Prasowanie proszków ceramicznych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Prasowanie proszków ceramicznych"

Transkrypt

1 Dr inż. Paweł Wiśniewski, Dr hab. inż. Mikołaj Szafran Wydział Chemiczny Politechniki Warszawskiej ul. Noakowskiego 3, Warszawa Prasowanie proszków ceramicznych The paper presents fundamental information about die pressing method of ceramics powders. Disadvantages of dry pressing are friction forces between granule-granule and granule-internal matrix part. This method is very popular in ceramic industry, because is simple, economic and permits to obtain samples with precise and symmetrical shapes. In article the binders effect and thickening ability method of ceramic granulates are also presented. Wprowadzenie Formowanie przez prasowanie można zdefiniować jako zagęszczanie ziarnistego granulatu, proszku lub innego materiału ceramicznego, bądź metalicznego za pomocą działania jednokierunkowych lub wielokierunkowych sił zewnętrznych w sztywnych formach, najczęściej stalowych [1]. Metoda ta pozwala na uzyskanie stopnia zagęszczenia kształtek (z reguły do 60% gęstości teoretycznej), charakteryzujących się dokładnymi wymiarami i symetrycznymi kształtami przy odpowiedniej wytrzymałości mechanicznej w stanie surowym. Ponadto jest to metoda ekonomiczna ze względu na dużą wydajność i stosunkowo niewielką ilość odpadów w trakcie realizacji procesu. Podczas prasowania występuje wiele zjawisk fizykochemicznych, których mechanizmy nie są jeszcze w pełni poznane, a które w zależności od warunków prowadzenia procesu wpływają na stopień zagęszczenia wyprasek [2]. Jednym z tych powszechnie występujących zjawisk są znaczne siły tarcia wpływające na małe zagęszczenie kształtek. Dlatego też w celu zminimalizowania występowania tarcia w układzie, zwiększenia gęstości i wytrzymałości mechanicznej wyprasek niezbędne jest zastosowanie odpowiednich rozwiązań. Formowanie metodą prasowanie Formowanie jest jednym z najważniejszych etapów wytwarzania wyrobów ceramicznych i zależy ono od wielu czynników tj. rodzaj materiału i wyrobu, kształt i wielkość wyrobu, wilgotność masy ceramicznej, aspekty ekonomiczne itp. W celu uzyskania dużej gęstości wyrobu po procesie spiekania, konieczne jest dobranie odpowiedniego ciśnienia prasowania, zapewniającego stosunkowo jednorodny rozkład gęstości w całej objętości kształtki. Należy zwrócić uwagę na rozkład porów w wyprasce, który powinien być rozkładem jednomodalny z niewielkim rozrzutem wielkości porów. Proszki ceramiczne są przeważnie aglomeratami i bardzo często obserwuje się rozkład bimodalny. Dlatego też, aby zmienić niekorzystny rozkład dwumodalny stosuje się duże ciśnienia, które powodują niszczenie aglomeratów. Prasowanie można podzielić na następujące etapy: a. Początkowy etap prasowania, w którym pod wpływem działania ciśnienia zewnętrznego następuje przemieszczanie się ziaren i tym samym zwiększenie ilości kontaktów między nimi, co powoduje wzrost gęstości i jednorodności wypraski. Zastosowanie dużych ciśnień może spowodować zerwanie słabych wiązań pomiędzy ziarnami i niszczenie granul i aglomeratów, w wyniku czego kształtka uzyskuje spójność.

