużej mierze przygotowane w oparciu o materiały i pomysły PROF. RYSZARDA TADEUSIEWICZA BUDOWA RZECZYWISTEGO NEURONU

Bardziej szczegółowo

Widzenie komputerowe

Widzenie komputerowe Widzenie komputerowe Uczenie maszynowe na przykładzie sieci neuronowych (3) źródła informacji: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym, WNT 1996 Zdolność uogólniania sieci neuronowej R oznaczenie

Bardziej szczegółowo

Elementy Sztucznej Inteligencji. Sztuczne sieci neuronowe cz. 2

Elementy Sztucznej Inteligencji. Sztuczne sieci neuronowe cz. 2 Elementy Sztucznej Inteligencji Sztuczne sieci neuronowe cz. 2 1 Plan wykładu Uczenie bez nauczyciela (nienadzorowane). Sieci Kohonena (konkurencyjna) Sieć ze sprzężeniem zwrotnym Hopfielda. 2 Cechy uczenia

Bardziej szczegółowo

1. Logika, funkcje logiczne, preceptron.

1. Logika, funkcje logiczne, preceptron. Sieci neuronowe 1. Logika, funkcje logiczne, preceptron. 1. (Logika) Udowodnij prawa de Morgana, prawo pochłaniania p (p q), prawo wyłączonego środka p p oraz prawo sprzeczności (p p). 2. Wyraź funkcję

Bardziej szczegółowo

Klasyfikatory: k-nn oraz naiwny Bayesa. Agnieszka Nowak Brzezińska Wykład IV

Klasyfikatory: k-nn oraz naiwny Bayesa. Agnieszka Nowak Brzezińska Wykład IV Klasyfikatory: k-nn oraz naiwny Bayesa Agnieszka Nowak Brzezińska Wykład IV Naiwny klasyfikator Bayesa Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną

Bardziej szczegółowo

3. Macierze i Układy Równań Liniowych

3. Macierze i Układy Równań Liniowych 3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x

Bardziej szczegółowo

WYKŁAD 4 PLAN WYKŁADU. Sieci neuronowe: Algorytmy uczenia & Dalsze zastosowania. Metody uczenia sieci: Zastosowania

WYKŁAD 4 PLAN WYKŁADU. Sieci neuronowe: Algorytmy uczenia & Dalsze zastosowania. Metody uczenia sieci: Zastosowania WYKŁAD 4 Sieci neuronowe: Algorytmy uczenia & Dalsze zastosowania PLAN WYKŁADU Metody uczenia sieci: Uczenie perceptronu Propagacja wsteczna Zastosowania Sterowanie (powtórzenie) Kompresja obrazu Rozpoznawanie

Bardziej szczegółowo

Agnieszka Nowak Brzezińska

Agnieszka Nowak Brzezińska Agnieszka Nowak Brzezińska jeden z algorytmów regresji nieparametrycznej używanych w statystyce do prognozowania wartości pewnej zmiennej losowej. Może również byd używany do klasyfikacji. - Założenia

Bardziej szczegółowo

METODY INŻYNIERII WIEDZY

METODY INŻYNIERII WIEDZY METODY INŻYNIERII WIEDZY WALIDACJA KRZYŻOWA dla ZAAWANSOWANEGO KLASYFIKATORA KNN ĆWICZENIA Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej

Bardziej szczegółowo

SIECI RBF (RADIAL BASIS FUNCTIONS)

SIECI RBF (RADIAL BASIS FUNCTIONS) SIECI RBF (RADIAL BASIS FUNCTIONS) Wybrane slajdy z prezentacji prof. Tadeusiewicza Wykład Andrzeja Burdy S. Osowski, Sieci Neuronowe w ujęciu algorytmicznym, Rozdz. 5, PWNT, Warszawa 1996. opr. P.Lula,

Bardziej szczegółowo

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu 1 Metody rozwiązywania równań nieliniowych. Postawienie problemu Dla danej funkcji ciągłej f znaleźć wartości x, dla których f(x) = 0. (1) 2 Przedział izolacji pierwiastka Będziemy zakładać, że równanie

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 9 Sieci rekurencyjne. Autoasocjator Hopfielda

