Tlenowy metabolizm węglowodanów

Wielkość: px
Rozpocząć pokaz od strony:

Download "Tlenowy metabolizm węglowodanów"

Transkrypt

1 Beztlenowy metabolizm sacharydów - fermentacja Fermentacja etanolowa (alkoholowa) stanowi szereg reakcji enzymatycznych polegających na przekształceniu sacharydów do etanolu, dwutlenku węgla oraz wytwarzaniu energii niezbędnej do procesów życiowych komórki drożdży. Przemiany składające się na fermentację tworzą szlak amfiboliczny (powstające metabolity pośrednie są wykorzystywane jako substraty do produkcji biomasy oraz donory i akceptory atomów wodoru i elektronów). Większość drożdży fermentujących może wykorzystywać glukozę, fruktozę, mannozę i galaktozę. Głównym szlakiem fermentacji jest ciąg przemian cukrów zwany szlakiem Embdena-Meyerhofa- Parnasa (EMP) (rys. poniżej) Fermentowany cukier po wniknięciu do komórki drożdży jest przekształcany do D-glukozy, która ulega fosforylacji do glukozo-6-fosforanu, a następnie w wyniku kolejnych przemian enzymatycznych szlaku EMP do 2 cząsteczek pirogronianu. Po ich dekarboksylacji (do aldehydu octowego i CO 2) aldehyd octowy jest redukowany, przy udziale dehydrogenazy alkoholowej, do etanolu. Wytworzona energia zostaje zmagazynowana w postaci 2 cząsteczek ATP. C 6H 12O 6 -» 2CO 2 + 2CH 3CH 2OH + 118,43 kj/mol Zaledwie 26% energii wytworzonej z 1 mola glukozy jest magazynowane w postaci ATP. 74% energii zostaje uwolnione w postaci ciepła. Ponieważ podczas fermentacji temperatura powinna być stale kontrolowana i utrzymywana na poziomie o C, konieczne jest chłodzenie kadzi z brzeczką fermentacyjną. W rzeczywistości około 95% glukozy jest fermentowane na drodze EMP, a oprócz głównych produktów fermentacji powstają niewielkie ilości glicerolu, kwasów organicznych, alkoholi fuzlowych i mieszaniny wyższych alkoholi, głównie pentanolu, butanolu i propanolu. W warunkach limitowanego dostępu azotu, do etanolu i CO 2 przekształcane jest jedynie 70% glukozy, natomiast jej pozostała część jest magazynowana w postaci glikogenu. Glikoliza jest procesem amfibolicznym, gdyż wiele metabolitów pośrednich tego szlaku jest wykorzystywane do biosyntezy składników komórkowych: glukozo-6-fosforan w syntezie glukanu (sacharyd ściany komórkowej), triozofosforany w syntezie lipidów, pirogronian jako prekursor aminokwasów. Jednak rosnące komórki drożdży wymagają do procesów biosyntezy znacznie więcej związków niż szlak EMP jest w stanie dostarczyć. Są one tworzone w obecności tlenu, w cyklu Krebsa oraz na drodze tlenowych przemian glukozo-6-fosforanu w obecności NADP + w szlaku heksozomonofosforanowym (HMP, szlak pentozofosforanowy), nazywanym też szlakiem pentozowym. Głównym celem jest dostarczenie komórce NADPH niezbędnego do przeprowadzenia reakcji redukcji w cytoplazmie oraz synteza pentoz. Reakcje zachodzą w cytozolu. W przebiegu szlaku pentozofosforanowego można wyróżnić dwie fazy. Pierwsza - faza oksydacyjna, podczas której powstaje NADPH oraz druga - faza nieoksydacyjna podczas której powstają pentozy oraz cukry o 3, 4 i 7 atomach węgla. W fazie oksydacyjnej następuje przekształcenie glukozo-6-fosforanu w rybulozo-5-fosforan z wytworzeniem dwóch cząsteczek NADPH. W fazie nieoksydacyjnej natomiast rybulozo-5-fosforanu zostaje przekształcony w rybozo-5-fosforan lub ulega wieloetapowym przekształceniom w metabolity glikolizy. Tlenowy metabolizm węglowodanów Drożdże fermentujące w obecności tlenu przekształcają sacharydy, wykorzystując tlen cząsteczkowy jako akceptor protonów. Drożdże niefermentujące metabolizują węglowodany tylko na drodze tlenowej. Podstawowymi szlakami metabolizmu tlenowego są cykl Krebsa (zwany też cyklem kwasów trójkarboksylowych lub cyklem TCA) oraz cykl glioksalowy, natomiast zmagazynowanie energii w postaci ATP zachodzi w cytochromach zlokalizowanych w mitochondriach. Powstały w procesie glikolizy pirogronian, na drodze dekarboksylacji oksydatywnej, przy udziale koenzymu A i w obecności dehydrogenazy pirogronianowej zostaje przekształcony do acetylokoenzymu A. Zaktywowany acetyl zostaje całkowicie

2 utleniony do dwutlenku węgla w szeregu cyklu kwasów trójkarboksylowych. Cykl Krebsa jest szlakiem amfibolicznym, dostarczającym wielu substratów wykorzystywanych w procesach biosyntezy w komórce, np. w syntezie aminokwasów. W przypadku wyczerpania zasobów cukru w pożywce hodowlanej, cykl Krebsa zostaje zahamowany na poziomie izocytrynianu, a metabolizm sacharydów jest prowadzony na drodze cyklu glioksalowego. Wówczas, jako źródło węgla komórki wykorzystują inne metabolity np. aldehyd octowy, etanol, glicerol, które są przekształcane w acetylo-coa. Dalej w szlaku TCA do izotiocytrynianu, kwasu glioksalowego i jabłczanu. Końcowymi etapami metabolizmu tlenowego drożdży są reakcje zachodzące w łańcuchu oddechowym, polegające na przenoszeniu elektronów i protonów. Końcowym akceptorem elektronów jest tlen cząsteczkowy. Na regulację cyklu ma wpływ kilka parametrów: dostępność substratów, hamujące działanie nagromadzonych produktów i oparte na mechanizmach sprzężenia zwrotnego allosteryczne hamowanie przez następne intermediaty cyklu. Najbardziej prawdopodobnymi miejscami regulacji są reakcje nieodwracalne katalizowane przez następujące enzymy: - syntazę cytrynianową (hamowana przez cytrynian, a także przez ATP) - dehydrogenazę izocytrynianową (hamowana przez NADH i ATP, a aktywowana przez ADP) - dehydrogenazę α-ketoglutaranową (hamowana przez NADH i bursztynylo-coa) - dehydrogenazę pirogronianową (hamowana przez NADH i acetylo-coa). Cykl Krebsa przebiega szybciej, gdy poziom energii w komórce jest niski (duże stężenie ADP, a małe stężenie ATP i NADH), a zwalnia swój przebieg, gdy dochodzi do akumulacji ATP (jak i również NADH, byrsztynylo-coa oraz cytrynianu). Sumaryczny zysk cyklu to 12 cząsteczek ATP z jednej cząsteczki acetylo-coa. C 6H 12O 6 + 6O 2 -» 6CO 2 + 2H 2O kj/mol Cykl Krebsa poza utlenianiem spełnia także inne role metaboliczne. Uczestniczy w glukoneogenezie, transaminacjach, deaminacjach i syntezie kwasów tłuszczowych. Intermediaty cyklu dostarczają prekursorów do wielu szlaków biosyntez: synteza aminokwasów następuje po transaminacji α-ketoglutaranu synteza nukleotydów purynowych i pirymidynowych z α-ketoglutaranu i szczawiooctanu szczawiooctan może być przekształcany w glukozę w procesie glukoneogenezy bursztynylo-coa jest najważniejszym intermediatem w syntezie pierścienia porfirynowego grup hemowych cytrynian przenosi grupy acylowe, potrzebne do syntezy kwasów tłuszczowych, z mitochondriów do cytosolu. Łańcuch oddechowy. Utworzone m.in. podczas glikolizy czy cyklu kwasu cytrynowego NADH i FADH 2 są bogate energetycznie, ponieważ zawierają pary elektronów o wysokim potencjale przenoszenia. Energia swobodna uwalniana w znacznej ilości podczas przenoszenia tych elektronów na tlen cząsteczkowy jest wykorzystywana do syntezy ATP. Elektrony są przenoszone z NADH do O 2 z udziałem trzech wielkich kompleksów białkowych: reduktazy NADH-Q (ubichinon) reduktazy cytochromowej oksydazy cytochromowej. Grupami przenoszącymi elektrony są: flawiny, centra żelazo-siarkowe, hemy i jony miedzi. Elektrony czy wodory przepływają przez łańcuch oddechowy od składników bardziej elektroujemnych do bardziej elektrododatniego tlenu. Podczas wędrówki protonów i elektronów z jednej cząsteczki NADPH na tlen, powstają 3 ATP, natomiast w przypadku FADH2 2 ATP. Oddychanie i fermentacja - efekty regulacyjne Procesy oddychania tlenowego i beztlenowego są w komórkach drożdży nierozerwalne. Rodzaj prowadzonego metabolizmu zależy nie tylko od dostępu tlenu, ale również wielu czynników. U niektórych gatunków drożdży oddychanie i fermentacja przebiegają prawie w tych samych proporcjach, u innych obserwuje się przewagę jednego z tych procesów. Browarnicze drożdże dolnej fermentacji Saccharomyces uvarum charakteryzują się najmniejszym udziałem oddychania w procesach metabolicznych, natomiast drożdże browarnicze górnej fermentacji Saccharomyces cerevisiae wykazują metabolizm tlenowy na poziomie zbliżonym do ras drożdży piekarskich S. cerevisiae.

