Wprowadzenie do Sieci Neuronowych lista zadań 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wprowadzenie do Sieci Neuronowych lista zadań 1"

Transkrypt

1 Wprowadzenie do Sieci Neuronowych lista zadań 1 Maja Czoków, Jarosław Piersa Zasadyzaliczania 1.1 Oceny Zaliczenie laboratoriów na podstawie implementowania omawianych algorytmów. Każde zadanie jest punktowane za 1 punkt. Dopuszczane są oceny wymierne(czyt. ułamkowe za brzydko napisane zadania) oraz powyżej jednego punktu za wybitnie napisane zadania. dst 3p. db 4p. bdb 5p. bdb+ 6plubwięcej. Dodatkowonaocenębdb+wymaganejestoddaniezadańzpięciu 1 działów: perceptrony proste i maszyny liniow, algorytmy konstrukcyjne dla sieci skierowanych, wsteczna propagacja błędu uczenie bez nauczyciela, samoorganizacja, PCA, sieci Hopfielda, maszyny Boltzmanna, symulowane wyżarzanie. Oraznależyoddać 2 : przynajmniej jeden program do końca października, przynajmniej dwa programy do końca listopada, przynajmniej trzy programy do końca stycznia. Zwolnienie z egzaminu za wybitną pracę na zajęciach jest możliwe do dnia Wskazówki Na co należy zwrócić uwagę pisząc progamy: Zadania będą sprawdzane z autorem siedzącym obok, zaoczne sprawdzanie zadań dopuszczane będzie tylko w wyjątkowych sytuacjach. Zadania powinny być napisane tak by umożliwić prostą i szybką ocenę poprawności działania po efektach(ocena poprawności poprzez wypisanie-nastu stron liczb na stdout nie jest ani prosta ani szybka!) Program w zależności od autora będzie uruchamiany na laptopie(może być to laptop autora) bądź komputerze w sali laboratoryjnej. Prosimy upewnić się, że mają Państwo pod ręką wszystkie wymagane środowiska lub/i biblioteki(dotnet framework, jdk, interpreter pythona,...). Podczas sprawdzania należy mieć pod ręką kod źródłowy programu(oraz edytor podświetlający składnię). 1 Zmianawporównaniudopoprzedniegoroku. 2 Zmianawporównaniudopoprzedniegoroku. 1

2 Optymalnie zadania powinny być oddawane w trakcie zajęć. Fragmentem zaliczenia może być dodatkowe pytanie o algorytm, sposób implementacji, zagadnienia teoretyczne powiązane z zadaniem. Podobnie może być to dopisanie dodatkowej funkcjonalniści w trakcie sprawdzania. Im później oddawane zadanie tym większe szanse na dodatkowe pytania i wyższy poziom trudności. Progamy korzystające z gotowych bibliotek do sieci neuronowych nie będą akceptowane. Teoretycznie dopuszczane są programy z tekstowym interfejsem użytkownika. Teoretycznie. Jeżeli jednak autor nie jest mistrzem ascii-artu, to gorąco rekomendujemy zrobić interfejs graficzny. 21 września 2011 USOS sam wstawi oceny niedostateczne studentom, którzy nie uzyskali zaliczenia. 2 Powtórzenie 2.1 ModelPreceptronu Perceptronem nazywamy następujący model składający się z: określonej liczby wejść n, wagistowarzyszonejzkażdymwejściem w i, i = 1..n funkcji aktywującej f Dynamikaperceptronu.Mając nwejść x 1...x n liczbowychperceptronzwracawartość out = f( n x i w i ) (1) Zakładającprogowąpostaćfunkcji,perceptrondziałajakoklasyfikator,dladanych x 1,.., x n zwracacałkowitą liczbę będącą klasą, do której dane należą. 2.2 Postacie funkcji aktywującej Identyczność f(s) = s takajednostkaliczypoprostusumęważonąwejść, Funkcja progowa(bipolarna) f(s) = i=1 { 0 s < p 1 s p Wartość p może być dodatkowym parametrem opisującym perceptron. Ten typ funkcji modeluje wysyłanie impulsu po przekroczeniu pewnego progu, które to zachowanie z pewnym przybliżeniem charakteryzuje komórki neuronowe. funkcja polarna. Jest to funkcja zalecana do używania w implementacji. { 1 s < p f(s) = +1 s p Funkcja podobna do poprzedniej z tą różnicą, że wartość 1 nie jest elementem neutralnym dodawania i odpowiedź negatywna może mieć pewien wpływ. Sigmoida f(s) = σ(s) = exp( s) Funkcja sigmoidalna może tu dziwić. Wymaga dzielenia i potęgowania, czyli więcej obliczeń, co nie powinno być wskazane przy wielokrotnym wykonywaniu. Jednakże jest ciągła i różniczkowalna co ma zasadnicze znaczenie przy algorytmach uczenia i przybliża funkcją bipolarną. Ponadto zachodzi σ (s) = σ(s) (1 σ(s)) 2

3 Rysunek1:Funkcjasigmoidalnazparametrami β = 1, β = 3, β = 10. out 2.3 Uczeniepreceptronu Rysunek 2: Schemat działania perceptronu Danyniechbędziezestaw kprzykładów E = { E (1)...E (k)},gdzie E (i) = (e (i) 1,..., e(i) N ) RN iodpowiadająceimpoprawnewyniki T (1)...T (k).danyteżmamyperceptrononwejściachijednymwyjściu. Rozważmyprzykład E j iodpowiadającąmupoprawnąodpowiedź T j,niechsiećzbieżącymzestawem wag zwróci wartość O. Rozważmy błąd: ERR = T j O Jeżelijestdodatnitomusimyzwiększyć O,jeżeliwejście e j i > 0tozwiększeniewagi w izwiększy O,jeżeli e j i < 0tozmniejszenie w izwiększy O. Jeżeli błąd ERR jest ujemny to musimy zmniejszyć O. Podobnie rozumując musimy zmniejszyć wagi w i jeśliwejście e j i > 0izwiększyć w iwprzeciwnymwypadkutj. e j i < 0. Podsumowując te rozważania otrzymujemy algorytm: Wylosujwagi w i małe,blisko 0. Wybierzprzykład E j iodpowiadającąmupoprawnąodpowiedź T j, Oblicz O wynikdziałaniasiecina E j Oblicz ERR = T j O Uaktualnij wszystkie wagi zgodnie ze wzorem η > 0jeststałąuczenia. w i = w i + η ERR e j i Jeżeli sieć klasyfikuje poprawnie wszystkie(większość) przykłady to zakończ, wpw wróć do 2. UWAGA: Powyższego algorytmu nie należy stosować w implementacjach! UWAGA: W 1969 matematycy Minsky oraz Papert udowodnili, że pojedynczy perceptron jest w stanie poprawnie klasyfikować wyłącznie problemy linowo separowalne. Algorytm sformułowany powyżej nie zatrzyma się, jeżeli nie istnieją wagi, dla których przykłady uczące są poprawnie klasyfikowane. A nawet jeżeli(zostanie to wymuszone ograniczeniem ilości iteracji), to nie gwarantuje, że zwrócone wagi będą optymalne. 3