Wstęp do sieci neuronowych, wykład 9 Sieci rekurencyjne. Autoasocjator Hopfielda Wstęp do sieci neuronowych, wykład 9. M. Czoków, J. Piersa 2010-12-07 1 Sieci skierowane 2 Modele sieci rekurencyjnej Energia sieci 3 Sieci skierowane Sieci skierowane Sieci skierowane graf połączeń synaptycznych

Bardziej szczegółowo

Instrukcja realizacji ćwiczenia

Instrukcja realizacji ćwiczenia SIEĆ KOHONENA ROZPOZNAWANIE OBRAZÓW Cel ćwiczenia: zapoznanie się ze sposobem reprezentacji wiedzy w sieciach Kohonena i mechanizmami sąsiedztwa i sumienia neuronów. Zadanie do analizy: analizujemy sieć

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo

2.4. Algorytmy uczenia sieci neuronowych

2.4. Algorytmy uczenia sieci neuronowych 2.4. Algorytmy uczenia sieci neuronowych Prosta struktura sieci jednokierunkowych sprawia, że są najchętniej stosowane. Ponadto metody uczenia ich należą również do popularnych i łatwych w realizacji.

Bardziej szczegółowo

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych, IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy

Bardziej szczegółowo

Inżynieria Wiedzy i Systemy Ekspertowe. Logika rozmyta. dr inż. Michał Bereta Politechnika Krakowska

Inżynieria Wiedzy i Systemy Ekspertowe. Logika rozmyta. dr inż. Michał Bereta Politechnika Krakowska Inżynieria Wiedzy i Systemy Ekspertowe Logika rozmyta dr inż. Michał Bereta Politechnika Krakowska http://torus.uck.pk.edu.pl/~beretam/ beretam@torus.uck.pk.edu.pl 1 Wyostrzanie Ostateczna, ostra wartość

Bardziej szczegółowo

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. 1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy

Bardziej szczegółowo

Obliczenia Naturalne - Sztuczne sieci neuronowe

Obliczenia Naturalne - Sztuczne sieci neuronowe Literatura Wprowadzenie Obliczenia Naturalne - Sztuczne sieci neuronowe Paweł Paduch Politechnika Świętokrzyska 13 marca 2014 Paweł Paduch Obliczenia Naturalne - Sztuczne sieci neuronowe 1 z 43 Plan wykładu

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-10-10 Projekt pn. Wzmocnienie

Bardziej szczegółowo

Wektory, układ współrzędnych

Wektory, układ współrzędnych Wektory, układ współrzędnych Wielkości występujące w przyrodzie możemy podzielić na: Skalarne, to jest takie wielkości, które potrafimy opisać przy pomocy jednej liczby (skalara), np. masa, czy temperatura.

Bardziej szczegółowo

Zadania domowe. Ćwiczenie 2. Rysowanie obiektów 2-D przy pomocy tworów pierwotnych biblioteki graficznej OpenGL

Zadania domowe. Ćwiczenie 2. Rysowanie obiektów 2-D przy pomocy tworów pierwotnych biblioteki graficznej OpenGL Zadania domowe Ćwiczenie 2 Rysowanie obiektów 2-D przy pomocy tworów pierwotnych biblioteki graficznej OpenGL Zadanie 2.1 Fraktal plazmowy (Plasma fractal) Kwadrat należy pokryć prostokątną siatką 2 n

Bardziej szczegółowo

Sieci Kohonena Grupowanie

Sieci Kohonena Grupowanie Sieci Kohonena Grupowanie http://zajecia.jakubw.pl/nai UCZENIE SIĘ BEZ NADZORU Załóżmy, że mamy za zadanie pogrupować następujące słowa: cup, roulette, unbelievable, cut, put, launderette, loveable Nie

Bardziej szczegółowo

Sieci neuronowe jako sposób na optymalizacje podejmowanych decyzji. Tomasz Karczyoski Wydział W-08 IZ

Sieci neuronowe jako sposób na optymalizacje podejmowanych decyzji. Tomasz Karczyoski Wydział W-08 IZ optymalizacje podejmowanych decyzji Tomasz Karczyoski Wydział W-08 IZ Czym są sieci neuronowe Struktura matematycznych oraz programowy lub sprzętowy model, realizujących obliczenia lub przetwarzanie sygnałów

Bardziej szczegółowo

Metody sztucznej inteligencji Zadanie 3: (1) klasteryzacja samoorganizująca się mapa Kohonena, (2) aproksymacja sieć RBF.