2 b. W drugim etapie następuje zahamowanie zagęszczenia i dalsze zwiększanie ciśnienia nie powoduje dalszego zagęszczenia proszku osiągając stan zbliżony do maksymalnego zagęszczenia proszków ceramicznych. Rzeczywiste proszki ceramiczne zagęszczają się na ogół do 55-65% gęstości teoretycznej. c. Po przekroczeniu granicy plastyczności materiału proszku następuje kruszenie się ziaren [3]. Prasowaniu poddaje się masy ziarniste, których wilgotność z reguły nie przekracza 15%, w związku z tym można dokonać podziału na prasowanie na sucho oraz prasowanie na mokro. W przypadku prasowania na sucho stosuje się proszki, których zawartość wilgoci jest nie większa niż 8%, dlatego niezbędne jest dokładne dozowanie granulatu. W technice tej występują stosunkowo duże siły tarcia, dlatego stosuje się ciśnienia prasowania większe niż 30MPa i może być ono realizowane jednostronnie, dwustronnie lub izostatycznie (ciśnienie wywierane jest na granulat ze wszystkich stron jednocześnie). Z kolei w prasowaniu na mokro wilgotność masy ceramicznej waha się w przedziale 8-15%, przez co metoda jest w pewnym sensie jedną z technik formowania plastycznego. Ponieważ występujące w układzie siły tarcia są na ogół mniejsze niż w przypadku prasowania na sucho stosuje się mniejsze ciśnienia prasowania uwarunkowane między innymi wilgotnością masy. W tym przypadku przeważnie stosuje się prasowanie jednostronne. Prasowanie jednoosiowe Prasowanie odbywa się w sztywnych formach składających się z matrycy i stempli, które wywierają nacisk na granulat przekształcając go w kształtkę. W zależności od sposobu przykładania siły można rozróżnić prasowanie jednostronne (gdy siła prasująca przykładana jest z jednej strony) i dwustronne (nacisk odbywa się z obu stron). W przypadku prasowania jednoosiowego praktycznie stosuje się ciśnienia nieprzekraczające 350 MPa. Zjawisko występowania gradientu gęstości wzdłuż wyprasowanej kształtki związane jest ze zjawiskiem tarcia występującym pomiędzy ściankami matrycy, a ziarnami proszku. Ogólne równanie opisujące bilans sił prasujących jest następujące: gdzie: P c siła przykładana do górnego stempla, P d siła przeniesiona na dolny stempel, P t siła tarcia. P c P P (1) d Im dalej od powierzchni prasowania tym gęstość wypraski jest mniejsza. Dlatego też prasowanie dwustronne jest metodą bardziej efektywną. Porównanie rozkładu gęstości dla metod prasowania jedno- i dwustronnego przedstawiono na Rys.1. Niedostatki prasowania można zredukować poprzez dobór odpowiednich materiałów na formy do prasowania (zapewniających dużą gładkość ścianek wewnętrznych), zastosowanie odpowiednich parametrów prasowania (ciśnienie prasowania, szybkość prasowania, itd.) oraz poprzez optymalizację właściwości reologicznych formowanych proszków ceramicznych [5]. t

3 Rys. 1. Schemat prasowania wraz z uwzględnieniem rozkładu ciśnienia i gęstości względnej: (A) jednostronnego i (B)dwustronnego [4]. Zmianę właściwości reologicznych proszków granulatów ceramicznych można osiągnąć przez zastosowanie środków poślizgowych (np. stearynian cynku), które dodawane są w oddzielnym etapie technologicznym, co wydłuża czas trwania procesu. Inną metodą jest zastosowanie spoiw polimerowych o ściśle określonej budowie chemicznej [tj. dyspersje poli(akrylowo-styrenowe), poliuretanowe itd.] i w odpowiedniej ilości [6,7]. W przemyśle często stosuje się oba rozwiązania, co powoduje zwiększenie ilości substancji organicznych w masie, wzrost kosztów procesu i wydzielanie się stosunkowo dużych ilości gazów podczas spiekania, co może spowodować występowanie defektów w gotowych wyrobach. Stopień zagęszczenia wyprasek zależy ponadto od stosunku ich wysokości (h) do średnicy (φ). Dlatego zarówno w prasowaniu jedno- jak i dwustronnym stosunek h/φ jest mniejsza niż 3, a kształtki jednorodne uzyskujemy, gdy h/φ < 0,8, co jest sporym ograniczeniem tej metody. Zjawiska zachodzące po ustąpieniu nacisku podczas procesu prasowania Ważnym problemem technologicznym jest usunięcie wypraski z formy. Usunięcie odbywa się przez wypychanie jej przez jeden ze stempli w kierunku przeciwnym do kierunku prasownia. Zarówno forma jak i parametry prasowania powinny być dobrane tak, by siła wypychania wypraski była na tyle duża, by pokonać siły adhezji wyrobu do ścianek wewnętrznych formy, a zarazem na tyle mała by nie przekroczyć 0,2 0,4 siły prasowania, co mogłoby spowodować zniszczenie kształtek. Dzięki zastosowaniu spoiw polimerowych wypraska powinna mieć odpowiednią wytrzymałość mechaniczną uniemożliwiającą jej zniszczenie na tym i kolejnych etapach procesu technologicznego (np. transport). Na rysunku 2 przedstawiono zależność wytrzymałości kształtek z Al 2 O 3 na rozciąganie w zależności od zastosowanych spoiw polimerowych. Z rysunku widać, że w zależności od rodzaju (budowy chemicznej) zastosowanych polimerów wytrzymałość mechaniczna surowych kształtek wyraźnie się różni. Możliwe jest