4 Rysunek 3: Problem liniowo separowalny(po lewej) i nieseparowalny(po prawej) 2.4 Algorytm Uczenia Kieszonkowego/ Pocket Learning Algorithm Dane: Perceptrononwejsciach, kprzykładówuczących E 1...E k wrazzpoprawnymiodpowiedziami T 1...T k.zakładamy,żefunkcjaaktywującamapostaćpolarną.wtejsytuacjidodatkowymparametram uczącym jest wartość progu p. Wynik:Wartościwag w i orazprogu pktóredająoptymalnąklasyfikację. 1. Przypisujemy wagom i progowi małe losowe wartosci wokół 0, przypisujemy takiemu układowi wag zerowy czas życia, 2. Przebiegamy przykłady losując z listy, 3.Dlawybranegoprzykładu E j sprawdzamy,czy E j jestdobrzeklasyfikowany, Jeslitak,zwiekszamymuczasżyciaojeden.Jezelijesttowyniklepszyniżudotychczasowego rekordzisty, zapominamy go(dotychczasowego rekordzistę) i zapisujemy bieżący układ wag jako nowego rekordzistę. Wracamy do 2. Jeslinie,to w i := w i + T j E j i p := p T j Nowo powstałemu układowi wag przypisujemy zerowy czas życia. Wracamy do Algorytm kończymy po przebiegnięciu odpowiedniej liczby iteracji. Zwracamy najbardziej żywotny zestaw wag. 2.5 Algorytm Uczenia z Zapadką/ Ratchet Learning Algorithm Dane i wyjście jak wyżej. 1. jak powyżej, 2. jak powyżej, 3. jak powyżej, Jeslitak,zwiekszamymuczasżyciaojeden.Jezelijesttowyniklepszyniżudotychczasowego rekordzisty i dodatkowo nowy zestaw wag poprawnie klasyfikuje więcej przykładów uczących niż poprzedni, to zapominamy go(dotychczasowego rekordzistę) i zapisujemy bieżący układ wag jako nowego rekordzistę. Wracamy do 2. Jeslinie,tojakpowyżej 4. jak powyżej, 4

5 2.6 MaszynyLiniowe Maszyna liniowa składa się z n wejść, l perceptronów. Perceptrony mają swoje kolejne indeksy i te samewejścia.oznaczato,żemlmałącznie nlwag(po ndlakażdegozlperceptronów).będziemyje oznaczaćpoprzez w ij,gdzie i = 1..njestindeksemwejścia,natomaist j = 1..ljestindeksemperceptronu. Uznajemy ponadto, że we wszystkich perceptronach funkcja aktywująca jest identycznością f(x) = x To jest każdy z perceptronów zwraca wyłącznie sumę ważoną out j = n w ij x i (2) i=1 Odpowiedzącałejmaszynyliniowejjestindeksperceptronu,któryzwróciłnajwiększąwartość out j. OUT = {j : k=1..l out k out j } (3) Maszynalinowazwracakategoriędanychwejściowych x 1..x n,alekategoryzacjaniemusibyćbinarna. 2.7 Algorytm Uczenia Maszyny Lionowej Dane:zestawprzykładówuczących E j, j = 1..korazpoprawnychodpowiedzi T j, j = 1..k. Wynik:wagi w ij,dlaktórychsiećdajepoprawneklasyfikacje. 1. Przypisujemy wagom małe losowe wartosci wokół 0, 2. Przebiegamy przykłady losując z listy, 3.Dlawybranegoprzykładu E j sprawdzamy,czy E j jestdobrzeklasyfikowany, Jeslitak,wracamydo2. Jeslinie(npjestkategoria pzamiast q),to w ip + = E j i Wracamy do 2. w iq = E j i 4. Algorytm kończymy po przebiegnięciu odpowiedniej liczby iteracji. Dodajemy modyfikację kieszeni i zapadki(tj. zapamiętywanie najbardziej żywotnych zestawów wag). 3 Zadania 3.1 Zadanie1 Napisz program, który wykorzystuje maszynę liniową lub kilka(naście) perceptronów do rozpoznawania cyfr(lub liter uwaga na liczbę mnogą! program powinien rozpoznawać kilka cyfr). Cyfry powinny być wyświetlane jako układy pikseli na matrycy o niewielkich wymiarach(max. 100 pikseli, oczywiście mowa tu o pikselach na cyfrę, wyświetlanie może być z dużym powiększeniem). Program dodatkowo powinien mieć możliwość wyklikania cyfry(lub czegoś cyfropodobnego) i automatycznej klasyfikacji. Pomysły na rozbudowanie programu: Weścia uczące można zaburzać(tj. odwracać piksel z niewielkim prawdopodobieństwem niezależnie dla danego piksela). Można w ten sposób uzyskać częściową odporność na szumy, Rozpoznawanie cyfr w systemie szesnastkowym, Rozpoznawanie liter(wymaga większej matrycy!), Rozpoznawanie kształtów(okrąg, kwadrat, linia, domek itd), Rozpoznawanie symboliczne Rozpoznawanie tekstu pisanego(np. całych liczb) za pomocą myszki na matrycy w programie. 5

6 3.2 Zadanie2 Dany będzie plik(kilka plików) z listą punktów na płaszczyźnie oraz poprawną klasyfikacją punktu. Klasyfikacja jest binarna: 0 lub 1(+1,-1). # komentarze, informacje o pliku, itp #(ewentualnie wymiar przestrzeni i liczba przykładów uczących) x1y1o1 x2y2o2... Należy napisać program, który nauczy perceptron klasyfikacji na zadanej liście przykładów. Dodatkowo program powinien mieć możliwość wczytać parametry innych punktów(z poza listy uczącej) i wyświetlić je na płaszczyźnie wraz z oznaczeniem klasy. Ponadto dla przykładów z listy uczącej powinno być oznaczenie zarówno o oczekiwanej(z listy) jak i faktycznej(tj. zwróconej przez perceptron) klasyfikacji, np oczekiwana klasyfikacja poprzez kształt, faktyczna poprzez kolor. Pomysłynarozbudowanieprogramu:zadaniedlapunktówwwyżej-wymiarowychprzestrzeniach(R 3, R 4,...),klasyfikacja,któraniejestbinarna(3klasy,4klasy...),statystykinadanychwejściowychoraz wynikach uczenia, automatyczny zapis wyników do pliku. 6

Wstęp do sieci neuronowych laboratorium 01 Organizacja zajęć. Perceptron prosty

Wstęp do sieci neuronowych laboratorium 01 Organizacja zajęć. Perceptron prosty Wstęp do sieci neuronowych laboratorium 01 Organizacja zajęć. Perceptron prosty Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-10-03 Projekt pn. Wzmocnienie potencjału

Bardziej szczegółowo

Wprowadzenie do Sieci Neuronowych Laboratorium 01 Organizacja zajęć. Perceptron.