Metody sztucznej inteligencji Zadanie 3: (1) klasteryzacja samoorganizująca się mapa Kohonena, (2) aproksymacja sieć RBF. Metody sztucznej inteligencji Zadanie 3: ( klasteryzacja samoorganizująca się mapa Kohonena, (2 aproksymacja sieć RBF dr inż Przemysław Klęsk Klasteryzacja za pomocą samoorganizującej się mapy Kohonena

Bardziej szczegółowo

Kolorowanie płaszczyzny, prostych i okręgów

Kolorowanie płaszczyzny, prostych i okręgów Kolorowanie płaszczyzny, prostych i okręgów Jadwiga Czyżewska Pisane pod kierunkiem W.Guzickiego W 2013 roku na II etapie VIII edycji Olimpiady Matematycznej Gimnazjalistów pojawiło się zadanie o następującej

Bardziej szczegółowo

SIEĆ NEURONOWA JAKO NARZĘDZIE APROKSYMACJI I KLASYFIKACJI DANYCH. Jakub Karbowski Gimnazjum nr 17 w Krakowie

SIEĆ NEURONOWA JAKO NARZĘDZIE APROKSYMACJI I KLASYFIKACJI DANYCH. Jakub Karbowski Gimnazjum nr 17 w Krakowie SIEĆ NEURONOWA JAKO NARZĘDZIE APROKSYMACJI I KLASYFIKACJI DANYCH Jakub Karbowski Gimnazjum nr 17 w Krakowie KRAKÓW 2017 1. Spis treści 2. WSTĘP 2 3. SIECI NEURONOWE 2 3.1. Co to są sieci neuronowe... 2

Bardziej szczegółowo

Przepustowość kanału, odczytywanie wiadomości z kanału, poprawa wydajności kanału.

Przepustowość kanału, odczytywanie wiadomości z kanału, poprawa wydajności kanału. Przepustowość kanału, odczytywanie wiadomości z kanału, poprawa wydajności kanału Wiktor Miszuris 2 czerwca 2004 Przepustowość kanału Zacznijmy od wprowadzenia równości IA, B HB HB A HA HA B Można ją intuicyjnie

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania KOMPUTEROWE SYSTEMY STEROWANIA I WSPOMAGANIA DECYZJI Rozproszone programowanie produkcji z wykorzystaniem

Bardziej szczegółowo

Metoda określania pozycji wodnicy statków na podstawie pomiarów odległości statku od głowic laserowych

Metoda określania pozycji wodnicy statków na podstawie pomiarów odległości statku od głowic laserowych inż. Marek Duczkowski Metoda określania pozycji wodnicy statków na podstawie pomiarów odległości statku od głowic laserowych słowa kluczowe: algorytm gradientowy, optymalizacja, określanie wodnicy W artykule

Bardziej szczegółowo

Testowanie modeli predykcyjnych

Testowanie modeli predykcyjnych Testowanie modeli predykcyjnych Wstęp Podczas budowy modelu, którego celem jest przewidywanie pewnych wartości na podstawie zbioru danych uczących poważnym problemem jest ocena jakości uczenia i zdolności

Bardziej szczegółowo

Projekt Sieci neuronowe

Projekt Sieci neuronowe Projekt Sieci neuronowe Chmielecka Katarzyna Gr. 9 IiE 1. Problem i dane Sieć neuronowa miała za zadanie nauczyć się klasyfikować wnioski kredytowe. W projekcie wykorzystano dane pochodzące z 110 wniosków

Bardziej szczegółowo

FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH

FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH PROPORCJONALNOŚĆ PROSTA Proporcjonalnością prostą nazywamy zależność między dwoma wielkościami zmiennymi x i y, określoną wzorem: y = a x Gdzie a jest