4 otrzymanie kształtek charakteryzujących się zarówno małą, jak i bardzo dużą wytrzymałością mechaniczną przed spiekaniem. Odpowiadają za to fragmenty hydrofilowe i hydrofobowe w łańcuchu polimerów. Zagadnienie to zostanie dokładniej omówione w kolejnych artykułach. PAA 0,23 Spoiwo PU PAS 0,13 0,65 PVA 0,22 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 Wr [MPa] Rys 2. Wpływ budowy chemicznej spoiw polimerowych na wytrzymałość na rozciąganie kształtek z Al 2 O 3. Dodatek spoiwa wynosił 0,5% w stosunku do proszku. PVA roztwór poli(alkoholu winylowego) o ciężarze cząsteczkowym 88000, PAS spoiwo poli(akrylowostyrenowe), PU - spoiwo poliuretanowe, PAA spoiwo poli(akrylowo-allilowe). Zmiany rozmiarów kształtki po ustąpieniu ciśnienia i wyjęciu z formy, nazywamy rozszerzalnością sprężystą. Wielkość rozszerzalności w kierunku przykładanego nacisku może zmieniać się w granicach 1-10%. Wielkość tych zmian uwarunkowana jest: - składem masy; - sposobem prasowania; - kształtem wyrobu. Masy ceramiczne z materiałów nieplastycznych wykazują stosunkowo niewielką rozszerzalność sprężystą. Przyczynami występowania tego typu zmian są najczęściej: - odkształcenia sprężyste ściskania, ścinania i zgniatania ziaren; - zjawiska związane z przemieszczaniem się cieczy; - zmiany ciśnienia zaprasowanego powietrza; - objętościowa sprężystość fazy ciekłej. Występowanie zjawiska rozszerzalności sprężystej pociąga za sobą zmniejszenie gęstości wypraski, występowanie spękań oraz rozwarstwień. Rysunek 3 obrazuje rodzaj i rozkład naprężeń występujące w prasowanej kształtce. Rys.3. Rozkład naprężeń w prasowanej kształtce [8]. a) końcowy etap prasowania b) po ustąpieniu nacisku.

5 Wpływ spoiwa na właściwości reologiczne otrzymanych granulatów ceramicznych Reologia jest dziedziną nauki, zajmującą się badaniem odkształceń i deformacji występujących w badanym materiale, pod wpływem przyłożonej siły zewnętrznej. W obszarze zagadnień związanych z reologią leżą również procesy i zjawiska zachodzące podczas formowania kształtek z nieplastycznych proszków ceramicznych. Spoiwo ma bezpośredni wpływ na właściwości reologiczne badanych granulatów. Związane jest to z tym, iż spoiwo jako jeden ze składników masy ceramicznej ma wpływ na następujące właściwości proszku ceramicznego: a. gęstość nasypową b. tarcie proszku o ścianki formy c. podatność na sprasowanie d. spoistość i wytrzymałość kształtek po prasowaniu. Gęstość nasypowa jest jednym z parametrów, który pozwala ocenić wpływ rodzaju i ilości dodanego spoiwa na własności reologiczne otrzymanego granulatu. Rodzaj zastosowanego spoiwa ma wpływ na oddziaływania występujące na granicy faz spoiwo proszek ceramiczny i wpływają one na kształt otrzymanych granul, podobnie jak metoda otrzymywania granulatu. Proszki ceramiczne posiadają ciągły rozkład wielkości oraz nieregularne kształty ziaren, przez co powinny mieć zdolność do stosunkowo dużego stopnia zagęszczenia, ponieważ pojedyncze ziarna mają możliwość upakowania się i zorientowania w pomiędzy innymi ziarnami, bądź aglomeratami. Z drugiej jednak strony zwiększają się trudności w ich wzajemnym przemieszaniu, z uwagi na chropowatość ich powierzchni [1]. Gęstość nasypowa w najprostszy sposób może być wyznaczona w oparciu o wyniki pomiarów wolumetrycznych z wykorzystaniem zależności: gdzie: d nas m V m masa proszku V n objętość luźno nasypanego proszku.. (2) n Podstawowym celem prasowania jest uzyskanie kształtki charakteryzującej się ściśle określonymi parametrami z sypkiego granulatu. Granulat składa się z ziaren proszku ceramicznego połączonych spoiwem organicznym. Wytrzymałość i gęstość wypraski w dużym stopniu zależy od wzajemnych oddziaływań, jakie powstają na granicy faz ziarno spoiwo. Najczęściej słabym ogniwem w surowych materiałach są mostki ze spoiw utworzone pomiędzy ziarnami proszku. Wytrzymałość danego elementu zależy od ilości i budowy chemicznej spoiw organicznych. Przy założeniu, iż spoiwo łączy dwa lub więcej ziaren spojeniem o przekroju poprzecznym A, to siła, przy której dojdzie do pęknięcia dana jest zależnością: gdzie: F S A (3) S o - siła kohezji lub adhezji spoiwa. o