Wprowadzenie do Sieci Neuronowych Laboratorium 01 Organizacja zajęć. Perceptron. Wprowadzenie do Sieci Neuronowych Laboratorium Organizacja zajęć. Perceptron. Jarosław Piersa --3 Organizacja zajęć. Co będzie Dużo programowania (pisanie programów), Trochę matematyki, Małe zadania do

Bardziej szczegółowo

Wprowadzenie do Sieci Neuronowych Laboratorium 01 Organizacja zajęć. Perceptron.

Wprowadzenie do Sieci Neuronowych Laboratorium 01 Organizacja zajęć. Perceptron. Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany w ramach Poddziałania 4.. Programu Operacyjnego Kapitał Ludzki Wprowadzenie do Sieci

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-11 1 Modelowanie funkcji logicznych

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-10-10 Projekt pn. Wzmocnienie

Bardziej szczegółowo

Uczenie sieci neuronowych i bayesowskich

Uczenie sieci neuronowych i bayesowskich Wstęp do metod sztucznej inteligencji www.mat.uni.torun.pl/~piersaj 2009-01-22 Co to jest neuron? Komputer, a mózg komputer mózg Jednostki obliczeniowe 1-4 CPU 10 11 neuronów Pojemność 10 9 b RAM, 10 10

Bardziej szczegółowo

Wprowadzenie do Sieci Neuronowych Laboratorium 02 Perceptron prosty cd

Wprowadzenie do Sieci Neuronowych Laboratorium 02 Perceptron prosty cd Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany w ramach Poddziałania 4.1.1 Programu Operacyjnego Kapitał Ludzki Wprowadzenie do Sieci

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 01 Neuron biologiczny. Model perceptronu prostego.

Wstęp do sieci neuronowych, wykład 01 Neuron biologiczny. Model perceptronu prostego. Wstęp do sieci neuronowych, wykład 01 Neuron biologiczny. Model perceptronu prostego. M. Czoków, J. Piersa, A. Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2017-10-04 Projekt

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka Adaline.

Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka Adaline. Wstęp do sieci neuronowych, wykład 3 Warstwy, jednostka Adaline. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 211-1-18 1 Pomysł Przykłady Zastosowanie 2

Bardziej szczegółowo

Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe.

Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. zajecia.jakubw.pl/nai Literatura: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym. WNT, Warszawa 997. PODSTAWOWE ZAGADNIENIA TECHNICZNE AI

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 10 Sieci rekurencyjne. Autoasocjator Hopfielda

Wstęp do sieci neuronowych, wykład 10 Sieci rekurencyjne. Autoasocjator Hopfielda Wstęp do sieci neuronowych, wykład 10. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-12-19 Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu

Bardziej szczegółowo

Elektroniczne materiały dydaktyczne do przedmiotu Wstęp do Sieci Neuronowych

Elektroniczne materiały dydaktyczne do przedmiotu Wstęp do Sieci Neuronowych Elektroniczne materiały dydaktyczne do przedmiotu Wstęp do Sieci Neuronowych Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-12-21 Koncepcja kursu Koncepcja

Bardziej szczegółowo

Uniwersytet Mikołaja Kopernika. Wydział Matematyki i Informatyki. Jarosław Piersa piersaj(at)mat.uni.torun.pl

Uniwersytet Mikołaja Kopernika. Wydział Matematyki i Informatyki. Jarosław Piersa piersaj(at)mat.uni.torun.pl Uniwersytet Mikołaja Kopernika Wydział Matematyki i Informatyki Jarosław Piersa piersaj(at)mat.uni.torun.pl Abstrakt Poniższy referat dotyczy zagadnień uczenia w sieciach neuronowych i bayesowskich(sieciach

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium MATLAB Zadanie nr 2 Detekcja twarzy autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się algorytmem gradientu prostego

Bardziej szczegółowo

Zapisywanie algorytmów w języku programowania

Zapisywanie algorytmów w języku programowania Temat C5 Zapisywanie algorytmów w języku programowania Cele edukacyjne Zrozumienie, na czym polega programowanie. Poznanie sposobu zapisu algorytmu w postaci programu komputerowego. Zrozumienie, na czym

Bardziej szczegółowo

Optymalizacja systemów

Optymalizacja systemów Optymalizacja systemów Laboratorium - problem detekcji twarzy autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, P. Klukowski Cel zadania Celem zadania jest zapoznanie się z gradientowymi algorytmami optymalizacji

Bardziej szczegółowo

8. Neuron z ciągłą funkcją aktywacji.

8. Neuron z ciągłą funkcją aktywacji. 8. Neuron z ciągłą funkcją aktywacji. W tym ćwiczeniu zapoznamy się z modelem sztucznego neuronu oraz przykładem jego wykorzystania do rozwiązywanie prostego zadania klasyfikacji. Neuron biologiczny i

Bardziej szczegółowo

Pomorski Czarodziej 2016 Zadania. Kategoria C

Pomorski Czarodziej 2016 Zadania. Kategoria C Pomorski Czarodziej 2016 Zadania. Kategoria C Poniżej znajduje się 5 zadań. Za poprawne rozwiązanie każdego z nich możesz otrzymać 10 punktów. Jeżeli otrzymasz za zadanie maksymalną liczbę punktów, możesz

Bardziej szczegółowo

Metody Sztucznej Inteligencji II

Metody Sztucznej Inteligencji II 17 marca 2013 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką, która jest w stanie odbierać i przekazywać sygnały elektryczne. Neuron działanie Jeżeli wartość sygnału

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 9 Sieci rekurencyjne. Autoasocjator Hopfielda

Wstęp do sieci neuronowych, wykład 9 Sieci rekurencyjne. Autoasocjator Hopfielda Wstęp do sieci neuronowych, wykład 9. M. Czoków, J. Piersa 2010-12-07 1 Sieci skierowane 2 Modele sieci rekurencyjnej Energia sieci 3 Sieci skierowane Sieci skierowane Sieci skierowane graf połączeń synaptycznych

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Wstęp do sieci neuronowych, wykład 2 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 213-1-15 Projekt pn. Wzmocnienie potencjału