3 Na podstawie aktywności oddechowej drożdże mogą być podzielone na 3 grupy: - wykazujące metabolizm tlenowy - drożdże niefermentujące, u których zachodzi jedynie oddychanie - prowadzące procesy tlenowe i beztlenowe w proporcjach równowagowych - oddychanie stanowi 40-50% przemian metabolicznych, np. drożdże browarnicze górnej fermentacji, piekarskie, większość drożdży patogennych - wykazujące głównie metabolizm beztlenowy - (udział oddychania nie przekracza 10-15%), np. drożdże gorzelnicze, winiarskie oraz drożdże browarnicze dolnej fermentacji U niektórych gatunków drożdży można prawie całkowicie stłumić fermentację przez silne napowietrzanie, jak to ma miejsce w drożdżownictwie, gdzie chodzi o możliwie największe nagromadzenie ich masy komórkowej. Są też przypadki, gdy drożdże w warunkach beztlenowych prawie wcale się nie rozwijają gdyż nie mają zdolności fermentacyjnych, co wykorzystuje się w produkcji drożdży paszowych. Drożdże dzikie (w przemyśle piekarskim Candida, Torulopsis, Mycoderma) to typowe tlenowce. Szlachetne szczepy, jak S. cerevisiae, mają zdolność fermentacji lub oddychania tlenowego w zależności od warunków, co wykorzystuje się do oceny ich jakości - określania biologicznej aktywności, czyli zdolności wytwarzania CO 2 spulchniającego ciasto w czasie fermentacji. Zmiana warunków hodowli z beztlenowych na tlenowe u S. cerevisiae prowadzi do 5-do 10-krotnego zwiększenia wydajności biomasy, przy czym tlen musi być rozpuszczony w pożywce. Wzrost stężenia tlenu w pożywce: - nieznacznie hamuje aktywność glikolizy poprzez inhibicję aktywności fosfofruktokinazy - zwiększa aktywność liazy cytrynianowej i dehydrogenazy jabłczanowej - wzrost intensywności cyklu Krebsa - uruchamia proces fosforylacji oksydatywnej w mitochondriach - hamuje transport aktywny glukozy przez błony plazmatyczne - intensyfikuje cykl glioksalowy - wykorzystanie etanolu, wyprodukowanego w czasie fermentacji Hamowanie fermentacji w komórkach drożdży w obecności tlenu nosi nazwę efektu Pasteura. Obserwowany jest u wszystkich drożdży z wyjątkiem browarniczych, u których wystąpiło zjawisko adaptacji do anaerobiozy i różnica pomiędzy fermentacją w warunkach beztlenowych a metabolizmem tlenowym jest nieznaczna. Również u wielu ras drożdży winiarskich tlen tylko nieznacznie hamuje fermentację. Wysokie stężenie glukozy lub innych fermentowanych cukrów powoduje zahamowanie syntezy mitochondriów i reprodukcji komórek drożdży w populacji, w której następuje zmiana metabolizmu tlenowego na fermentacyjny. Hamowanie oddychania na zasadzie katabolicznej represji glukozowej nosi nazwę negatywnego efektu Pasteura i efektu Crabtree. Oba te efekty regulacyjne są ze sobą powiązane, wywołując fermentację w obecności tlenu cząsteczkowego. Istota negatywnego efektu Pasteura polega na hamowaniu biosyntezy enzymów oddechowych, podczas gdy mianem efektu Crabtree określa się hamowanie ich aktywności. W obecności wysokich stężeń glukozy następuje obniżenie stężenia cytochromów, spadek ilości syntetyzowanych enzymów cyklu Krebsa, zahamowanie aktywności dehydrogenaz i ATP-azy. Katabolicznej represji glukozowej podlega także synteza podstawowych składników, takich jak: ubichinon, fosfolipidy i kwas palmitynowy. Najniższe stężenie glukozy, które hamuje syntezę enzymów oddechowych u drożdży S. cerevisiae wynosi 6mM. Stężenie 12mM hamuje syntezę oksydazy cytochromu c i dehydrogenazy jabłczanowej, a stężenie 30mM glukozy hamuje syntezę oksydoreduktazy NADPH-cytochromu c. Oznaczanie ilościowe białek porównanie metod. Metoda Bradforda Metoda Melanii M. Bradford jest obecnie stosowana coraz częściej, głównie ze względu na prostotę oraz wysoką czułość. Barwnik Coomasie Brillant Blue (CBB) rozpuszczony w roztworze o ph poniżej 1 ma kolor czerwono-brązowy. Kiedy jednak wiąże się z białkiem uzyskuje kolor niebieski. Ilość białka może być dzięki temu mierzona przy długości fali 595 nm. CBB w znacznej mierze przyłącza się do zasadowych, aromatycznych aminokwasów. Białka zawierają różną ich ilość, stąd wskazane jest utworzenie krzywej standardowej dla każdego badanego białka. Wadą tej metody jest to, że reagenty pozostają na szkle oraz plastikach laboratoryjnych. Można je stamtąd usunąć za pomocą SDS. Metodę stosuje się do detekcji białka w zakresie μg białka/ml. Czułość metody wynosi 20 μg białka/ml Metoda biuretowa Metoda ta wykorzystuje obecność wiązań peptydowych w rozmaitych związkach organicznych, głównie w białkach i peptydach. Warunkiem koniecznym jest występowanie co najmniej dwóch wiązań peptydowych bezpośrednio obok siebie lub przedzielonych nie więcej niż jednym atomem węgla. Test biuretowy polega na dodaniu do analizowanej mieszaniny roztworu silnej zasady oraz siarczanu miedzi(ii). Jeżeli w roztworze obecne są związki zawierające bliskie wiązania peptydowe, to roztwór zmienia barwę z niebieskiej na fioletową (λ=540nm). Jest to spowodowane powstawaniem anionowych związków kompleksowych, w których jon Cu 2+ jest kompleksowany przez minimum dwie grupy peptydowe (Rysunek 1). W przypadku występowania dimerów aminokwasów, w których występuje tylko jedno wiązanie peptydowe układ zabarwia się na różowo. Wolne aminokwasy nie zmieniają barwy roztworu. Test może być stosowany zarówno w analizie jakościowej, jak i ilościowej. W tym drugim przypadku wykorzystuje się liniową zależność zmiany barwy od stężenia protein, a w rzeczywistości od liczby podwójnych wiązań peptydowych. Czułość metody 0,1 mg/cm 3, zakres 0,1 15 mg/cm 3 Oznaczeniu przeszkadzają: sole amonowe (dają barwne kompleksy z jonami miedzi) oraz siarczan (VI) magnezu (przechodzi w nierozpuszczalny wodorotlenek magnezu, który maskuje właściwą barwę).