6 Siła S o jest wielkością zależną od umiejscowienia defektu, który może występować na powierzchni spoiwo cząstka, bądź też może być umiejscowiony w objętości spoiwa tworzącego mostek. Badanie właściwości reologicznych proszku ceramicznego wyznaczenie współczynnika P oc Trudność z określeniem rzeczywistego ciśnienia prasowania w sztywnych formach współczesnymi metodami skłoniła do opracowania nowych teorii i metod eksperymentalnych. Jedną z nich jest metoda oparta na hipotezie, że na całkowite ciśnienie prasowania wpływają właściwości, wymiary kształtki i zewnętrzne tarcie, po czym założono, że wymiary kształtki wpływają na tarcie zewnętrzne [9]. Związek między pełnym a rzeczywistym ciśnieniem przy jednostronnym prasowaniu ma postać: gdzie: P= P oc + xp (h/r) (4) P i P oc są to odpowiednio boczne i rzeczywiste ciśnienia zależne od średniej gęstości; P ciśnienie prasowania; x współczynnik tarcia; h wysokość kształtki; r promień kształtki. Zalecana przez autorów metodyka wyznaczenia rzeczywistego ciśnienia prasowania opiera się na spełnieniu zależności 4 i pozwala na znalezienie ciśnienia rzeczywistego odpowiadającego założonej gęstości d. Metoda polega na sprasowaniu w jednej formie dwóch próbek o jednakowej gęstości d i dwóch różnych wysokościach h 1 i h 2 przy czym początkowe wysokości są równe: h 1p = h 1 (d/d r ) (5) h 2p = h 2 (d/d r ) gdzie: d r jest gęstością po utrząśnięciu proszku Kształtki otrzymuje się przez jednostronne prasowanie. Dla każdej z nich ustala się robocze ciśnienie prasowania ( P 1 i P 2 ) odpowiadające tej gęstości. Masy naważek określone są wzorami: M 1 = d R 2 h 1 (6) M 1 = d R 2 h 1 Po uwzględnieniu wzorów 6 w zależności 4 i wyeliminowaniu członu xp ( R 3 d) -1 dla każdej kształtki otrzymujemy zależność 7: P OC M 2 P1 M 1 P2 [ MPa] (7) M M 2 1

7 gdzie: P oc - rzeczywiste ciśnienie niezbędne do sprasowania kształtki o założonej gęstości M 1 i M 2 naważki proszku ceramicznego, P 1 ciśnienie prasowania proszku z naważki M 1 i wysokości h 1, P 2 ciśnienie prasowania proszku z naważki M 2 i wysokości h 2. Badanie właściwości reologicznych proszku ceramicznego dokonano wyznaczając współczynnik P oc będący miarą zdolności granulatu do zagęszczania pod wpływem przyłożonego ciśnienia zewnętrznego. Oznaczenie tej wielkości polegało na sprasowaniu na prasie mechanicznej dwóch kształtek o jednakowej średnicy =20mm i wysokościach h 1 =5mm, h 2 =15mm. Prasowanie odbywało się w formie węglikowej aż do uzyskania założonej wcześniej wartości gęstości d=2,6 g/cm³. Do tego badania zastosowano granulat o wielkości cząstek 0,2 0,5 mm. Dla każdej z badanych próbek rejestrowano ciśnienia P 1 i P 2, natomiast rzeczywiste ciśnienie wydatkowane na sprasowanie proszku do określonej gęstości obliczano z zależności 7. Przykładowe wyniki badania zdolności granulatów do zagęszczania z zastosowaniem spoiw polimerowych przedstawiono na rysunku 4. PAA 23 Spoiwo PU PAS PVA Poc [MPa] Rys. 4. Wpływ budowy chemicznej spoiw polimerowych na zdolność granulatów z ich udziałem do zagęszczenia. Dodatek spoiwa wynosił 0,5% w stosunku do proszku. (oznaczenia jak w rys. 2) Im mniejsza jest wartość współczynnika P oc, tym zdolność granulatów do zagęszczenia jest większa, co jest korzystne i oznacza, że do otrzymania kształtek o założonej gęstości wystarczy mniejsze ciśnienie prasowania. W zależności od zastosowanego spoiwa zdolność do zagęszczania jest różna i zależy od budowy chemicznej zastosowanych spoiw polimerowych. Projektowanie spoiw i tworzyw ceramicznych - podsumowanie Jednym z kierunków prowadzonych obecnie badań w formowaniu tworzyw ceramicznych jest projektowanie budowy chemicznej dodatków polimerowych. Dotyczy to głównie upłynniaczy i spoiw polimerowych. Spoiwa powinny posiadać w swojej strukturze odpowiednie grupy funkcyjne nadające elastyczność polimerowi i przez to zapewnić