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne 1 Nazwa modułu kształcenia Sztuczna inteligencja 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia

Bardziej szczegółowo

Instrukcja realizacji ćwiczenia

Instrukcja realizacji ćwiczenia SIEĆ KOHONENA ROZPOZNAWANIE OBRAZÓW Cel ćwiczenia: zapoznanie się ze sposobem reprezentacji wiedzy w sieciach Kohonena i mechanizmami sąsiedztwa i sumienia neuronów. Zadanie do analizy: analizujemy sieć

Bardziej szczegółowo

1. Logika, funkcje logiczne, preceptron.

1. Logika, funkcje logiczne, preceptron. Sieci neuronowe 1. Logika, funkcje logiczne, preceptron. 1. (Logika) Udowodnij prawa de Morgana, prawo pochłaniania p (p q), prawo wyłączonego środka p p oraz prawo sprzeczności (p p). 2. Wyraź funkcję

Bardziej szczegółowo

Wstęp do Sieci Neuronowych

Wstęp do Sieci Neuronowych Wstęp do Sieci Neuronowych Maja Czoków, Jarosław Piersa, Tomasz Schreiber 5 listopada 3 975, Profesor Uniwersytetu Mikołaja Kopernika w Toruniu. Autor oryginalnej formy wykładu na WMiI. Spis treści Modele

Bardziej szczegółowo

Instytut Fizyki Politechniki Łódzkiej Laboratorium Metod Analizy Danych Doświadczalnych Ćwiczenie 3 Generator liczb losowych o rozkładzie Rayleigha.

Instytut Fizyki Politechniki Łódzkiej Laboratorium Metod Analizy Danych Doświadczalnych Ćwiczenie 3 Generator liczb losowych o rozkładzie Rayleigha. Instytut Fizyki Politechniki Łódzkiej Laboratorium Metod Analizy Danych Doświadczalnych Generator liczb losowych o rozkładzie Rayleigha. Generator liczb losowych o rozkładzie Rayleigha. 1. Cel ćwiczenia

Bardziej szczegółowo

Oprogramowanie Systemów Obrazowania SIECI NEURONOWE

Oprogramowanie Systemów Obrazowania SIECI NEURONOWE SIECI NEURONOWE Przedmiotem laboratorium jest stworzenie algorytmu rozpoznawania zwierząt z zastosowaniem sieci neuronowych w oparciu o 5 kryteriów: ile zwierzę ma nóg, czy żyje w wodzie, czy umie latać,

Bardziej szczegółowo

Programowanie w języku C++ Grażyna Koba

Programowanie w języku C++ Grażyna Koba Programowanie w języku C++ Grażyna Koba Kilka definicji: Program komputerowy to ciąg instrukcji języka programowania, realizujący dany algorytm. Język programowania to zbiór określonych instrukcji i zasad

Bardziej szczegółowo

Podstawy i języki programowania

Podstawy i języki programowania Podstawy i języki programowania Laboratorium 1 - wprowadzenie do przedmiotu mgr inż. Krzysztof Szwarc krzysztof@szwarc.net.pl Sosnowiec, 16 października 2017 1 / 25 mgr inż. Krzysztof Szwarc Podstawy i

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa

Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa M. Czoków, J. Piersa 2012-01-10 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego 3 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium JAVA Zadanie nr 2 Rozpoznawanie liter autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się z problemem klasyfikacji

Bardziej szczegółowo

PRZEDMIOTOWE ZASADY OCENIANIA W GIMNAZJUM NR 1 HISTORIA

PRZEDMIOTOWE ZASADY OCENIANIA W GIMNAZJUM NR 1 HISTORIA PRZEDMIOTOWE ZASADY OCENIANIA W GIMNAZJUM NR 1 HISTORIA 1. Przedmiotowe wymagania edukacyjne z historii. 2. Sposoby sprawdzania dydaktycznych osiągnięć uczniów. 3. Sposoby informowania uczniów, rodziców

Bardziej szczegółowo

Obliczenia iteracyjne

Obliczenia iteracyjne Lekcja Strona z Obliczenia iteracyjne Zmienne iteracyjne (wyliczeniowe) Obliczenia iteracyjne wymagają zdefiniowania specjalnej zmiennej nazywanej iteracyjną lub wyliczeniową. Zmienną iteracyjną od zwykłej

Bardziej szczegółowo

Zajęcia: VBA TEMAT: VBA PROCEDURY NUMERYCZNE Metoda bisekcji i metoda trapezów

Zajęcia: VBA TEMAT: VBA PROCEDURY NUMERYCZNE Metoda bisekcji i metoda trapezów Zajęcia: VBA TEMAT: VBA PROCEDURY NUMERYCZNE Metoda bisekcji i metoda trapezów W ramach zajęć oprogramujemy jedną, wybraną metodę numeryczną: metodę bisekcji numerycznego rozwiązywania równania nieliniowego

Bardziej szczegółowo

Algorytmy decyzyjne będące alternatywą dla sieci neuronowych

Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Piotr Dalka Przykładowe algorytmy decyzyjne Sztuczne sieci neuronowe Algorytm k najbliższych sąsiadów Kaskada klasyfikatorów AdaBoost Naiwny

Bardziej szczegółowo

Prognozowanie kierunku ruchu indeksów giełdowych na podstawie danych historycznych.

Prognozowanie kierunku ruchu indeksów giełdowych na podstawie danych historycznych. Metody Sztucznej Inteligencji 2 Projekt Prognozowanie kierunku ruchu indeksów giełdowych na podstawie danych historycznych. Autorzy: Robert Wojciechowski Michał Denkiewicz Mateusz Gągol Wstęp Celem projektu

Bardziej szczegółowo

ID1SII4. Informatyka I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) stacjonarne (stacjonarne / niestacjonarne)

ID1SII4. Informatyka I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) stacjonarne (stacjonarne / niestacjonarne) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu ID1SII4 Nazwa modułu Systemy inteligentne 1 Nazwa modułu w języku angielskim Intelligent

Bardziej szczegółowo

Uczenie sieci typu MLP

Uczenie sieci typu MLP Uczenie sieci typu MLP Przypomnienie budowa sieci typu MLP Przypomnienie budowy neuronu Neuron ze skokową funkcją aktywacji jest zły!!! Powszechnie stosuje -> modele z sigmoidalną funkcją aktywacji - współczynnik

Bardziej szczegółowo

Układy VLSI Bramki 1.0

Układy VLSI Bramki 1.0 Spis treści: 1. Wstęp... 2 2. Opis edytora schematów... 2 2.1 Dodawanie bramek do schematu:... 3 2.2 Łączenie bramek... 3 2.3 Usuwanie bramek... 3 2.4 Usuwanie pojedynczych połączeń... 4 2.5 Dodawanie