4 Metoda Lowry ego W metodzie tej wykorzystuje się dwie odrębne reakcje: reakcje aminokwasów aromatycznych z odczynnikiem Folina oraz reakcję jonów miedzi(ii) z wiązaniami peptydowymi (reakcja biuretowa). W pierwszym etapie metody Lowry`ego zachodzi reakcja pomiędzy białkiem (dokładnie atomami azotu wiązania peptydowego) a siarczanem miedzi i cytrynianem sodu w środowisku zasadowym, co prowadzi do powstania kompleksu miedzi (Cu2+) i białka. Skutkiem tego jest redukcja jonów miedzi do jonów Cu +. W kolejnym etapie, po dodaniu do mieszaniny reakcyjnej odczynnika Folina-Ciocalteu (kompleksu kwasów fosfomolibdenowego (Mo 6+ ) i fosfowolframowego (W 6+ ). Aminokwasy aromatyczne redukują te jony do tzw. Błękitu molibdenowo-wolframowego, co przejawia się zmianą barwy roztworu na niebieską. Zmiana barwy jest proporcjonalna do ilości kompleksów miedziowobiałkowych. Zalety metody: niskie koszty, łatwość wykonania pomiaru. Metoda ta od wielu lat jest najczęściej spotykaną procedurą określania zawartości protein w nieznanej próbce. Pomiar wykonuje się przy λ=750nm, aby otrzymać wiarygodny wynik należy stworzyć krzywa kalibracyjną. Metoda z kwasem bicinchoninowym Metoda ta jest kolejną modyfikacją reakcji biuretowej. Kwas bicinchoninowy tworzy z jonami miedziowymi stabilny kompleks, który maksimum absorbancji posiada przy 562 nm. Metoda ta jest czulsza od metody biuretowej i metody Lowr ego oraz mniej wrażliwa na warunki zewnętrzne. Podobnie jak pozostałe metody oparte na reakcji biuretowej metoda ta wrażliwa jest na obecność związków redukujących np. kwasu askorbinowego. Zasadniczo polega na reakcji redukcji jonów Cu 2+ do Cu + w alkalicznym środowisku poprzez składniki białek (cysteina, tryptofan i inne). Absorbancja w UV Absorbancja jest chyba najprostszą metodą do mierzenia koncentracji białka w roztworze. Białka absorbują najlepiej przy długości fali nm. Dzieje się tak z powodu zawartości aromatycznych aminokwasów, takich jak tryptofan czy tyrozyna. Natomiast przy 185 nm znajduje się szczyt absorbancji białek, który wynika z obecności wiązań peptydowych. Ekstynkcja białek przy 280 nm jest różna z powodu różnej zawartości aminokwasów aromatycznych, natomiast poniżej 220 nm w przypadku obecności różnych białek nie pozwala na ich rozróżnienie. Poza tym trudno jest zmierzyć absorbancję białka w obszarze około 185 nm ponieważ różne formy tlenu również absorbują na tym obszarze. Współczynniki ekstynkcji białek są różne, zatem absorbancję w UV należy raczej traktować jako metodę jakościową, oczywiście z wyjątkiem oczyszczonych już białek, dla których współczynniki ekstynkcji są już znane. Jedną z wad tej metody jest to, że wiele innych związków chemicznych obecnych w próbce powoduje zafałszowanie wyników. Dzieje się tak np. w przypadku kwasów nukleinowych. Wprawdzie maksimum absorpcji tych związków znajduje się przy 260 nm, ale po części również zafałszowują wynik przy 280 nm. Wykonanie ćwiczenia 1. Analiza tlenowej hodowli drożdży 1.1. Oznaczyć masę kolby i poziom cieczy (porównać z masą wyjściową) Oznaczyć zawartość sacharozy w płynie pohodowlanym. Pobrać 50 ml hodowli do kolbki miarowej o pojemności 100cm 3, dodać kolejno po 10ml płynów Herlesa I i II, mieszając próbę po każdej dawce, zawartość kolby dopełnić do kreski wodą destylowaną. Wymieszać starannie otrzymany roztwór i przesączyć przez suchy sączek z bibuły filtracyjnej. W przesączu oznaczyć stężenie sacharozy refraktometrem lunetowym MASTER-TA z automatyczną kompensacją temperatury. W tym celu należy podnieść osłonę pryzmatu, pipetą nanieść ok. 1 ml roztworu sacharozy tak, aby zamykając osłonę ciecz równomiernie, bez pęcherzyków powietrza pokryła cały pryzmat. Następnie patrząc przez lunetkę odczytać wynik (skala po lewej stronie w 0 Brix, 1 o Brix = 1% sacharozy.) Po wykonaniu pomiaru refraktometr dokładnie opłukać pod bieżącą wodą i wytrzeć delikatnie do sucha papierowym ręcznikiem. 2. Oznaczanie zawartości białka białko oznaczyć metodą wskazaną przez prowadzącego 2.1. Hodowle tlenową drożdży dokładnie wymieszać i ok. 25 cm 3 przefiltrować w zestawie do filtracji próżniowej. W tym celu należy zmontować zestaw. Filtrować używając sączka z bibuły filtracyjnej (w razie potrzeby sączek przyciąć do odpowiedniego rozmiaru). Zamontować lejek i podłączyć wężem kolbę filtracyjną z pompą próżniową. Przy otwartym przepływie wlać 25cm 3 hodowli i włączyć pompę. Po zakończeniu filtracji cały zestaw należy dokładnie umyć!!! 2.2. Pobrać ok. 0,2g biomasy drożdży z sączka, rozetrzeć z niewielką ilością odtłuszczonego piasku w moździerzu (w celu rozerwania ścian komórkowych i uwolnienia cytoplazmy). Następnie moździerz dokładnie przepłukać 5ml wody destylowanej. Całość przenieść ilościowo do probówki wirówkowej i odwirować (6000 obr/min, 5 min.). W celu odwirowania próby należy: - otworzyć pokrywę wirówki - umieścić w niej probówkę z zawiesiną roztartych drożdży, jako przeciwwagi użyć drugiej probówki wypełnionej 5 ml wody destylowanej - zamknąć pokrywę wirówki - ustawić czas wirowania 5 minut - ustawić obroty 6000 obr/min - po upływie wyznaczonego czasu wirówka sama się wyłączy 2.3. Po zakończeniu wirowania ostrożnie pobrać do probówki 1ml płynu znad odwirowanego osadu drożdży (supernatant). Do drugiej probówki wprowadzić 1ml wody destylowanej próba kontrolna Oznaczenie białka metodą Lowry ego.

5 Do 1ml supernatantu, oraz 1 ml próby kontrolnej dodać po: - 0,3ml 1M NaOH, - 3ml odczynnika miedziowego, Odczynnik miedziowy przygotować bezpośrednio przed oznaczeniem mieszając ze sobą w probówce: 10ml odczynnika A, 0,1ml odczynnika B 1 i 0,1ml odczynnika B 2 - po wymieszaniu odstawić na 10 min. - 0,3ml odczynnika Folina Energicznie wymieszać probówki (vortex) i po 20 minut dokonać pomiaru absorbancji w spektrofotometrze, przy długości fali 660 nm, wobec próby kontrolnej, a następnie odczytać stężenie białka z krzywej wzorcowej albuminy Oznaczanie białka metodą Bradforda Do 1ml supernatantu, oraz 1 ml próby kontrolnej dodać po 2ml odczynnika Bradforda. Po wymieszaniu i upływie 10 minut dokonać pomiaru absorbancji w spektrofotometrze, przy długości fali 595 nm, wobec próby kontrolnej, a następnie odczytać stężenie białka z krzywej wzorcowej albuminy w mg/dm 3. Krzywa wzorcowa albuminy: y= 335,21x 10,014 R 2 = 0,99 3. Opracowanie wyników Opis wykonanych doświadczeń oraz uzyskane wyniki należy zamieścić w sprawozdaniu. Wyciągnąć wnioski. Można skorzystać z tabeli: Waga kolbek [g] Zawartość sacharozy [%] Stężenie białka [µg/ml] - Przed hodowlą Po hodowli 4. Literatura: - Chmiel A., Biotechnologia. Podstawy mikrobiologiczne i biochemiczne; Wyd. PWN, Warszawa; Kunicki-Goldfinger W.; Życie bakterii; Wyd. PWN; Warszawa; Libudzisz Z. Kowal K.; Mikrobiologia techniczna; Wyd. Politechniki Łódzkiej; 2000

Biotechnologia stosowana - biotechnologia środowiska studia II stopnia KSZTAŁTOWANIE PROCESU BIOTECHNOLOGICZNEGO

Biotechnologia stosowana - biotechnologia środowiska studia II stopnia KSZTAŁTOWANIE PROCESU BIOTECHNOLOGICZNEGO Procesy biotechnologiczne mają bardzo zróżnicowany charakter, mogą być prowadzone wieloma sposobami i wymagają różnych warunków technicznych. Większość bioprocesów wymaga użycia czystych kultur drobnoustrojów,

Bardziej szczegółowo

Oddychanie komórkowe. Pozyskiwanie i przetwarzanie energii w komórkach roślinnych. Oddychanie zachodzi w mitochondriach Wykład 7.

Oddychanie komórkowe. Pozyskiwanie i przetwarzanie energii w komórkach roślinnych. Oddychanie zachodzi w mitochondriach Wykład 7. Wykład 7. Pozyskiwanie i przetwarzanie energii w komórkach roślinnych Literatura dodatkowa: Oddychanie to wielostopniowy proces utleniania substratów związany z wytwarzaniem w komórce metabolicznie użytecznej

Bardziej szczegółowo

Biochemia Oddychanie wewnątrzkomórkowe

Biochemia Oddychanie wewnątrzkomórkowe Państwowa Wyższa Szkoła Zawodowa w Krośnie Biochemia Oddychanie wewnątrzkomórkowe Dr n. biol. Henryk Różański Laboratorium Biologii Przemysłowej i Eksperymentalnej Oddychanie Glikoliza beztlenowy, wewnątrzkomórkowy

Bardziej szczegółowo

BADANIE WŁASNOŚCI KOENZYMÓW OKSYDOREDUKTAZ

BADANIE WŁASNOŚCI KOENZYMÓW OKSYDOREDUKTAZ KATEDRA BIOCHEMII Wydział Biologii i Ochrony Środowiska BADANIE WŁASNOŚCI KOENZYMÓW OKSYDOREDUKTAZ ĆWICZENIE 2 Nukleotydy pirydynowe (NAD +, NADP + ) pełnią funkcję koenzymów dehydrogenaz przenosząc jony

Bardziej szczegółowo

Integracja metabolizmu

Integracja metabolizmu Integracja metabolizmu 1 Kluczowe związki w metabolizmie Glukozo- 6 -fosforan Pirogronian AcetyloCoA 2 Glukoza po wejściu do komórki ulega fosforylacji Metaboliczne przemiany glukozo- 6-fosforanu G-6-P

Bardziej szczegółowo

Bliskie spotkania z biologią METABOLIZM. dr hab. Joanna Moraczewska, prof. UKW. Instytut Biologii Eksperymetalnej, Zakład Biochemii i Biologii Komórki

Bliskie spotkania z biologią METABOLIZM. dr hab. Joanna Moraczewska, prof. UKW. Instytut Biologii Eksperymetalnej, Zakład Biochemii i Biologii Komórki Bliskie spotkania z biologią METABOLIZM dr hab. Joanna Moraczewska, prof. UKW Instytut Biologii Eksperymetalnej, Zakład Biochemii i Biologii Komórki Metabolizm całokształt przemian biochemicznych i towarzyszących

Bardziej szczegółowo

Biotechnologia ogólna dla studentów kierunku biotechnologia wersja 1.1 PRODUKCJA BIOMASY CZ. 3

Biotechnologia ogólna dla studentów kierunku biotechnologia wersja 1.1 PRODUKCJA BIOMASY CZ. 3 PRODUKCJA BIOMASY CZ. 3 Beztlenowy metabolizm sacharydów - fermentacja Fermentacja etanolowa (alkoholowa) stanowi szereg reakcji enzymatycznych polegających na przekształceniu sacharydów do etanolu, dwutlenku

Bardziej szczegółowo

Bliskie spotkania z biologią. METABOLIZM część II. dr hab. Joanna Moraczewska, prof. UKW

Bliskie spotkania z biologią. METABOLIZM część II. dr hab. Joanna Moraczewska, prof. UKW Bliskie spotkania z biologią METABOLIZM część II dr hab. Joanna Moraczewska, prof. UKW Instytut Biologii Eksperymetalnej, Zakład Biochemii i Biologii Komórki METABOLIZM KATABOLIZM - rozkład związków chemicznych