8 odpowiednią zwilżalność i adhezję do ziaren proszku ceramicznego. Jak to pokazano na rysunkach 2 i 4 mają one duży wpływ zarówno na właściwości granulatów oraz kształtek w stanie surowym. Szerzej zagadnienia te zostaną omówione w kolejnych publikacjach dotyczących zastosowania spoiw polimerowych w procesach formowania tworzyw ceramicznych w Szkle i Ceramice. Innym kierunkiem prac są badania nad zwiększeniem zagęszczenia poprzez komputerowe projektowanie tworzyw ceramicznych [10]. Prasowanie na sucho znajduje ekonomiczne zastosowanie do wytwarzania wyrobów o maksymalnej powierzchni do 80 cm 2 i symetrycznych kształtach tj. walce, pierścienie, prostopadłościany itp. w porównaniu z prasowaniem na mokro. Odróżnia się od niego uzyskiwaniem większej dokładności wymiarowej, ze względu na mniejszy skurcz, krótszy czas usuwania wilgoci, większą wydajność i mniejsze wykorzystanie przestrzeni roboczej. Często brak informacji na temat struktury wewnętrznej formowanych elementów nie pozwala na pełne zrozumienie zjawisk zachodzących w czasie prasowania. Występowanie defektów strukturalnych oraz gradientu gęstości może być przyczyną spadku wytrzymałości mechanicznej, lub też występowaniem uprzywilejowanego skurczu w danym kierunku podczas spiekania. Z tych właśnie powodów prowadzi się badania nad opracowaniem nowych metod pozwalających na ocenę rozkładu gęstości oraz występowaniem defektów strukturalnych. Obecnie do wyznaczania gradientu gęstości stosowanych jest kilka metod tj.: - Ultradźwiękowa dwuwymiarowa tomografia promieniowania X - NMR - 3D-XRCT Metoda 3D-XRCT (three-dimensional X-ray-computed tomography) zyskała jednak w ostatnich latach sporą popularność. Pozwala ona na dostarczenie informacji o lokalnym rozkładzie gęstości w kształtce w bardzo krótkim czasie, z bardzo dużą dokładnością w oparciu o badania rentgenowskie. Ponadto należy ona do metod nieniszczących [11,12]. Zminimalizowanie gradientu gęstości podczas prasowania wpłynie na poprawę samego procesu prasowania, a co za tym idzie, polepszenie właściwości tworzyw ceramicznych. Ilościowa metoda XRCT odgrywa znaczącą rolę w poznawaniu zasadniczego postępu ograniczania niejednorodności [13]. Praca naukowa finansowana ze środków Ministerstwa Nauki i Informatyzacji jako projekt badawczy nr 3 T09B Literatura 1. S. Gąsiorek: Makroskopowe przejawy procesu zagęszczania i scalania proszków ferrytowych przez prasowanie i spiekanie, Ceramika z. 40, Wyd. AGH, Kraków P. Izak, J. Lis, S. Serkowski: Model zagęszczania granulowanych proszków ceramicznych, Szkło i Ceramika 5/ J. Lis, R. Pampuch: Spiekanie, Wyd. AGH, Kraków D. Jach: Badania nad zastosowaniem wodorozcieńczalnych spoiw polimerowych w procesie prasowania Al 2 O 3, Politechnika Warszawska, Warszawa M. Szafran, G. Rokicki. P. Wiśniewski: Wodorozcieńczalne spoiwa polimerowe w procesie prasowania proszków ceramicznych, Ceramika z. 60, Wyd. AGH, Kraków 2000.

9 6. M. Szafran P. Wiśniewski, G. Rokicki, L. Łukasik: Copolymers of vinyl acetate and allyl ethers in die pressing of alumina, Journal of Thermal Analysis And Calorimetry, vol 66, P. Wiśniewski, M. Szafran, G. Rokicki, M. Molak, D. Jach: Badania nad zastosowaniem nowych dyspersji akrylowo-allilowych w prasowania Al 2 O 3, Ceramika z. 80, Wyd. AGH, Kraków L. Kucharska, Reologiczne i fizykochemiczne podstawy procesów ceramicznych, Wydawnictwo Politechniki Wrocławskiej, Wrocław S.W. Mironiec, Ł.J. Swistun, G.G. Serdiuk, M.B. Sztern: Określenie bocznego ciśnienia zagęszczania i tarcia zewnętrznego proszków metalicznych, Proszkowa Metallurgia, Nr 5, D. H. Phillips, J. J. Lannutti: X-ray computed tomography for the testing and evaluation of ceramic processes, American ceramic Society Bulletin 72, (11), A.C. Kak: Computerized tomography with X-ray, emission and ultrasound sources, Proceedings of the IEEE, vol 67, T. A. Deis, J. J. Lannutti: X-ray computed tomography for evaluation of density gradient formation during the compaction of spray dried granules, Journal of the American ceramic Society, 81, 5, S. P. Huss, J. N. Gray, C.H. Schilling: Fine scale resolution of ceramic microstructures by X-ray computed tomography: an economical approach, Ceramic Transactions vol. 67: Nondestructive Evaluation of Ceramics, 1998.