Bardziej szczegółowo

Algorytmy decyzyjne będące alternatywą dla sieci neuronowych

Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Piotr Dalka Przykładowe algorytmy decyzyjne Sztuczne sieci neuronowe Algorytm k najbliższych sąsiadów Kaskada klasyfikatorów AdaBoost Naiwny

Bardziej szczegółowo

Matematyka licea ogólnokształcące, technika

Matematyka licea ogólnokształcące, technika Matematyka licea ogólnokształcące, technika Opracowano m.in. na podstawie podręcznika MATEMATYKA w otaczającym nas świecie zakres podstawowy i rozszerzony Funkcja liniowa Funkcję f: R R określoną wzorem

Bardziej szczegółowo

Spis treści. Koszalin 2006 [BADANIA OPERACYJNE PROGRAMOWANIE LINIOWE]

Spis treści. Koszalin 2006 [BADANIA OPERACYJNE PROGRAMOWANIE LINIOWE] Spis treści 1 Metoda geometryczna... 2 1.1 Wstęp... 2 1.2 Przykładowe zadanie... 2 2 Metoda simpleks... 6 2.1 Wstęp... 6 2.2 Przykładowe zadanie... 6 1 Metoda geometryczna Anna Tomkowska 1 Metoda geometryczna

Bardziej szczegółowo

Redukcja wariancji w metodach Monte-Carlo

Redukcja wariancji w metodach Monte-Carlo 14.02.2006 Seminarium szkoleniowe 14 lutego 2006 Plan prezentacji Wprowadzenie Metoda losowania warstwowego Metoda próbkowania ważonego Metoda zmiennych kontrolnych Metoda zmiennych antytetycznych Metoda

Bardziej szczegółowo

WYKORZYSTANIE SIECI NEURONOWEJ DO BADANIA WPŁYWU WYDOBYCIA NA SEJSMICZNOŚĆ W KOPALNIACH WĘGLA KAMIENNEGO. Stanisław Kowalik (Poland, Gliwice)

WYKORZYSTANIE SIECI NEURONOWEJ DO BADANIA WPŁYWU WYDOBYCIA NA SEJSMICZNOŚĆ W KOPALNIACH WĘGLA KAMIENNEGO. Stanisław Kowalik (Poland, Gliwice) WYKORZYSTANIE SIECI NEURONOWEJ DO BADANIA WPŁYWU WYDOBYCIA NA SEJSMICZNOŚĆ W KOPALNIACH WĘGLA KAMIENNEGO Stanisław Kowalik (Poland, Gliwice) 1. Wprowadzenie Wstrząsy podziemne i tąpania występujące w kopalniach

Bardziej szczegółowo

Metoda Karnaugh. B A BC A

Metoda Karnaugh. B A BC A Metoda Karnaugh. Powszechnie uważa się, iż układ o mniejszej liczbie elementów jest tańszy i bardziej niezawodny, a spośród dwóch układów o takiej samej liczbie elementów logicznych lepszy jest ten, który

Bardziej szczegółowo

Czy kwadrat da się podzielić na nieparzystą liczbę trójkątów o równych polach? Michał Kieza

Czy kwadrat da się podzielić na nieparzystą liczbę trójkątów o równych polach? Michał Kieza Czy kwadrat da się podzielić na nieparzystą liczbę trójkątów o równych polach? Michał Kieza Łatwo zauważyć, że kwadrat można podzielić na 2, 4, 6,..., a także na dowolną parzystą liczbę trójkątów o równych

Bardziej szczegółowo

Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe

Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe wykład 1. Właściwości sieci neuronowych Model matematyczny sztucznego neuronu Rodzaje sieci neuronowych Przegląd d głównych g

Bardziej szczegółowo

ALGORYTMY SZTUCZNEJ INTELIGENCJI

ALGORYTMY SZTUCZNEJ INTELIGENCJI ALGORYTMY SZTUCZNEJ INTELIGENCJI Sieci neuronowe 06.12.2014 Krzysztof Salamon 1 Wstęp Sprawozdanie to dotyczy ćwiczeń z zakresu sieci neuronowych realizowanym na przedmiocie: Algorytmy Sztucznej Inteligencji.