Bardziej szczegółowo

CZĘŚĆ A PIERWSZE KROKI Z KOMPUTEREM

CZĘŚĆ A PIERWSZE KROKI Z KOMPUTEREM CZĘŚĆ A PIERWSZE KROKI Z KOMPUTEREM 1.1. PODSTAWOWE INFORMACJE PC to skrót od nazwy Komputer Osobisty (z ang. personal computer). Elementy komputera można podzielić na dwie ogólne kategorie: sprzęt - fizyczne

Bardziej szczegółowo

1 Opracowane przez: mgr Dorotę Knap

1 Opracowane przez: mgr Dorotę Knap INFORMACJE DLA UCZNIÓW rok szkolny 2008/2009 Przedmiot: CHEMIA klasa: I Nauczyciel: mgr inż. Dorota Knap Obowiązujące podręczniki: Ciekawa chemia cz 1wydawnictwo WSiP Autorzy: H. Gulińska, J. Smolińska,

Bardziej szczegółowo

Program dla praktyki lekarskiej

Program dla praktyki lekarskiej Program dla praktyki lekarskiej ErLab Instrukcja konfiguracji i obsługi Spis Treści 1. Wstęp... 2 2. Konfiguracja... 3 2.1. Serwer... 3 2.2. Laboratorium... 3 2.3. Punkt pobrań... 4 3. Wysyłanie skierowania...

Bardziej szczegółowo

AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 3 AUTOMATYKA

AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 3 AUTOMATYKA AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT Instrukcja do zajęc laboratoryjnych nr 3 AUTOMATYKA II rok Kierunek Transport Temat: Minimalizacja funkcji logicznych. Projektowanie układów logicznych. Opracował

Bardziej szczegółowo

L6.1 Systemy liczenia stosowane w informatyce

L6.1 Systemy liczenia stosowane w informatyce L6.1 Systemy liczenia stosowane w informatyce Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Publikacja jest dystrybuowana bezpłatnie Program Operacyjny Kapitał

Bardziej szczegółowo

Techniki multimedialne

Techniki multimedialne Techniki multimedialne Digitalizacja podstawą rozwoju systemów multimedialnych. Digitalizacja czyli obróbka cyfrowa oznacza przetwarzanie wszystkich typów informacji - słów, dźwięków, ilustracji, wideo

Bardziej szczegółowo

Sztuczne sieci neuronowe (SNN)

Sztuczne sieci neuronowe (SNN) Sztuczne sieci neuronowe (SNN) Pozyskanie informacji (danych) Wstępne przetwarzanie danych przygotowanie ich do dalszej analizy Selekcja informacji Ostateczny model decyzyjny SSN - podstawy Sieci neuronowe

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Zapoznanie studentów z inteligentnymi

Bardziej szczegółowo

biegle i poprawnie posługuje się terminologią informatyczną,

biegle i poprawnie posługuje się terminologią informatyczną, INFORMATYKA KLASA 1 1. Wymagania na poszczególne oceny: 1) ocenę celującą otrzymuje uczeń, który: samodzielnie wykonuje na komputerze wszystkie zadania z lekcji, wykazuje inicjatywę rozwiązywania konkretnych

Bardziej szczegółowo

Baltie 3. Podręcznik do nauki programowania dla klas I III gimnazjum. Tadeusz Sołtys, Bohumír Soukup

Baltie 3. Podręcznik do nauki programowania dla klas I III gimnazjum. Tadeusz Sołtys, Bohumír Soukup Baltie 3 Podręcznik do nauki programowania dla klas I III gimnazjum Tadeusz Sołtys, Bohumír Soukup Czytanie klawisza lub przycisku myszy Czytaj klawisz lub przycisk myszy - czekaj na naciśnięcie Polecenie

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA z przedmiotu Fizyka. 1. Wymagania edukacyjne treści i umiejętności podlegające ocenie.

PRZEDMIOTOWY SYSTEM OCENIANIA z przedmiotu Fizyka. 1. Wymagania edukacyjne treści i umiejętności podlegające ocenie. PRZEDMIOTOWY SYSTEM OCENIANIA z przedmiotu Fizyka 1. Wymagania edukacyjne treści i umiejętności podlegające ocenie. Ocenie podlegają poniższe formy sprawdzenia wiedzy zdobytej podczas lekcji zgodnie z

Bardziej szczegółowo

wbudowany system do głosowania Avtek TS Pro3 / Pro4K

wbudowany system do głosowania Avtek TS Pro3 / Pro4K głosowanie wbudowany system do głosowania Avtek TS Pro3 / Pro4K Opis System do głosowania i testów wybudowany w monitory interaktywne Avtek pozwala na szybkie przeprowadzenie głosowania wśród zgromadzonych

Bardziej szczegółowo

Schematy blokowe I. 1. Dostępne bloki: 2. Prosty program drukujący tekst.

Schematy blokowe I. 1. Dostępne bloki: 2. Prosty program drukujący tekst. Schematy blokowe I Jeżeli po schematach blokowych będzie używany język C, to należy używać operatorów: '&&', ' ', '!=', '%' natomiast jeśli Ruby to 'and', 'or', '%', '!='. 1. Dostępne bloki: a) początek:

Bardziej szczegółowo

REGULAMIN ZAJĘĆ Z PRZEDMIOTU BIOLOGIA MEDYCZNA dla studentów kierunku ANALITYKA MEDYCZNA

REGULAMIN ZAJĘĆ Z PRZEDMIOTU BIOLOGIA MEDYCZNA dla studentów kierunku ANALITYKA MEDYCZNA Zakład Biologii Komórki Wydział Farmaceutyczny z Oddziałem Medycyny Laboratoryjnej Śląski Uniwersytet Medyczny w Katowicach ul.jedności 8, 41-200 Sosnowiec, tel. 32 364 12 10-12, tel./fax. 32 364 12 11

Bardziej szczegółowo

Klasa I. 1. Komputer wśród nas 2 godz Bezpieczeństwo i higiena pracy przy komputerze.