dr inż. Paweł Wiśniewski, mgr inż. Maciej Kopczyński Wydział Chemiczny Politechniki Warszawskiej Zakład technologii Nieorganicznej i Ceramiki

dr inż. Paweł Wiśniewski, mgr inż. Maciej Kopczyński Wydział Chemiczny Politechniki Warszawskiej Zakład technologii Nieorganicznej i Ceramiki dr inż. Paweł Wiśniewski, mgr inż. Maciej Kopczyński Wydział Chemiczny Politechniki Warszawskiej Zakład technologii Nieorganicznej i Ceramiki ZASTOSOWANIE METYLOCELULOZY I GLIKOLU POLI(OKSYETYLENOWEGO)

Bardziej szczegółowo

REOLOGIA CERAMICZNYCH MAS SYPKICH

REOLOGIA CERAMICZNYCH MAS SYPKICH ZAKŁAD TECHNOLOGII NIEORGANICZNEJ I CERAMIKI REOLOGIA CERAMICZNYCH MAS SYPKICH (ĆWICZENIE LABORATORYJNE) -1- Reologia (z greckiego: rheos - prąd, logos - nauka) jest nauką o płynięciu i deformacji wszystkich

Bardziej szczegółowo

Ćwiczenie nr 3. Formowanie materiałów ceramicznych metodą prasowania

Ćwiczenie nr 3. Formowanie materiałów ceramicznych metodą prasowania Ćwiczenie nr 3 Formowanie materiałów ceramicznych metodą prasowania Cel ćwiczenia: Zapoznanie się z prasowaniem jako metodą formowania biomateriałów ceramicznych. 1.1. Prasowanie Przez określenie formowanie

Bardziej szczegółowo

1. BADANIE SPIEKÓW 1.1. Oznaczanie gęstości i porowatości spieków

1. BADANIE SPIEKÓW 1.1. Oznaczanie gęstości i porowatości spieków 1. BADANIE SPIEKÓW 1.1. Oznaczanie gęstości i porowatości spieków Gęstością teoretyczną spieku jest stosunek jego masy do jego objętości rzeczywistej, to jest objętości całkowitej pomniejszonej o objętość

Bardziej szczegółowo

Nauka o Materiałach. Wykład XI. Właściwości cieplne. Jerzy Lis

Nauka o Materiałach. Wykład XI. Właściwości cieplne. Jerzy Lis Nauka o Materiałach Wykład XI Właściwości cieplne Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Stabilność termiczna materiałów 2. Pełzanie wysokotemperaturowe 3. Przewodnictwo cieplne 4. Rozszerzalność

Bardziej szczegółowo

Spis treści. Wprowadzenie... 9

Spis treści. Wprowadzenie... 9 Spis treści Wprowadzenie... 9 Rozdział pierwszy Wstęp... 14 Lepkość... 16 Lepkość w aspekcie reologii... 16 Reologia a ceramika... 17 Płynięcie... 17 Podsumowanie... 19 Rozdział drugi Podstawy reologii...

Bardziej szczegółowo

Nauka o Materiałach. Wykład VI. Odkształcenie materiałów właściwości sprężyste i plastyczne. Jerzy Lis

Nauka o Materiałach. Wykład VI. Odkształcenie materiałów właściwości sprężyste i plastyczne. Jerzy Lis Nauka o Materiałach Wykład VI Odkształcenie materiałów właściwości sprężyste i plastyczne Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Właściwości materiałów -wprowadzenie 2. Statyczna próba rozciągania.

Bardziej szczegółowo

Spis treści. Wprowadzenie... 9

Spis treści. Wprowadzenie... 9 Spis treści Wprowadzenie... 9 Rozdział pierwszy Wstęp... 14 Lepkość... 16 Lepkość w aspekcie reologii... 16 Reologia a ceramika... 17 Płynięcie... 17 Podsumowanie... 19 Rozdział drugi Podstawy reologii...