Bardziej szczegółowo

Reakcje zachodzące w komórkach

Reakcje zachodzące w komórkach Reakcje zachodzące w komórkach W każdej sekundzie we wszystkich organizmach żywych zachodzi niezliczona ilość reakcji metabolicznych. Metabolizm (gr. metabole - przemiana) to przemiany materii i energii

Bardziej szczegółowo

WŁASNOŚCI SPEKTRALNE NUKLEOTYDÓW PIRYDYNOWYCH (NAD +, NADP + ) OZNACZANIE AKTYWNOŚCI TRANSAMINAZY ALANINOWEJ

WŁASNOŚCI SPEKTRALNE NUKLEOTYDÓW PIRYDYNOWYCH (NAD +, NADP + ) OZNACZANIE AKTYWNOŚCI TRANSAMINAZY ALANINOWEJ WŁASNOŚCI SPEKTRALNE NUKLEOTYDÓW PIRYDYNOWYCH (NAD +, NADP + ) OZNACZANIE AKTYWNOŚCI TRANSAMINAZY ALANINOWEJ WSTĘP Nukleotydy pirydynowe (NAD +, NADP + ) pełnią funkcję koenzymów dehydrogenaz przenosząc

Bardziej szczegółowo

Oznaczanie żelaza i miedzi metodą miareczkowania spektrofotometrycznego

Oznaczanie żelaza i miedzi metodą miareczkowania spektrofotometrycznego Oznaczanie żelaza i miedzi metodą miareczkowania spektrofotometrycznego Oznaczanie dwóch kationów obok siebie metodą miareczkowania spektrofotometrycznego (bez maskowania) jest możliwe, gdy spełnione są

Bardziej szczegółowo

Laboratorium 8. Badanie stresu oksydacyjnego jako efektu działania czynników toksycznych

Laboratorium 8. Badanie stresu oksydacyjnego jako efektu działania czynników toksycznych Laboratorium 8 Badanie stresu oksydacyjnego jako efektu działania czynników toksycznych Literatura zalecana: Jakubowska A., Ocena toksyczności wybranych cieczy jonowych. Rozprawa doktorska, str. 28 31.

Bardziej szczegółowo

wielkość, kształt, typy

wielkość, kształt, typy Mitochondria 0,5-1µm wielkość, kształt, typy 1-7µm (10µm) Filmowanie poklatkowe (w mikroskopie fluorescencyjnym) sieci mitochondrialnej w komórkach droŝdŝy (krok czasowy 3 min) Mitochondria liczebność,

Bardziej szczegółowo

Otrzymany w pkt. 8 osad, zawieszony w 2 ml wody destylowanej rozpipetować do 4 szklanych probówek po ok. 0.5 ml do każdej.

Otrzymany w pkt. 8 osad, zawieszony w 2 ml wody destylowanej rozpipetować do 4 szklanych probówek po ok. 0.5 ml do każdej. Kwasy nukleinowe izolacja DNA, wykrywanie składników. Wymagane zagadnienia teoretyczne 1. Struktura, synteza i degradacja nukleotydów purynowych i pirymidynowych. 2. Regulacja syntezy nukleotydów. Podstawowe

Bardziej szczegółowo

Metabolizm komórkowy i sposoby uzyskiwania energii

Metabolizm komórkowy i sposoby uzyskiwania energii Metabolizm komórkowy i sposoby uzyskiwania energii Metabolizm całokształt reakcji chemicznych i związanych z nimi przemian energii zachodzący w komórkach. Podstawa wszelakich zjawisk biologicznych. Metabolizm

Bardziej szczegółowo

B) podział (aldolowy) na 2 triozy. 2) izomeryzacja do fruktozo-6-p (aldoza w ketozę, dla umoŝliwienia kolejnych przemian)

B) podział (aldolowy) na 2 triozy. 2) izomeryzacja do fruktozo-6-p (aldoza w ketozę, dla umoŝliwienia kolejnych przemian) Glikoliza (Przegląd kluczowych struktur i reakcji) A) przygotowanie heksozy do podziału na dwie triozy: 1)fosforylacja glukozy (czyli przekształcenie w formę metabolicznie aktywną) 2) izomeryzacja do fruktozo-6-p

Bardziej szczegółowo

Przemiana materii i energii - Biologia.net.pl

Przemiana materii i energii - Biologia.net.pl Ogół przemian biochemicznych, które zachodzą w komórce składają się na jej metabolizm. Wyróżnia się dwa antagonistyczne procesy metabolizmu: anabolizm i katabolizm. Szlak metaboliczny w komórce, to szereg

Bardziej szczegółowo

ODDYCHANIE KOMÓRKOWE

ODDYCHANIE KOMÓRKOWE NM Gera ODDYCHANIE KOMÓRKOWE 1 A) ODDYCHANIE TLENOWE B) PROCESY BEZTLENOWEGO UZYSKIWANIA ENERGII ZADANIE DOMOWE W FORMIE REFERATU OPRACUJ ZAGADNIENIA DOTYCZĄCE PRZEBIEGU CHEMOSYNTEZY ORAZ BEZTLENOWEGO

Bardziej szczegółowo

Biochemia SYLABUS A. Informacje ogólne

Biochemia SYLABUS A. Informacje ogólne Biochemia A. Informacje ogólne Elementy sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod Język Rodzaj Rok studiów /semestr Wymagania

Bardziej szczegółowo

Program zajęć z biochemii dla studentów kierunku weterynaria I roku studiów na Wydziale Lekarskim UJ CM w roku akademickim 2013/2014

Program zajęć z biochemii dla studentów kierunku weterynaria I roku studiów na Wydziale Lekarskim UJ CM w roku akademickim 2013/2014 Program zajęć z biochemii dla studentów kierunku weterynaria I roku studiów na Wydziale Lekarskim UJ CM w roku akademickim 2013/2014 S E M E S T R II Tydzień 1 24.02-28.02 2 03.03-07.03 3 10.03-14.03 Wykłady

Bardziej szczegółowo

ROZPORZĄDZENIE MINISTRA ŚRODOWISKA 1)

ROZPORZĄDZENIE MINISTRA ŚRODOWISKA 1) ROZPORZĄDZENIE MINISTRA ŚRODOWISKA 1) z dnia 6 listopada 2002 r. w sprawie metodyk referencyjnych badania stopnia biodegradacji substancji powierzchniowoczynnych zawartych w produktach, których stosowanie

Bardziej szczegółowo

data ĆWICZENIE 7 DYSTRYBUCJA TKANKOWA AMIDOHYDROLAZ

data ĆWICZENIE 7 DYSTRYBUCJA TKANKOWA AMIDOHYDROLAZ Imię i nazwisko Uzyskane punkty Nr albumu data /3 podpis asystenta ĆWICZENIE 7 DYSTRYBUCJA TKANKOWA AMIDOHYDROLAZ Amidohydrolazy (E.C.3.5.1 oraz E.C.3.5.2) są enzymami z grupy hydrolaz o szerokim powinowactwie

Bardziej szczegółowo

C 6 H 12 O 6 2 C 2 O 5 OH + 2 CO 2 H = -84 kj/mol

C 6 H 12 O 6 2 C 2 O 5 OH + 2 CO 2 H = -84 kj/mol OTRZYMYWANIE BIOETANOLU ETAP II (filtracja) i III (destylacja) CEL ĆWICZENIA: Celem ćwiczenia jest przeprowadzenie procesu filtracji brzeczki fermentacyjnej oraz uzyskanie produktu końcowego (bioetanolu)

Bardziej szczegółowo

Nukleotydy w układach biologicznych

Nukleotydy w układach biologicznych Nukleotydy w układach biologicznych Schemat 1. Dinukleotyd nikotynoamidoadeninowy Schemat 2. Dinukleotyd NADP + Dinukleotydy NAD +, NADP + i FAD uczestniczą w procesach biochemicznych, w trakcie których

Bardziej szczegółowo

Źródła energii dla mięśni. mgr. Joanna Misiorowska

Źródła energii dla mięśni. mgr. Joanna Misiorowska Źródła energii dla mięśni mgr. Joanna Misiorowska Skąd ta energia? Skurcz włókna mięśniowego wymaga nakładu energii w postaci ATP W zależności od czasu pracy mięśni, ATP może być uzyskiwany z różnych źródeł

Bardziej szczegółowo

Zastosowanie metody Lowry ego do oznaczenia białka w cukrze białym

Zastosowanie metody Lowry ego do oznaczenia białka w cukrze białym Zastosowanie metody Lowry ego do oznaczenia białka w cukrze białym Dr inż. Bożena Wnuk Mgr inż. Anna Wysocka Seminarium Aktualne zagadnienia dotyczące jakości w przemyśle cukrowniczym Łódź 10 11 czerwca

Bardziej szczegółowo

Zagadnienia do egzaminu z biochemii (studia niestacjonarne)

Zagadnienia do egzaminu z biochemii (studia niestacjonarne) Zagadnienia do egzaminu z biochemii (studia niestacjonarne) Aminokwasy, białka, cukry i ich metabolizm 1. Aminokwasy, wzór ogólny i charakterystyczne grupy. 2. Wiązanie peptydowe. 3. Białka, ich struktura.