Klasa I. 1. Komputer wśród nas 2 godz Bezpieczeństwo i higiena pracy przy komputerze. Nazywam się Waldemar Rurarz. Jestem nauczycielem nauczania początkowego w Szkole Podstawowej im. Obrońców Westerplatte w Ujeździe. Ukończyłem studia o specjalności nauczanie początkowe, jak również studia

Bardziej szczegółowo

Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe

Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Trening jednokierunkowych sieci neuronowych wykład 2. dr inż. PawełŻwan Katedra Systemów Multimedialnych Politechnika Gdańska

Bardziej szczegółowo

OpenAI Gym. Adam Szczepaniak, Kamil Walkowiak

OpenAI Gym. Adam Szczepaniak, Kamil Walkowiak OpenAI Gym Adam Szczepaniak, Kamil Walkowiak Plan prezentacji Programowanie agentowe Uczenie przez wzmacnianie i problemy związane z rozwojem algorytmów Charakterystyka OpenAI Gym Biblioteka gym Podsumowanie

Bardziej szczegółowo

Przedmiotowy system oceniania z chemii rok szkolny 2017/2018

Przedmiotowy system oceniania z chemii rok szkolny 2017/2018 Sposoby sprawdzania osiągnięć i kryteria oceniania opracował zespól nauczycieli przedmiotów przyrodniczych, w oparciu o Statut Szkoły Podstawowej nr 2 w Swarzędzu, regulujący zasady oceniania, klasyfikowania

Bardziej szczegółowo

KARTA KURSU. Kod Punktacja ECTS* 1

KARTA KURSU. Kod Punktacja ECTS* 1 KARTA KURSU Nazwa Nazwa w j. ang. Wprowadzenie do statystyki Introduction to statistics Kod Punktacja ECTS* 1 Koordynator Prof. dr hab. Jerzy Wołek Zespół dydaktyczny Prof. dr hab. Jerzy Wołek doktoranci

Bardziej szczegółowo

z poradni pedagogicznej

z poradni pedagogicznej Kryteria oceniania zajęć komputerowych w klasach kształcenia zintegrowanego dla dzieci z opiniami z poradni pedagogicznej Zajęcia z informatyki są ćwiczeniami praktycznymi, które łączą zabawę z nauką,

Bardziej szczegółowo

... (środowisko) ... ... 60 minut

... (środowisko) ... ... 60 minut EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 INFORMATYKA POZIOM ROZSZERZONY ARKUSZ I PRZYKŁADOWY ZESTAW ZADAŃ DLA OSÓB Z AUTYZMEM, W TYM Z ZESPOŁEM ASPERGERA (A2) WYBRANE:... (środowisko)... (kompilator)...

Bardziej szczegółowo

2 Arytmetyka. d r 2 r + d r 1 2 r 1...d d 0 2 0,

2 Arytmetyka. d r 2 r + d r 1 2 r 1...d d 0 2 0, 2 Arytmetyka Niech b = d r d r 1 d 1 d 0 będzie zapisem liczby w systemie dwójkowym Zamiana zapisu liczby b na system dziesiętny odbywa się poprzez wykonanie dodawania d r 2 r + d r 1 2 r 1 d 1 2 1 + d

Bardziej szczegółowo

2. Graficzna prezentacja algorytmów

2. Graficzna prezentacja algorytmów 1. Uczeń: Uczeń: 2. Graficzna prezentacja algorytmów a. 1. Cele lekcji i. a) Wiadomości zna sposoby graficznego przedstawiania algorytmów, wie w jaki sposób skonstruować schemat blokowy w taki sposób aby

Bardziej szczegółowo

INSTRUKCJA EDYCJI PROFILU OSOBOWEGO W SERWISIE WWW.UMCS.PL

INSTRUKCJA EDYCJI PROFILU OSOBOWEGO W SERWISIE WWW.UMCS.PL INSTRUKCJA EDYCJI PROFILU OSOBOWEGO W SERWISIE WWW.UMCS.PL Lublin, 16 stycznia 2014 r. 1. Logowanie do systemu Aby rozpocząć edycję profilu osobowego wejdź na stronę główną www.umcs.pl w zakładkę Jednostki

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA JĘZYK NIEMIECKI

PRZEDMIOTOWY SYSTEM OCENIANIA JĘZYK NIEMIECKI PRZEDMIOTOWY SYSTEM OCENIANIA JĘZYK NIEMIECKI I. WYMAGANIA EDUKACYJNE, SPOSOBY SPRAWDZANIA OSIĄGNIĘĆ EDUKACYJNYCH UCZNIA I KRYTERIA OCENIANIA Nauczyciele na początku każdego roku szkolnego na zajęciach

Bardziej szczegółowo

Def. Kod jednoznacznie definiowalny Def. Kod przedrostkowy Def. Kod optymalny. Przykłady kodów. Kody optymalne

Def. Kod jednoznacznie definiowalny Def. Kod przedrostkowy Def. Kod optymalny. Przykłady kodów. Kody optymalne Załóżmy, że mamy źródło S, które generuje symbole ze zbioru S={x, x 2,..., x N } z prawdopodobieństwem P={p, p 2,..., p N }, symbolom tym odpowiadają kody P={c, c 2,..., c N }. fektywność danego sposobu

Bardziej szczegółowo

PRYWATNA WYŻSZA SZKOŁA BUSINESSU, ADMINISTRACJI I TECHNIK KOMPUTEROWYCH S Y L A B U S

PRYWATNA WYŻSZA SZKOŁA BUSINESSU, ADMINISTRACJI I TECHNIK KOMPUTEROWYCH S Y L A B U S PRYWATNA WYŻSZA SZKOŁA BUSINESSU, ADMINISTRACJI I TECHNIK KOMPUTEROWYCH ZATWIERDZAM Prorektor ds. dydaktyki i wychowania S Y L A B U S 1 Tytuł (stopień) naukowy oraz imię i nazwisko wykładowcy: dr hab.,

Bardziej szczegółowo

Czas pracy: 60 minut

Czas pracy: 60 minut EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 INFORMATYKA POZIOM ROZSZERZONY ARKUSZ I PRZYKŁADOWY ZESTAW ZADAŃ DLA OSÓB SŁABOSŁYSZĄCYCH (A3) WYBRANE:... (środowisko)... (kompilator)... (program użytkowy)

Bardziej szczegółowo

Wymagania edukacyjne z informatyki dla klasy szóstej szkoły podstawowej.