Bardziej szczegółowo

Laboratorium Dużych Odkształceń Plastycznych CWS

Laboratorium Dużych Odkształceń Plastycznych CWS Laboratorium Dużych Odkształceń Plastycznych CWS W Katedrze Przeróbki Plastycznej i Metaloznawstwa Metali Nieżelaznych AGH utworzono nowoczesne laboratorium, które wyposażono w oryginalną w skali światowej

Bardziej szczegółowo

Badania ceramicznych materiałów gęstych do zastosowań specjalnych

Badania ceramicznych materiałów gęstych do zastosowań specjalnych POLITECHNIKA WARSZAWSKA WYDZIAŁ CHEMICZNY KATEDRA TECHNOLOGII CHEMICZNEJ Badania ceramicznych materiałów gęstych do zastosowań specjalnych Instrukcja do zajęć laboratoryjnych dla studentów semestru VI

Bardziej szczegółowo

Temat 1 (2 godziny): Próba statyczna rozciągania metali

Temat 1 (2 godziny): Próba statyczna rozciągania metali Temat 1 (2 godziny): Próba statyczna rozciągania metali 1.1. Wstęp Próba statyczna rozciągania jest podstawowym rodzajem badania metali, mających zastosowanie w technice i pozwala na określenie własności

Bardziej szczegółowo

BADANIE ODPORNOŚCI NA PRZENIKANIE SUBSTANCJI CHEMICZNYCH PODCZAS DYNAMICZNYCH ODKSZTAŁCEŃ MATERIAŁÓW

BADANIE ODPORNOŚCI NA PRZENIKANIE SUBSTANCJI CHEMICZNYCH PODCZAS DYNAMICZNYCH ODKSZTAŁCEŃ MATERIAŁÓW Metoda badania odporności na przenikanie ciekłych substancji chemicznych przez materiały barierowe odkształcane w warunkach wymuszonych zmian dynamicznych BADANIE ODPORNOŚCI NA PRZENIKANIE SUBSTANCJI CHEMICZNYCH

Bardziej szczegółowo

3. Prasowanie proszków

3. Prasowanie proszków 3. Prasowanie proszków Prasowanie jest jednym z głównych procesów technologicznych w produkcji wyrobów ze spiekanych metali. Ma ono na celu formowanie wyprasek o określonych wymiarach i kształcie oraz

Bardziej szczegółowo

Nauka o Materiałach. Wykład VIII. Odkształcenie materiałów właściwości sprężyste. Jerzy Lis

Nauka o Materiałach. Wykład VIII. Odkształcenie materiałów właściwości sprężyste. Jerzy Lis Nauka o Materiałach Wykład VIII Odkształcenie materiałów właściwości sprężyste Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Właściwości materiałów -wprowadzenie 2. Klasyfikacja reologiczna odkształcenia

Bardziej szczegółowo

σ c wytrzymałość mechaniczna, tzn. krytyczna wartość naprężenia, zapoczątkowująca pękanie

σ c wytrzymałość mechaniczna, tzn. krytyczna wartość naprężenia, zapoczątkowująca pękanie Materiały pomocnicze do ćwiczenia laboratoryjnego Właściwości mechaniczne ceramicznych kompozytów ziarnistych z przedmiotu Współczesne materiały inżynierskie dla studentów IV roku Wydziału Inżynierii Mechanicznej

Bardziej szczegółowo

WŁAŚCIWOŚCI MECHANICZNE PLASTYCZNOŚĆ. Zmiany makroskopowe. Zmiany makroskopowe

WŁAŚCIWOŚCI MECHANICZNE PLASTYCZNOŚĆ. Zmiany makroskopowe. Zmiany makroskopowe WŁAŚCIWOŚCI MECHANICZNE PLASTYCZNOŚĆ Zmiany makroskopowe Zmiany makroskopowe R e = R 0.2 - umowna granica plastyczności (0.2% odkształcenia trwałego); R m - wytrzymałość na rozciąganie (plastyczne); 1

Bardziej szczegółowo

Nauka o Materiałach. Wykład IX. Odkształcenie materiałów właściwości plastyczne. Jerzy Lis

Nauka o Materiałach. Wykład IX. Odkształcenie materiałów właściwości plastyczne. Jerzy Lis Nauka o Materiałach Wykład IX Odkształcenie materiałów właściwości plastyczne Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Odkształcenie plastyczne 2. Parametry makroskopowe 3. Granica plastyczności

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH BADANIE TWORZYW SZTUCZNYCH OZNACZENIE WŁASNOŚCI MECHANICZNYCH PRZY STATYCZNYM ROZCIĄGANIU

Bardziej szczegółowo

MATERIAŁY SPIEKANE (SPIEKI)