Bardziej szczegółowo

Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe.

Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe. Z5: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania zagadnienie brzegowe Dyskretne operatory różniczkowania Numeryczne obliczanie pochodnych oraz rozwiązywanie

Bardziej szczegółowo

Co to jest grupowanie

Co to jest grupowanie Grupowanie danych Co to jest grupowanie 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Szukanie grup, obszarów stanowiących lokalne gromady punktów Co to jest grupowanie

Bardziej szczegółowo

Agnieszka Nowak Brzezińska Wykład III

Agnieszka Nowak Brzezińska Wykład III Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe

Bardziej szczegółowo

Wstęp do sieci neuronowych laboratorium 01 Organizacja zajęć. Perceptron prosty

Wstęp do sieci neuronowych laboratorium 01 Organizacja zajęć. Perceptron prosty Wstęp do sieci neuronowych laboratorium 01 Organizacja zajęć. Perceptron prosty Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-10-03 Projekt pn. Wzmocnienie potencjału

Bardziej szczegółowo

R n jako przestrzeń afiniczna

R n jako przestrzeń afiniczna R n jako przestrzeń afiniczna Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 11. wykład z algebry liniowej Warszawa, grudzień 2014 Mirosław Sobolewski (UW) Warszawa, grudzień 2014 1

Bardziej szczegółowo

MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony

MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Agnieszka Kamińska, Dorota Ponczek MATeMAtyka 3 Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania

Bardziej szczegółowo

FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE

FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE Umiejętności opracowanie: Maria Lampert LISTA MOICH OSIĄGNIĘĆ FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE Co powinienem umieć Umiejętności znam podstawowe przekształcenia geometryczne: symetria osiowa i środkowa,

Bardziej szczegółowo

Wstęp do programowania

Wstęp do programowania Wstęp do programowania Wykład 5 Podstawowe techniki programownia w przykładach Janusz Szwabiński Plan wykładu: Metoda babilońska wyliczania pierwiastka Liczby pierwsze i sito Eratostenesa Metoda bisekcji

Bardziej szczegółowo

Przykładowe funkcje przejścia używane przy budowie sztucznych neuronów

Przykładowe funkcje przejścia używane przy budowie sztucznych neuronów Przykładowe funkcje przejścia używane przy budowie sztucznych neuronów Funkcja Wzór funkcji Wzór pochodnej Sigmoida f(s)=1/(1+e -(β*s) ) f (s)=β*(1- f(s))* f(s) Funkcje przejścia neuronu powinno się rozpatrywać

Bardziej szczegółowo

Sztuczne sieci neuronowe. Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 311

Sztuczne sieci neuronowe. Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 311 Sztuczne sieci neuronowe Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 311 PLAN: Wykład 5 - Metody doboru współczynnika uczenia - Problem inicjalizacji wag - Problem doboru architektury

Bardziej szczegółowo

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych

Bardziej szczegółowo

Analiza korespondencji

Analiza korespondencji Analiza korespondencji Kiedy stosujemy? 2 W wielu badaniach mamy do czynienia ze zmiennymi jakościowymi (nominalne i porządkowe) typu np.: płeć, wykształcenie, status palenia. Punktem wyjścia do analizy

Bardziej szczegółowo

1. Prymitywy graficzne

1. Prymitywy graficzne 1. Prymitywy graficzne Prymitywy graficzne są elementarnymi obiektami jakie potrafi bezpośrednio rysować, określony system graficzny (DirectX, OpenGL itp.) są to: punkty, listy linii, serie linii, listy

Bardziej szczegółowo

Rozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej

Rozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Zbiór możliwych wyników eksperymentu będziemy nazywać przestrzenią zdarzeń elementarnych i oznaczać Ω, natomiast

Bardziej szczegółowo

KADD Minimalizacja funkcji

KADD Minimalizacja funkcji Minimalizacja funkcji n-wymiarowych Forma kwadratowa w n wymiarach Procedury minimalizacji Minimalizacja wzdłuż prostej w n-wymiarowej przestrzeni Metody minimalizacji wzdłuż osi współrzędnych wzdłuż kierunków

Bardziej szczegółowo

Następnie przypominamy (dla części studentów wprowadzamy) podstawowe pojęcia opisujące funkcje na poziomie rysunków i objaśnień.