Wymagania edukacyjne z informatyki dla klasy szóstej szkoły podstawowej. Wymagania edukacyjne z informatyki dla klasy szóstej szkoły podstawowej. Dział Zagadnienia Wymagania podstawowe Wymagania ponadpodstawowe Arkusz kalkulacyjny (Microsoft Excel i OpenOffice) Uruchomienie

Bardziej szczegółowo

Scenariusz zajęć. Moduł VI. Projekt Gra logiczna zgadywanie liczby

Scenariusz zajęć. Moduł VI. Projekt Gra logiczna zgadywanie liczby Scenariusz zajęć Moduł VI Projekt Gra logiczna zgadywanie liczby Moduł VI Projekt Gra logiczna zgadywanie liczby Cele ogólne: przypomnienie i utrwalenie poznanych wcześniej poleceń i konstrukcji języka

Bardziej szczegółowo

Języki programowania zasady ich tworzenia

Języki programowania zasady ich tworzenia Strona 1 z 18 Języki programowania zasady ich tworzenia Definicja 5 Językami formalnymi nazywamy każdy system, w którym stosując dobrze określone reguły należące do ustalonego zbioru, możemy uzyskać wszystkie

Bardziej szczegółowo

Sztuczne sieci neuronowe Ćwiczenia. Piotr Fulmański, Marta Grzanek

Sztuczne sieci neuronowe Ćwiczenia. Piotr Fulmański, Marta Grzanek Sztuczne sieci neuronowe Ćwiczenia Piotr Fulmański, Marta Grzanek Piotr Fulmański 1 Wydział Matematyki i Informatyki, Marta Grzanek 2 Uniwersytet Łódzki Banacha 22, 90-232, Łódź Polska e-mail 1: fulmanp@math.uni.lodz.pl,

Bardziej szczegółowo

Programowanie obiektowe

Programowanie obiektowe Laboratorium z przedmiotu Programowanie obiektowe - zestaw 08 Cel zajęć. Celem zajęć jest zapoznanie z praktycznymi aspektami powiązania modelu obiektowego z modelem okienkowym w C#. Wprowadzenie teoretyczne.

Bardziej szczegółowo

Zastosowania sieci neuronowych

Zastosowania sieci neuronowych Zastosowania sieci neuronowych klasyfikacja LABORKA Piotr Ciskowski zadanie 1. klasyfikacja zwierząt sieć jednowarstwowa żródło: Tadeusiewicz. Odkrywanie własności sieci neuronowych, str. 159 Przykład

Bardziej szczegółowo

Sprawdzenie i ocena pracy z wykorzystaniem Archiwum Prac Dyplomowych

Sprawdzenie i ocena pracy z wykorzystaniem Archiwum Prac Dyplomowych Sprawdzenie i ocena pracy z wykorzystaniem Archiwum Prac Dyplomowych Instrukcja dla studentów Archiwum Prac Dyplomowych (APD) aplikacja systemu USOS wspomagająca obsługę procesu związanego ze złożeniem

Bardziej szczegółowo

INFORMATYKA - PRZEDMIOTOWY SYSTEM OCENIANIA W GIMNAZJUM w roku szkolnym 2015/2016

INFORMATYKA - PRZEDMIOTOWY SYSTEM OCENIANIA W GIMNAZJUM w roku szkolnym 2015/2016 INFORMATYKA - PRZEDMIOTOWY SYSTEM OCENIANIA W GIMNAZJUM w roku szkolnym 2015/2016 nauczyciel: Katarzyna Woźnica klasy: 1d gr.2, 2a gr.1, 2b, 2d, 2f, 2g, 3c, 3d System punktowy: pula punktów do uzyskania

Bardziej szczegółowo

Systemy liczenia. 333= 3*100+3*10+3*1

Systemy liczenia. 333= 3*100+3*10+3*1 Systemy liczenia. System dziesiętny jest systemem pozycyjnym, co oznacza, Ŝe wartość liczby zaleŝy od pozycji na której się ona znajduje np. w liczbie 333 kaŝda cyfra oznacza inną wartość bowiem: 333=

Bardziej szczegółowo

TEORETYCZNE PODSTAWY INFORMATYKI

TEORETYCZNE PODSTAWY INFORMATYKI 1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 16 2 Data Science: Uczenie maszynowe Uczenie maszynowe: co to znaczy? Metody Regresja Klasyfikacja Klastering

Bardziej szczegółowo

ARCHITEKTURA KOMPUTERÓW Systemy liczbowe

ARCHITEKTURA KOMPUTERÓW Systemy liczbowe ARCHITEKTURA KOMPUTERÓW Systemy liczbowe 20.10.2010 System Zakres znaków Przykład zapisu Dziesiętny ( DEC ) 0,1,2,3, 4,5,6,7,8,9 255 DEC Dwójkowy / Binarny ( BIN ) 0,1 11111 Ósemkowy ( OCT ) 0,1,2,3, 4,5,6,7

Bardziej szczegółowo

1.1. Pozycyjne systemy liczbowe

1.1. Pozycyjne systemy liczbowe 1.1. Pozycyjne systemy liczbowe Systemami liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Dla dowolnego

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych zestawu zadań pt. Chleb -S-A1-042

Klucz odpowiedzi do zadań zamkniętych zestawu zadań pt. Chleb -S-A1-042 Warszawa, 1.04.2004 r. Klucz odpowiedzi do zadań zamkniętych zestawu zadań pt. Chleb -S-A1-042 Odpowiedź 1 C 1 2 A 1 3 C 1 4 D 1 5 B 1 6 A 1 7 B 1 8 D 1 9 B 1 10 B 1 11 C 1 12 A 1 13 A 1 14 B 1 15 D 1

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka Adaline.

Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka Adaline. Wstęp do sieci neuronowych, wykład 3 Warstwy, jednostka Adaline. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 13-1- Projekt pn. Wzmocnienie potencjału dydaktycznego

Bardziej szczegółowo

Sieci neuronowe i ich ciekawe zastosowania. Autor: Wojciech Jamrozy III rok SMP / Informatyka

Sieci neuronowe i ich ciekawe zastosowania. Autor: Wojciech Jamrozy III rok SMP / Informatyka Sieci neuronowe i ich ciekawe zastosowania Autor: Wojciech Jamrozy III rok SMP / Informatyka Klasyczna algorytmika Sortowanie ciągu liczb Czy i ile razy dane słowo wystąpiło w tekście Najkrótsza droga

Bardziej szczegółowo

Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta

Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta www.michalbereta.pl Sieci radialne zawsze posiadają jedną warstwę ukrytą, która składa się z neuronów radialnych. Warstwa wyjściowa składa

Bardziej szczegółowo

Temat: Sieci neuronowe oraz technologia CUDA

Temat: Sieci neuronowe oraz technologia CUDA Elbląg, 27.03.2010 Temat: Sieci neuronowe oraz technologia CUDA Przygotował: Mateusz Górny VIII semestr ASiSK Wstęp Sieci neuronowe są to specyficzne struktury danych odzwierciedlające sieć neuronów w

Bardziej szczegółowo

Wymagania Uczeń zna zasady bezpiecznej pracy z komputerem. Uczeń stosuje się do regulaminu szkolnej pracowni komputerowej.