Bardziej szczegółowo

oksydacyjna ADP + Pi + (energia z utleniania zredukowanych nukleotydów ) ATP

oksydacyjna ADP + Pi + (energia z utleniania zredukowanych nukleotydów ) ATP Życie - wymaga nakładu energii źródłem - promienie świetlne - wykorzystywane do fotosyntezy - magazynowanie energii w wiązaniach chemicznych Wszystkie organizmy (a zwierzęce wyłącznie) pozyskują energię

Bardziej szczegółowo

Wydział Przyrodniczo-Techniczny UO Kierunek studiów: Biotechnologia licencjat Rok akademicki 2009/2010

Wydział Przyrodniczo-Techniczny UO Kierunek studiów: Biotechnologia licencjat Rok akademicki 2009/2010 Kierunek studiów: Biotechnologia licencjat 6.15 BCH2 II Typ studiów: stacjonarne Semestr: IV Liczba punktow ECTS: 5 Jednostka organizacyjna prowadząca przedmiot: Samodzielna Katedra Biotechnologii i Biologii

Bardziej szczegółowo

KREW: 1. Oznaczenie stężenia Hb. Metoda cyjanmethemoglobinowa: Zasada metody:

KREW: 1. Oznaczenie stężenia Hb. Metoda cyjanmethemoglobinowa: Zasada metody: KREW: 1. Oznaczenie stężenia Hb Metoda cyjanmethemoglobinowa: Hemoglobina i niektóre jej pochodne są utleniane przez K3 [Fe(CN)6]do methemoglobiny, a następnie przekształcane pod wpływem KCN w trwały związek

Bardziej szczegółowo

ĆWICZENIE 1: BUFORY 1. Zapoznanie z Regulaminem BHP 2. Oznaczanie ph 2.1. metoda z zastosowaniem papierków wskaźnikowych

ĆWICZENIE 1: BUFORY 1. Zapoznanie z Regulaminem BHP 2. Oznaczanie ph 2.1. metoda z zastosowaniem papierków wskaźnikowych ĆWICZENIE 1: BUFORY 1. Zapoznanie z Regulaminem BHP 2. Oznaczanie ph 2.1. metoda z zastosowaniem papierków wskaźnikowych Zasada metody Wykrywanie stęŝenia jonów wodorowych przy zastosowaniu papierków wskaźnikowych

Bardziej szczegółowo

OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS

OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS Zagadnienia teoretyczne. Spektrofotometria jest techniką instrumentalną, w której do celów analitycznych wykorzystuje się przejścia energetyczne zachodzące

Bardziej szczegółowo

KINETYKA HYDROLIZY SACHAROZY

KINETYKA HYDROLIZY SACHAROZY Ćwiczenie nr 2 KINETYKA HYDROLIZY SACHAROZY I. Kinetyka hydrolizy sacharozy reakcja chemiczna Zasada: Sacharoza w środowisku kwaśnym ulega hydrolizie z wytworzeniem -D-glukozy i -D-fruktozy. Jest to reakcja

Bardziej szczegółowo

1. Oznaczanie aktywności lipazy trzustkowej i jej zależności od stężenia enzymu oraz żółci jako modulatora reakcji enzymatycznej.

1. Oznaczanie aktywności lipazy trzustkowej i jej zależności od stężenia enzymu oraz żółci jako modulatora reakcji enzymatycznej. ĆWICZENIE OZNACZANIE AKTYWNOŚCI LIPAZY TRZUSTKOWEJ I JEJ ZALEŻNOŚCI OD STĘŻENIA ENZYMU ORAZ ŻÓŁCI JAKO MODULATORA REAKCJI ENZYMATYCZNEJ. INHIBICJA KOMPETYCYJNA DEHYDROGENAZY BURSZTYNIANOWEJ. 1. Oznaczanie

Bardziej szczegółowo

Spis treści. 1. Wiadomości wstępne Skład chemiczny i funkcje komórki Przedmowa do wydania czternastego... 13

Spis treści. 1. Wiadomości wstępne Skład chemiczny i funkcje komórki Przedmowa do wydania czternastego... 13 Przedmowa do wydania czternastego... 13 Częściej stosowane skróty... 15 1. Wiadomości wstępne... 19 1.1. Rys historyczny i pojęcia podstawowe... 19 1.2. Znaczenie biochemii w naukach rolniczych... 22 2.

Bardziej szczegółowo

OZNACZANIE STĘŻENIA GLUKOZY WE KRWI METODĄ ENZYMATYCZNĄ-OXY

OZNACZANIE STĘŻENIA GLUKOZY WE KRWI METODĄ ENZYMATYCZNĄ-OXY OZNACZANIE STĘŻENIA GLUKOZY WE KRWI METODĄ ENZYMATYCZNĄ-OXY ZASADA OZNACZENIA Glukoza pod wpływem oksydazy glukozowej utlenia się do kwasu glukonowego z wytworzeniem nadtlenku wodoru. Nadtlenek wodoru

Bardziej szczegółowo

Oznaczanie mocznika w płynach ustrojowych metodą hydrolizy enzymatycznej

Oznaczanie mocznika w płynach ustrojowych metodą hydrolizy enzymatycznej Oznaczanie mocznika w płynach ustrojowych metodą hydrolizy enzymatycznej Wprowadzenie: Większość lądowych organizmów kręgowych część jonów amonowych NH + 4, produktu rozpadu białek, wykorzystuje w biosyntezie

Bardziej szczegółowo

Metabolizm białek. Ogólny schemat metabolizmu bialek

Metabolizm białek. Ogólny schemat metabolizmu bialek Metabolizm białek Ogólny schemat metabolizmu bialek Trawienie białek i absorpcja aminokwasów w przewodzie pokarmowym w żołądku (niskie ph ~2, rola HCl)- hydratacja, homogenizacja, denaturacja białek i

Bardziej szczegółowo

Oznaczanie aktywności proteolitycznej trypsyny metodą Ansona

Oznaczanie aktywności proteolitycznej trypsyny metodą Ansona Oznaczanie aktywności proteolitycznej trypsyny metodą Ansona Wymagane zagadnienia teoretyczne 1. Enzymy proteolityczne, klasyfikacja, rola biologiczna. 2. Enzymy proteolityczne krwi. 3. Wewnątrzkomórkowa

Bardziej szczegółowo

prof. dr hab. Maciej Ugorski Efekty kształcenia 2 Posiada podstawowe wiadomości z zakresu enzymologii BC_1A_W04

prof. dr hab. Maciej Ugorski Efekty kształcenia 2 Posiada podstawowe wiadomości z zakresu enzymologii BC_1A_W04 BIOCHEMIA (BC) Kod przedmiotu Nazwa przedmiotu Kierunek Poziom studiów Profil Rodzaj przedmiotu Semestr studiów 2 ECTS 5 Formy zajęć Osoba odpowiedzialna za przedmiot Język Wymagania wstępne Skrócony opis

Bardziej szczegółowo

Laboratorium 3 Toksykologia żywności

Laboratorium 3 Toksykologia żywności Laboratorium 3 Toksykologia żywności Literatura zalecana: Orzeł D., Biernat J. (red.) 2012. Wybrane zagadnienia z toksykologii żywności. Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu. Wrocław. Str.:

Bardziej szczegółowo

ĆWICZENIE 5 MECHANIZMY PROMUJĄCE WZROST ROŚLIN

ĆWICZENIE 5 MECHANIZMY PROMUJĄCE WZROST ROŚLIN ĆWICZENIE 5 MECHANIZMY PROMUJĄCE WZROST ROŚLIN CZĘŚĆ TEORETYCZNA Mechanizmy promujące wzrost rośli (PGP) Metody badań PGP CZĘŚĆ PRAKTYCZNA 1. Mechanizmy promujące wzrost roślin. Odczyt. a) Wytwarzanie

Bardziej szczegółowo

Bliskie spotkania z biologią METABOLIZM. dr hab. Joanna Moraczewska, prof. UKW. Instytut Biologii Eksperymetalnej, Zakład Biochemii i Biologii Komórki

Bliskie spotkania z biologią METABOLIZM. dr hab. Joanna Moraczewska, prof. UKW. Instytut Biologii Eksperymetalnej, Zakład Biochemii i Biologii Komórki Bliskie spotkania z biologią METABOLIZM dr hab. Joanna Moraczewska, prof. UKW Instytut Biologii Eksperymetalnej, Zakład Biochemii i Biologii Komórki Metabolizm całokształt przemian biochemicznych i towarzyszących

Bardziej szczegółowo

Spis treści. Od Autora 9. Wprowadzenie 11 CZĘŚĆ A. MOLEKULARNE MENU 13

Spis treści. Od Autora 9. Wprowadzenie 11 CZĘŚĆ A. MOLEKULARNE MENU 13 Spis treści Od Autora 9 Wprowadzenie 11 CZĘŚĆ A. MOLEKULARNE MENU 13 1. Białka 13 1.1. Budowa białek 13 1.1.1. Peptydy 15 1.1.2. Struktury przestrzenne łańcuchów polipeptydowych 16 1.1.2.1. Bioróżnorodność

Bardziej szczegółowo

ĆWICZENIE NR 3 BADANIE MIKROBIOLOGICZNEGO UTLENIENIA AMONIAKU DO AZOTYNÓW ZA POMOCĄ BAKTERII NITROSOMONAS sp.