Następnie przypominamy (dla części studentów wprowadzamy) podstawowe pojęcia opisujące funkcje na poziomie rysunków i objaśnień. Zadanie Należy zacząć od sprawdzenia, co studenci pamiętają ze szkoły średniej na temat funkcji jednej zmiennej. Na początek można narysować kilka krzywych na tle układu współrzędnych (funkcja gładka,

Bardziej szczegółowo

Wyszukiwanie binarne

Wyszukiwanie binarne Wyszukiwanie binarne Wyszukiwanie binarne to technika pozwalająca na przeszukanie jakiegoś posortowanego zbioru danych w czasie logarytmicznie zależnym od jego wielkości (co to dokładnie znaczy dowiecie

Bardziej szczegółowo

Wymagania edukacyjne z matematyki - klasa III (poziom rozszerzony) wg programu nauczania Matematyka Prosto do matury

Wymagania edukacyjne z matematyki - klasa III (poziom rozszerzony) wg programu nauczania Matematyka Prosto do matury STEREOMETRIA Wymagania edukacyjne z matematyki - klasa III (poziom rozszerzony) wskazać płaszczyzny równoległe i prostopadłe do danej płaszczyzny wskazać proste równoległe i prostopadłe do danej płaszczyzny

Bardziej szczegółowo

Data Mining Wykład 9. Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster. Plan wykładu. Sformułowanie problemu

Data Mining Wykład 9. Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster. Plan wykładu. Sformułowanie problemu Data Mining Wykład 9 Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster Plan wykładu Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne Sformułowanie problemu

Bardziej szczegółowo

Kombinacje liniowe wektorów.

Kombinacje liniowe wektorów. Kombinacje liniowe wektorów Definicja: Niech V będzie przestrzenią liniową nad ciałem F, niech A V Zbiór wektorów A nazywamy liniowo niezależnym, jeżeli m N v,, v m A a,, a m F [a v + + a m v m = θ a =

Bardziej szczegółowo

BIOCYBERNETYKA SIECI NEURONOWE. Akademia Górniczo-Hutnicza. Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej.

BIOCYBERNETYKA SIECI NEURONOWE. Akademia Górniczo-Hutnicza. Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej. Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej BIOCYBERNETYKA Adrian Horzyk SIECI NEURONOWE www.agh.edu.pl Mózg inspiruje nas od wieków Co takiego

Bardziej szczegółowo

Asocjacyjna reprezentacja danych i wnioskowanie

Asocjacyjna reprezentacja danych i wnioskowanie Asocjacyjna reprezentacja danych i wnioskowanie Wykorzystane technologie JetBrains PyCharm 504 Python 35 Struktura drzewa GRAPH PARAM PARAM ID1 ID2 ID_N params params params param_name_1: param_value_1

Bardziej szczegółowo

Załóżmy, że obserwujemy nie jedną lecz dwie cechy, które oznaczymy symbolami X i Y. Wyniki obserwacji obu cech w i-tym obiekcie oznaczymy parą liczb

Załóżmy, że obserwujemy nie jedną lecz dwie cechy, które oznaczymy symbolami X i Y. Wyniki obserwacji obu cech w i-tym obiekcie oznaczymy parą liczb Współzależność Załóżmy, że obserwujemy nie jedną lecz dwie cechy, które oznaczymy symbolami X i Y. Wyniki obserwacji obu cech w i-tym obiekcie oznaczymy parą liczb (x i, y i ). Geometrycznie taką parę

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych

Rozwiązywanie układów równań liniowych Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy

Bardziej szczegółowo

KADD Metoda najmniejszych kwadratów funkcje nieliniowe

KADD Metoda najmniejszych kwadratów funkcje nieliniowe Metoda najmn. kwadr. - funkcje nieliniowe Metoda najmniejszych kwadratów Funkcje nieliniowe Procedura z redukcją kroku iteracji Przykłady zastosowań Dopasowanie funkcji wykładniczej Dopasowanie funkcji

Bardziej szczegółowo