Wymagania Uczeń zna zasady bezpiecznej pracy z komputerem. Uczeń stosuje się do regulaminu szkolnej pracowni komputerowej. I. EDUKACJA WCZESNOSZKOLNA 6 Uczeń samodzielnie wykonuje wszystkie zadania na lekcji, zadania dodatkowe. Jego wiadomości i umiejętności wykraczają poza te, które zawarte są w programie nauczania zajęć

Bardziej szczegółowo

AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 3 AUTOMATYZACJA I ROBOTYZACJA PROCESÓW PRODUKCYJNYCH

AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 3 AUTOMATYZACJA I ROBOTYZACJA PROCESÓW PRODUKCYJNYCH AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT Instrukcja do zajęc laboratoryjnych nr 3 AUTOMATYZACJA I ROBOTYZACJA PROCESÓW PRODUKCYJNYCH II rok Kierunek Logistyka Temat: Minimalizacja funkcji logicznych.

Bardziej szczegółowo

Spis treści. 1 Moduł Mapy 2

Spis treści. 1 Moduł Mapy 2 Spis treści 1 Moduł Mapy 2 1.1 Elementy planu............................. 2 1.1.1 Interfejs widoku......................... 3 1.1.1.1 Panel sterujacy.................... 3 1.1.1.2 Suwak regulujacy przybliżenie...........

Bardziej szczegółowo

ECDL/ICDL Przetwarzanie tekstów Moduł B3 Sylabus - wersja 5.0

ECDL/ICDL Przetwarzanie tekstów Moduł B3 Sylabus - wersja 5.0 ECDL/ICDL Przetwarzanie tekstów Moduł B3 Sylabus - wersja 5.0 Przeznaczenie sylabusa Dokument ten zawiera szczegółowy sylabus dla modułu ECDL/ICDL Przetwarzanie tekstów. Sylabus opisuje zakres wiedzy i

Bardziej szczegółowo

Kryteria oceniania z matematyki dla klas : IV,V, VI. podręcznik, odpowiedni zeszyt ćwiczeń, zeszyt przedmiotowy, przybory do pisania, zatemperowany

Kryteria oceniania z matematyki dla klas : IV,V, VI. podręcznik, odpowiedni zeszyt ćwiczeń, zeszyt przedmiotowy, przybory do pisania, zatemperowany Nauczyciel: Mirosława Gosa Wyposażenie ucznia na zajęciach: Kryteria oceniania z matematyki dla klas : IV,V, VI. podręcznik, odpowiedni zeszyt ćwiczeń, zeszyt przedmiotowy, przybory do pisania, zatemperowany

Bardziej szczegółowo

Podręcznik użytkownika programu. Ceremonia 3.1

Podręcznik użytkownika programu. Ceremonia 3.1 Podręcznik użytkownika programu Ceremonia 3.1 1 Spis treści O programie...3 Główne okno programu...4 Edytor pieśni...7 Okno ustawień programu...8 Edycja kategorii pieśni...9 Edytor schematów slajdów...10

Bardziej szczegółowo

Definicje. Algorytm to:

Definicje. Algorytm to: Algorytmy Definicje Algorytm to: skończony ciąg operacji na obiektach, ze ściśle ustalonym porządkiem wykonania, dający możliwość realizacji zadania określonej klasy pewien ciąg czynności, który prowadzi

Bardziej szczegółowo

Zastosowania sieci neuronowych

Zastosowania sieci neuronowych Zastosowania sieci neuronowych aproksymacja LABORKA Piotr Ciskowski zadanie 1. aproksymacja funkcji odległość punktów źródło: Żurada i in. Sztuczne sieci neuronowe, przykład 4.4, str. 137 Naucz sieć taką

Bardziej szczegółowo

Prawdopodobieństwo czerwonych = = 0.33

Prawdopodobieństwo czerwonych = = 0.33 Temat zajęć: Naiwny klasyfikator Bayesa a algorytm KNN Część I: Naiwny klasyfikator Bayesa Naiwny klasyfikator bayerowski jest prostym probabilistycznym klasyfikatorem. Naiwne klasyfikatory bayesowskie

Bardziej szczegółowo

JĘZYK ANGIELSKI - PRZEDMIOTOWY SYSTEM OCENIANIA W GIMNAZJUM w roku szkolnym 2015/2016

JĘZYK ANGIELSKI - PRZEDMIOTOWY SYSTEM OCENIANIA W GIMNAZJUM w roku szkolnym 2015/2016 JĘZYK ANGIELSKI - PRZEDMIOTOWY SYSTEM OCENIANIA W GIMNAZJUM w roku szkolnym 2015/2016 nauczyciel: Ewelina Topolska klasa 1c gr.1 (1). PRZEDMIOT OCENY: wiadomości z zakresu słownictwa i gramatyki, umiejętności:

Bardziej szczegółowo

Instrukcja laboratoryjna cz.0

Instrukcja laboratoryjna cz.0 Algorytmy i Struktury Danych 2012/2013 Instrukcja laboratoryjna cz.0 Wprowadzenie Prowadzący: Tomasz Goluch Wersja: 2.0 Warunki zaliczenia Cel: Zapoznanie studentów z warunkami zaliczenia części laboratoryjnej

Bardziej szczegółowo

METODY SZTUCZNEJ INTELIGENCJI 2 Opis projektu

METODY SZTUCZNEJ INTELIGENCJI 2 Opis projektu Kamil Figura Krzysztof Kaliński Bartek Kutera METODY SZTUCZNEJ INTELIGENCJI 2 Opis projektu Porównanie metod uczenia z rodziny TD z algorytmem Layered Learning na przykładzie gry w warcaby i gry w anty-warcaby

Bardziej szczegółowo

6. Perceptron Rosenblatta

6. Perceptron Rosenblatta 6. Perceptron Rosenblatta 6-1 Krótka historia perceptronu Rosenblatta 6-2 Binarne klasyfikatory liniowe 6-3 Struktura perceptronu Rosenblatta 6-4 Perceptron Rosenblatta a klasyfikacja 6-5 Perceptron jednowarstwowy:

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 7SP. V. Obliczenia procentowe. Uczeń: 1) przedstawia część wielkości jako procent tej wielkości;

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 7SP. V. Obliczenia procentowe. Uczeń: 1) przedstawia część wielkości jako procent tej wielkości; WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 7SP Liczby. TEMAT Rozwinięcia dziesiętne liczb wymiernych. Zaokrąglanie liczb. Szacowanie wyników. Dodawanie i odejmowanie liczb dodatnich. Mnożenie i dzielenie

Bardziej szczegółowo

Plan nauczania informatyki Opracował: mgr Daniel Starego

Plan nauczania informatyki Opracował: mgr Daniel Starego Obowiązuje od roku szkolnego 000/00 Plan nauczania informatyki Opracował: mgr Daniel Starego Szkoła podstawowa klasy IV VI Dział, tematyka L. godz. I rok II rok. TECHNIKA KOMPUTEROWA W ŻYCIU CZŁOWIEKA

Bardziej szczegółowo