ĆWICZENIE NR 3 BADANIE MIKROBIOLOGICZNEGO UTLENIENIA AMONIAKU DO AZOTYNÓW ZA POMOCĄ BAKTERII NITROSOMONAS sp. ĆWICZENIE NR 3 BADANIE MIKROBIOLOGICZNEGO UTLENIENIA AMONIAKU DO AZOTYNÓW ZA POMOCĄ BAKTERII NITROSOMONAS sp. Uwaga: Ze względu na laboratoryjny charakter zajęć oraz kontakt z materiałem biologicznym,

Bardziej szczegółowo

Plan działania opracowała Anna Gajos

Plan działania opracowała Anna Gajos Plan działania 15.09-15.10 opracowała Anna Gajos Jakie zagadnienia trzeba opanować z następujących działów: 1. Budowa chemiczna organizmów. 2. Budowa i funkcjonowanie komórki 3. Cykl komórkowy 4. Metabolizm

Bardziej szczegółowo

Spis treści. Fotosynteza. 1 Fotosynteza 1.1 WĘGLOWODANY 2 Cykl Krebsa 2.1 Acetylokoenzym A

Spis treści. Fotosynteza. 1 Fotosynteza 1.1 WĘGLOWODANY 2 Cykl Krebsa 2.1 Acetylokoenzym A Spis treści 1 Fotosynteza 1.1 WĘGLOWODANY 2 Cykl Krebsa 2.1 Acetylokoenzym A Fotosynteza Jest to złożony, wieloetapowy proces redukcji dwutlenku węgla do substancji zawierających atomy węgla na niższych

Bardziej szczegółowo

CHARAKTERYSTYKI SPEKTRALNE UTLENIONEJ I ZREDUKOWANEJ FORMY CYTOCHROMU C

CHARAKTERYSTYKI SPEKTRALNE UTLENIONEJ I ZREDUKOWANEJ FORMY CYTOCHROMU C Ćwiczenie 4 CHARAKTERYSTYKI SPEKTRALNE UTLENIONEJ I ZREDUKOWANEJ FORMY CYTOCHROMU C REAKTYWNE FORMY TLENU DEGRADACJA NUKLEOTYDÓW PURYNOWYCH TWORZENIE ANIONORODNIKA PONADTLENKOWEGO W REAKCJI KATALIZOWANEJ

Bardziej szczegółowo

Oznaczanie SO 2 w powietrzu atmosferycznym

Oznaczanie SO 2 w powietrzu atmosferycznym Ćwiczenie 6 Oznaczanie SO w powietrzu atmosferycznym Dwutlenek siarki bezwodnik kwasu siarkowego jest najbardziej rozpowszechnionym zanieczyszczeniem gazowym, występującym w powietrzu atmosferycznym. Głównym

Bardziej szczegółowo

data ĆWICZENIE 12 BIOCHEMIA MOCZU Doświadczenie 1

data ĆWICZENIE 12 BIOCHEMIA MOCZU Doświadczenie 1 Imię i nazwisko Uzyskane punkty Nr albumu data /3 podpis asystenta ĆWICZENIE 12 BIOCHEMIA MOCZU Doświadczenie 1 Cel: Wyznaczanie klirensu endogennej kreatyniny. Miarą zdolności nerek do usuwania i wydalania

Bardziej szczegółowo

CEL ĆWICZENIA: Zapoznanie się z przykładową procedurą odsalania oczyszczanych preparatów enzymatycznych w procesie klasycznej filtracji żelowej.

CEL ĆWICZENIA: Zapoznanie się z przykładową procedurą odsalania oczyszczanych preparatów enzymatycznych w procesie klasycznej filtracji żelowej. LABORATORIUM 3 Filtracja żelowa preparatu oksydazy polifenolowej (PPO) oczyszczanego w procesie wysalania siarczanem amonu z wykorzystaniem złoża Sephadex G-50 CEL ĆWICZENIA: Zapoznanie się z przykładową

Bardziej szczegółowo

Reakcje charakterystyczne aminokwasów

Reakcje charakterystyczne aminokwasów KATEDRA BIOCHEMII Wydział Biologii i Ochrony Środowiska Reakcje charakterystyczne aminokwasów BIOCHEMIA STRUKTURALNA ĆWICZENIE 1 REAKCJE CHARAKTERYSTYCZNE AMINOKWASÓW A) REAKCJE OGÓLNE ZADANIE 1 WYKRYWANIE

Bardziej szczegółowo

FIZJOLOGIA WYSIŁKU FIZYCZNEGO ENERGETYKA WYSIŁKU, ROLA KRĄŻENIA I UKŁADU ODDECHOWEGO

FIZJOLOGIA WYSIŁKU FIZYCZNEGO ENERGETYKA WYSIŁKU, ROLA KRĄŻENIA I UKŁADU ODDECHOWEGO FIZJOLOGIA WYSIŁKU FIZYCZNEGO ENERGETYKA WYSIŁKU, ROLA KRĄŻENIA I UKŁADU ODDECHOWEGO Dr hab. Andrzej Klusiewicz Zakład Fizjologii Instytutu Sportu Tematyka wykładu obejmuje trzy systemy energetyczne generujące

Bardziej szczegółowo

ĆWICZENIE 1. Aminokwasy

ĆWICZENIE 1. Aminokwasy ĆWICZENIE 1 Aminokwasy Przygotować 5 (lub więcej) 1% roztworów poszczególnych aminokwasów i białka jaja kurzego i dla każdego z nich wykonać wszystkie reakcje charakterystyczne. Reakcja ksantoproteinowa

Bardziej szczegółowo

Analiza jakościowa wybranych aminokwasów

Analiza jakościowa wybranych aminokwasów Ćwiczenie 14 Analiza jakościowa wybranych aminokwasów I. Aminokwasy Aminokwasy są jednostkami strukturalnymi peptydów i białek. W swojej cząsteczce mają co najmniej 2 grupy funkcyjne: grupę aminową NH

Bardziej szczegółowo

ATP. Slajd 1. Slajd 2 1997 rok Nagroda Nobla: P.D. Boyer (USA), J.E. Walker (GB) i J.C. Skou (D) Slajd 3. BIOENERGETYKA KOMÓRKI oddychanie i energia

ATP. Slajd 1. Slajd 2 1997 rok Nagroda Nobla: P.D. Boyer (USA), J.E. Walker (GB) i J.C. Skou (D) Slajd 3. BIOENERGETYKA KOMÓRKI oddychanie i energia Slajd 1 BIOENERGETYKA KOMÓRKI oddychanie i energia WYKŁAD 6. Agnieszka Zembroń-Łacny 1. cukry, lipidy, aminokwasy 2. mitochondria 3. energia chemiczna (ATP) Slajd 2 1997 rok Nagroda Nobla: P.D. Boyer (USA),

Bardziej szczegółowo

Tłuszcze jako główny zapasowy substrat energetyczny

Tłuszcze jako główny zapasowy substrat energetyczny Tłuszcze jako główny zapasowy substrat energetyczny Utlenienie 1 g tłuszczy pozwala na wyprodukowanie 37 kj (9 kcal) energii, podczas gdy utlenienie 1 g węglowodanów lub białek dostarcza tylko 17 kj (4

Bardziej szczegółowo

Węglowodany metody jakościowe oznaczania cukrów reakcja Molisha, Fehlinga, Selivanowa; ilościowe oznaczanie glukozy metodą Somogyi Nelsona

Węglowodany metody jakościowe oznaczania cukrów reakcja Molisha, Fehlinga, Selivanowa; ilościowe oznaczanie glukozy metodą Somogyi Nelsona Ćwiczenie nr 7 Węglowodany metody jakościowe oznaczania cukrów reakcja Molisha, Fehlinga, Selivanowa; ilościowe oznaczanie glukozy metodą Somogyi Nelsona Celem ćwiczenia jest: zapoznanie z metodami jakościowej

Bardziej szczegółowo

POLITECHNIKA GDAŃSKA WYDZIAŁ CHEMICZNY

POLITECHNIKA GDAŃSKA WYDZIAŁ CHEMICZNY POLITECHNIKA GDAŃSKA WYDZIAŁ CHEMICZNY KATEDRA TECHNOLOGII CHEMICZNEJ INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH METODY BIOTECHNOLOGICZNE W OCHRONIE ŚRODOWISKA BADANIE AKTYWNOŚCI DEHYDROGENAZ MIKROORGANIZMÓW

Bardziej szczegółowo

HODOWLA PERIODYCZNA DROBNOUSTROJÓW

HODOWLA PERIODYCZNA DROBNOUSTROJÓW Cel ćwiczenia: Celem ćwiczenia jest porównanie zdolności rozkładu fenolu lub wybranej jego pochodnej przez szczepy Stenotrophomonas maltophilia KB2 i Pseudomonas sp. CF600 w trakcie prowadzenia hodowli

Bardziej szczegółowo

Biochemia Ćwiczenie 4

Biochemia Ćwiczenie 4 Imię i nazwisko Uzyskane punkty Nr albumu data /2 podpis asystenta ĆWICZENIE 4 KINETYKA REAKCJI ENZYMATYCZNYCH Wstęp merytoryczny Peroksydazy są enzymami występującymi powszechne zarówno w świecie roślinnym

Bardziej szczegółowo

Na początek przyjrzymy się więc, jak komórka rośliny produkuje ATP, korzystając z energii światła w fazie jasnej fotosyntezy.

Na początek przyjrzymy się więc, jak komórka rośliny produkuje ATP, korzystając z energii światła w fazie jasnej fotosyntezy. Fotosynteza jako forma biosyntezy Bogactwo molekuł biologicznych przedstawionych w poprzednim rozdziale to efekt ich wytwarzania w komórkach w wyniku różnorodnych powiązanych ze sobą procesów chemicznych.

Bardziej szczegółowo

SPIS TREŚCI OD AUTORÓW... 5

SPIS TREŚCI OD AUTORÓW... 5 SPIS TREŚCI OD AUTORÓW... 5 BIAŁKA 1. Wprowadzenie... 7 2. Aminokwasy jednostki strukturalne białek... 7 2.1. Klasyfikacja aminokwasów... 9 2.1.1. Aminokwasy białkowe i niebiałkowe... 9 2.1.2. Zdolność

Bardziej szczegółowo

Biologiczne oczyszczanie ścieków

Biologiczne oczyszczanie ścieków Biologiczne oczyszczanie ścieków Ściek woda nie nadająca się do użycia do tego samego celu Rodzaje ścieków komunalne, przemysłowe, rolnicze Zużycie wody na jednego mieszkańca l/dobę cele przemysłowe 4700

Bardziej szczegółowo

Mitochondria. siłownie komórki

Mitochondria. siłownie komórki śycie - wymaga nakładu energii źródłem - promienie świetlne - wykorzystywane do fotosyntezy - magazynowanie energii w wiązaniach chemicznych Wszystkie organizmy ( a zwierzęce wyłącznie) pozyskują energię

Bardziej szczegółowo

KINETYKA HYDROLIZY SACHAROZY (REAKCJA ENZYMATYCZNA I CHEMICZNA)

KINETYKA HYDROLIZY SACHAROZY (REAKCJA ENZYMATYCZNA I CHEMICZNA) Ćwiczenie nr 2 KINETYKA HYDROLIZY SACHAROZY (REAKCJA ENZYMATYCZNA I CHEMICZNA) ĆWICZENIE PRAKTYCZNE I. Kinetyka hydrolizy sacharozy reakcja chemiczna Zasada: Sacharoza w środowisku kwaśnym ulega hydrolizie

Bardziej szczegółowo

Krew należy poddać hemolizie, która zachodzi pod wpływem izotonicznego odczynnika Drabkina.

Krew należy poddać hemolizie, która zachodzi pod wpływem izotonicznego odczynnika Drabkina. Imię i nazwisko Uzyskane punkty Nr albumu data /3 podpis asystenta ĆWICZENIE 13 BIOCHEMIA KRWI Doświadczenie 1 Cel: Oznaczenie stężenia Hb metodą cyjanmethemoglobinową. Hemoglobina (Hb) i niektóre jej

Bardziej szczegółowo

Badanie aktywności enzymów z klasy oksydoreduktaz. Oznaczenie witaminy C

Badanie aktywności enzymów z klasy oksydoreduktaz. Oznaczenie witaminy C 1 S t r o n a U W A G A!!!!!! Badanie aktywności enzymów z klasy oksydoreduktaz. Oznaczenie witaminy C A. Badanie aktywności enzymów z klasy oksydoreduktaz. Odczynniki : - 3% roztwór H 2 O 2, - roztwór

Bardziej szczegółowo

Ćwiczenie nr 5 - Reaktywne formy tlenu

Ćwiczenie nr 5 - Reaktywne formy tlenu Ćwiczenie nr 5 - Reaktywne formy tlenu I. Oznaczenie ilościowe glutationu (GSH) metodą Ellmana II. Pomiar całkowitej zdolności antyoksydacyjnej substancji metodą redukcji rodnika DPPH Celem ćwiczeń jest:

Bardziej szczegółowo

OZNACZANIE ZAWARTOŚCI MANGANU W GLEBIE

OZNACZANIE ZAWARTOŚCI MANGANU W GLEBIE OZNACZANIE ZAWARTOŚCI MANGANU W GLEBIE WPROWADZENIE Przyswajalność pierwiastków przez rośliny zależy od procesów zachodzących między fazą stałą i ciekłą gleby oraz korzeniami roślin. Pod względem stopnia

Bardziej szczegółowo

BIOTECHNOLOGIA OGÓLNA

BIOTECHNOLOGIA OGÓLNA BIOTECHNOLOGIA OGÓLNA 1. Wprowadzenie do biotechnologii. Rys historyczny. Zakres i znaczenie nowoczesnej biotechnologii. Opracowanie procesu biotechnologicznego. 7. Produkcja biomasy. Białko mikrobiologiczne.

Bardziej szczegółowo

ĆWICZENIE B: Oznaczenie zawartości chlorków i chromu (VI) w spoiwach mineralnych

ĆWICZENIE B: Oznaczenie zawartości chlorków i chromu (VI) w spoiwach mineralnych ĆWICZEIE B: znaczenie zawartości chlorków i chromu (VI) w spoiwach mineralnych Cel ćwiczenia: Celem ćwiczenia jest oznaczenie zawartości rozpuszczalnego w wodzie chromu (VI) w próbce cementu korzystając

Bardziej szczegółowo

Reakcje charakterystyczne aminokwasów

Reakcje charakterystyczne aminokwasów KATEDRA BIOCHEMII Wydział Biologii i Ochrony Środowiska Reakcje charakterystyczne aminokwasów BIOCHEMIA STRUKTURALNA ĆWICZENIE 1 REAKCJE CHARAKTERYSTYCZNE AMINOKWASÓW A) REAKCJE OGÓLNE ZADANIE 1 WYKRYWANIE

Bardziej szczegółowo

Wykrywanie obecności enzymów.

Wykrywanie obecności enzymów. ĆWICZENIE 5 Wykrywanie obecności enzymów. Prowadzący: mgr inż. Jadwiga ZAWISZA Miejsce ćwiczenia: sala 104 CEL ĆWICZENIA Celem ćwiczenia jest praktyczne poznanie enzymów z klasy oksydoreduktaz. PODSTAWY

Bardziej szczegółowo

WPŁYW SUBSTANCJI TOWARZYSZĄCYCH NA ROZPUSZCZALNOŚĆ OSADÓW

WPŁYW SUBSTANCJI TOWARZYSZĄCYCH NA ROZPUSZCZALNOŚĆ OSADÓW WPŁYW SUBSTANCJI TOWARZYSZĄCYCH NA ROZPUSZCZALNOŚĆ OSADÓW Wstęp W przypadku trudno rozpuszczalnej soli, mimo osiągnięcia stanu nasycenia, jej stężenie w roztworze jest bardzo małe i przyjmuje się, że ta

Bardziej szczegółowo

BIOCHEMIA. 1. Informacje o przedmiocie (zajęciach), jednostce koordynującej przedmiot, osobie prowadzącej

BIOCHEMIA. 1. Informacje o przedmiocie (zajęciach), jednostce koordynującej przedmiot, osobie prowadzącej BIOCHEMIA 1. Informacje o przedmiocie (zajęciach), jednostce koordynującej przedmiot, osobie prowadzącej 1.1. Nazwa przedmiotu (zajęć): Biochemia 1.2. Forma przedmiotu: Wykłady, ćwiczenia 1.3. Przedmiot

Bardziej szczegółowo

METABOLIZM. Zadanie 1. (3 pkt). Uzupełnij tabelę, wpisując w wolne kratki odpowiednio produkt oddychania tlenowego i produkty fermentacji alkoholowej.

METABOLIZM. Zadanie 1. (3 pkt). Uzupełnij tabelę, wpisując w wolne kratki odpowiednio produkt oddychania tlenowego i produkty fermentacji alkoholowej. Zadanie 1. (3 pkt). Uzupełnij tabelę, wpisując w wolne kratki odpowiednio produkt oddychania tlenowego i produkty fermentacji alkoholowej. Zadanie 3. (3 pkt). Schemat mechanizmu otwierania aparatu szparkowego.

Bardziej szczegółowo

Oznaczenie aktywności aminotransferazy alaninowej.

Oznaczenie aktywności aminotransferazy alaninowej. Oznaczenie aktywności aminotransferazy alaninowej. Zajęcia 3 godzinne w parach, zajęcia 4 godzinne indywidualnie. Cel ćwiczenia Ćwiczenie ma na celu zapoznanie się z metodą oznaczenia aktywności aminotransferazy

Bardziej szczegółowo

6. Wykorzystanie tyrozynazy otrzymywanej z pieczarki dwuzarodnikowej (Agaricus Bisporus) do produkcji L-DOPA

6. Wykorzystanie tyrozynazy otrzymywanej z pieczarki dwuzarodnikowej (Agaricus Bisporus) do produkcji L-DOPA 6. Wykorzystanie tyrozynazy otrzymywanej z pieczarki dwuzarodnikowej (Agaricus Bisporus) do produkcji L-DOPA L-DOPA (L-3,4-dihydroksyfenyloalanina) jest naturalnym prekursorem dopaminy, jednego z najważniejszych

Bardziej szczegółowo

BADANIE WŁAŚCIWOŚCI FIZYKOCHEMICZNYCH AMINOKWASÓW

BADANIE WŁAŚCIWOŚCI FIZYKOCHEMICZNYCH AMINOKWASÓW BADANIE WŁAŚIWŚI FIZYKEMIZNY AMINKWASÓW IDENTYFIKAJA AMINKWASÓW BIAŁKA, JAK I WLNE AMINKWASY REAGUJĄ ZA PŚREDNITWEM GRUP: -N 2 I Z NINYDRYNĄ, DINITRFLURBENZENEM I KWASEM AZTWYM (III). WYSTĘPWANIE W STRUKTURZE

Bardziej szczegółowo

OCENA MELASU JAKO SUROWCA DO PRODUKCJI ETANOLU I DROŻDŻY

OCENA MELASU JAKO SUROWCA DO PRODUKCJI ETANOLU I DROŻDŻY OCENA MELASU JAKO SUROWCA DO PRODUKCJI ETANOLU I DROŻDŻY 1. Cel ćwiczenia Celem ćwiczenia jest oznaczenie wybranych cech i składników melasu, porównanie ich z normą i ocena przydatności danej próby melasu

Bardziej szczegółowo

Oznaczanie aktywności - i β- amylazy słodu metodą kolorymetryczną

Oznaczanie aktywności - i β- amylazy słodu metodą kolorymetryczną KATEDRA BIOCHEMII Wydział Biologii i Ochrony Środowiska Oznaczanie aktywności - i β- amylazy słodu metodą kolorymetryczną ĆWICZENIE 5 OZNACZANIE AKTYWNOŚCI -AMYLAZY SŁODU METODĄ KOLORYMETRYCZNĄ Enzymy

Bardziej szczegółowo

(węglowodanów i tłuszczów) Podstawowym produktem (nośnikiem energii) - ATP

(węglowodanów i tłuszczów) Podstawowym produktem (nośnikiem energii) - ATP śycie - wymaga nakładu energii źródłem - promienie świetlne - wykorzystywane do fotosyntezy - magazynowanie energii w wiązaniach chemicznych Wszystkie organizmy (a zwierzęce wyłącznie) pozyskują energię

Bardziej szczegółowo

Profil metaboliczny róŝnych organów ciała

Profil metaboliczny róŝnych organów ciała Profil metaboliczny róŝnych organów ciała Uwaga: tkanka tłuszczowa (adipose tissue) NIE wykorzystuje glicerolu do biosyntezy triacylogliceroli Endo-, para-, i autokrynna droga przekazu informacji biologicznej.

Bardziej szczegółowo

Ilościowe oznaczenie glikogenu oraz badanie niektórych jego właściwości

Ilościowe oznaczenie glikogenu oraz badanie niektórych jego właściwości Ilościowe oznaczenie glikogenu oraz badanie niektórych jego właściwości Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawową wiedzą dotyczącą budowy, funkcji i właściwości glikogenu jak również

Bardziej szczegółowo

Powodzenia!!! WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII III ETAP. Termin: r. Czas pracy: 90 minut. Liczba otrzymanych punktów

Powodzenia!!! WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII III ETAP. Termin: r. Czas pracy: 90 minut. Liczba otrzymanych punktów KOD Ucznia WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII III ETAP Termin: 21.03.2006r. Czas pracy: 90 minut Numer zadania Liczba możliwych punktów 1 6 2 3 3 6 4 7 5 7 6 6 7 6 8 3 9 6 10 8 Razem 58 Liczba otrzymanych

Bardziej szczegółowo

Mechanizmy działania i regulacji enzymów

Mechanizmy działania i regulacji enzymów Mechanizmy działania i regulacji enzymów Enzymy: są katalizatorami, które zmieniają szybkość reakcji, same nie ulegając zmianie są wysoce specyficzne ich aktywność może być regulowana m.in. przez modyfikacje

Bardziej szczegółowo

Protokół: Reakcje charakterystyczne cukrowców

Protokół: Reakcje charakterystyczne cukrowców Protokół: Reakcje charakterystyczne cukrowców 1. Rekcja na obecność cukrów: próba Molischa z -naftolem Jest to najbardziej ogólna reakcja na cukrowce, tak wolne jak i związane. Ujemny jej wynik wyklucza

Bardziej szczegółowo

PODSTAWOWE PROCESY METABOLICZNE ORGANIZMÓW

PODSTAWOWE PROCESY METABOLICZNE ORGANIZMÓW PODSTAWOWE PROCESY METABOLICZNE ORGANIZMÓW METABOLIZM (gr. metabole = przemiana) - przemiana materii - całość procesów biochemicznych zachodzących w żywych organizmach, warunkujących ich wzrost i funkcjonowanie.

Bardziej szczegółowo

Biotechnologia w produkcji piwa. Wykłady Samodzielna Katedra Biotechnologii i Biologii Molekularnej dr Sławomir Wierzba

Biotechnologia w produkcji piwa. Wykłady Samodzielna Katedra Biotechnologii i Biologii Molekularnej dr Sławomir Wierzba Biotechnologia w produkcji piwa Wykłady Samodzielna Katedra Biotechnologii i Biologii Molekularnej dr Sławomir Wierzba Literatura Wolfgang Kunze - Technologia Piwa i Słodu, Piwochmiel, 1999 r. Treść wykładów

Bardziej szczegółowo

CHEMIA ŚRODKÓW BIOAKTYWNYCH I KOSMETYKÓW PRACOWNIA CHEMII ANALITYCZNEJ. Ćwiczenie 7

CHEMIA ŚRODKÓW BIOAKTYWNYCH I KOSMETYKÓW PRACOWNIA CHEMII ANALITYCZNEJ. Ćwiczenie 7 CHEMIA ŚRODKÓW BIOAKTYWNYCH I KOSMETYKÓW PRACOWNIA CHEMII ANALITYCZNEJ Ćwiczenie 7 Wykorzystanie metod jodometrycznych do miedzi (II) oraz substancji biologicznie aktywnych kwas askorbinowy, woda utleniona.

Bardziej szczegółowo

WPŁYW SUBSTANCJI TOWARZYSZĄCYCH NA ROZPUSZCZALNOŚĆ OSADÓW

WPŁYW SUBSTANCJI TOWARZYSZĄCYCH NA ROZPUSZCZALNOŚĆ OSADÓW WPŁYW SUBSTANCJI TOWARZYSZĄCYCH NA ROZPUSZCZALNOŚĆ OSADÓW Wstęp Mianem rozpuszczalności określamy maksymalną ilość danej substancji (w gramach lub molach), jaką w danej temperaturze można rozpuścić w określonej

Bardziej szczegółowo

KINETYKA INWERSJI SACHAROZY

KINETYKA INWERSJI SACHAROZY Dorota Warmińska, Maciej Śmiechowski Katedra Chemii Fizycznej, Wydział Chemiczny, Politechnika Gdańska KINETYKA INWERSJI SACHAROZY Wstęp teoretyczny Kataliza kwasowo-zasadowa Kataliza kwasowo-zasadowa

Bardziej szczegółowo

Oznaczanie dekstranu w sokach cukrowniczych

Oznaczanie dekstranu w sokach cukrowniczych Oznaczanie dekstranu w sokach cukrowniczych mgr inż. Aneta Antczak Instytut Chemicznej Technologii Żywności Specjalistyczne Laboratorium Analityki Cukrowniczej Instytut Chemicznej Technologii Żywności

Bardziej szczegółowo

Temat ćwiczenia: Techniki stosowane w badaniach toksyczności in vitro

Temat ćwiczenia: Techniki stosowane w badaniach toksyczności in vitro Temat ćwiczenia: Techniki stosowane w badaniach toksyczności in vitro Miarą aktywności cytotoksycznej badanej substancji jest określenie stężenia hamującego, IC 50 (ang. inhibitory concentration), dla

Bardziej szczegółowo

BIOENERGETYKA cz. I METABOLIZM WĘGLOWODANÓW I LIPIDÓW. dr hab. prof. AWF Agnieszka Zembroń-Łacny

BIOENERGETYKA cz. I METABOLIZM WĘGLOWODANÓW I LIPIDÓW. dr hab. prof. AWF Agnieszka Zembroń-Łacny BIOENERGETYKA cz. I METABOLIZM WĘGLOWODANÓW I LIPIDÓW dr hab. prof. AWF Agnieszka Zembroń-Łacny METABOLIZM/ENERGIA WĘGLOWODANY i LIPIDY WYKŁAD 6 Trawienie i wchłanianie WĘGLOWODANY TŁUSZCZE BIAŁKA Katabolizm

Bardziej szczegółowo

a) hydroliza octanu n-butylu b) hydroliza maślanu p-nitrofenylu 4/7 O O PLE bufor ph 7,20 OH H 2 aceton O PLE O N O N O bufor ph 7,20 acetonitryl

a) hydroliza octanu n-butylu b) hydroliza maślanu p-nitrofenylu 4/7 O O PLE bufor ph 7,20 OH H 2 aceton O PLE O N O N O bufor ph 7,20 acetonitryl znaczanie aktywności właściwej PLE W reakcjach biotransformacji najczęściej wykorzystuje się preparaty enzymatyczne będące mieszaninami różnych białek i substancji balastowych. Izolacja enzymu w postaci

Bardziej szczegółowo

ĆWICZENIE 2. Usuwanie chromu (VI) z zastosowaniem wymieniaczy jonowych

ĆWICZENIE 2. Usuwanie chromu (VI) z zastosowaniem wymieniaczy jonowych ĆWICZENIE 2 Usuwanie chromu (VI) z zastosowaniem wymieniaczy jonowych Część doświadczalna 1. Metody jonowymienne Do usuwania chromu (VI) można stosować między innymi wymieniacze jonowe. W wyniku przepuszczania

Bardziej szczegółowo

II. ODŻELAZIANIE LITERATURA. Zakres wiadomości obowiązujących do zaliczenia przed przystąpieniem do wykonania. ćwiczenia:

II. ODŻELAZIANIE LITERATURA. Zakres wiadomości obowiązujących do zaliczenia przed przystąpieniem do wykonania. ćwiczenia: II. ODŻELAZIANIE LITERATURA 1. Akty prawne: Aktualne rozporządzenie dotyczące jakości wody do picia i na potrzeby gospodarcze. 2. Chojnacki A.: Technologia wody i ścieków. PWN, Warszawa 1972. 3. Hermanowicz

Bardziej szczegółowo

POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI. Ćwiczenie 3 ANALIZA TRANSPORTU SUBSTANCJI NISKOCZĄSTECZKOWYCH PRZEZ

POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI. Ćwiczenie 3 ANALIZA TRANSPORTU SUBSTANCJI NISKOCZĄSTECZKOWYCH PRZEZ POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI Ćwiczenie 3 ANALIZA TRANSPORTU SUBSTANCJI NISKOCZĄSTECZKOWYCH PRZEZ BŁONĘ KOMÓRKOWĄ I. WSTĘP TEORETYCZNY Każda komórka, zarówno roślinna,

Bardziej szczegółowo