MATERIAŁY SPIEKANE (SPIEKI) MATERIAŁY SPIEKANE (SPIEKI) Metalurgia proszków jest dziedziną techniki, obejmującą metody wytwarzania proszków metali lub ich mieszanin z proszkami niemetali oraz otrzymywania wyrobów z tych proszków

Bardziej szczegółowo

Dr inż. Paweł Rokicki Politechnika Rzeszowska Katedra Materiałoznawstwa, Bud. C, pok. 204 Tel: (17) WYCISKANIE

Dr inż. Paweł Rokicki Politechnika Rzeszowska Katedra Materiałoznawstwa, Bud. C, pok. 204 Tel: (17) WYCISKANIE Dr inż. Paweł Rokicki Politechnika Rzeszowska Katedra Materiałoznawstwa, Bud. C, pok. 204 Tel: (17) 865-1124 WYCISKANIE Proces wyciskania polega na tym, że metal zamknięty w pojemniku jest wyciskany przez

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH BADANIE ZACHOWANIA SIĘ MATERIAŁÓW PODCZAS ŚCISKANIA Instrukcja przeznaczona jest dla studentów

Bardziej szczegółowo

ANALIZA ROZDRABNIANIA WARSTWOWEGO NA PODSTAWIE EFEKTÓW ROZDRABNIANIA POJEDYNCZYCH ZIAREN

ANALIZA ROZDRABNIANIA WARSTWOWEGO NA PODSTAWIE EFEKTÓW ROZDRABNIANIA POJEDYNCZYCH ZIAREN Akademia Górniczo Hutnicza im. Stanisława Staszica Wydział Górnictwa i Geoinżynierii Katedra Inżynierii Środowiska i Przeróbki Surowców Rozprawa doktorska ANALIZA ROZDRABNIANIA WARSTWOWEGO NA PODSTAWIE

Bardziej szczegółowo

Wykład IX: Odkształcenie materiałów - właściwości plastyczne

Wykład IX: Odkształcenie materiałów - właściwości plastyczne Wykład IX: Odkształcenie materiałów - właściwości plastyczne JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych Treść wykładu: 1. Odkształcenie

Bardziej szczegółowo

STATYCZNA PRÓBA ROZCIĄGANIA

STATYCZNA PRÓBA ROZCIĄGANIA STATYCZNA PRÓBA ROZCIĄGANIA Próba statyczna rozciągania jest jedną z podstawowych prób stosowanych do określenia jakości materiałów konstrukcyjnych wg kryterium naprężeniowego w warunkach obciążeń statycznych.

Bardziej szczegółowo

Formowanie Wyrobów Ceramicznych. Formowanie. Prasowanie? zawartość wody, % Technologia Materiałów Ceramicznych Wykład V

Formowanie Wyrobów Ceramicznych. Formowanie. Prasowanie? zawartość wody, % Technologia Materiałów Ceramicznych Wykład V wymagane ciśnienie 2015-12-01 Formowanie Wyrobów Ceramicznych Formowanie nadawanie kształtu połączone ze wstępnym zagęszczaniem, oba procesy związane są z przemieszczaniem ziaren fazy stałej. prasowanie

Bardziej szczegółowo

INSTRUKCJA DO CWICZENIA NR 5

INSTRUKCJA DO CWICZENIA NR 5 INTRUKCJA DO CWICZENIA NR 5 Temat ćwiczenia: tatyczna próba ściskania materiałów kruchych Celem ćwiczenia jest wykonanie próby statycznego ściskania materiałów kruchych, na podstawie której można określić

Bardziej szczegółowo

PEŁZANIE WYBRANYCH ELEMENTÓW KONSTRUKCYJNYCH

PEŁZANIE WYBRANYCH ELEMENTÓW KONSTRUKCYJNYCH Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: Wprowadzenie PEŁZANIE WYBRANYCH ELEMENTÓW KONSTRUKCYJNYCH Opracowała: mgr inż. Magdalena Bartkowiak-Jowsa Reologia jest nauką,

Bardziej szczegółowo

FORMOWANIE WYROBÓW CERAMICZNYCH PRZEZ PRASOWANIE

FORMOWANIE WYROBÓW CERAMICZNYCH PRZEZ PRASOWANIE FORMOWANIE WYROBÓW CERAMICZNYCH PRZEZ PRASOWANIE 1. Wstęp Formowanie wyrobów ceramicznych za pomocą prasowania proszków jest bardzo często stosowana techniką. O jej popularności decyduje możliwość uzyskiwania

Bardziej szczegółowo

Wskaźnik szybkości płynięcia termoplastów

Wskaźnik szybkości płynięcia termoplastów Katedra Technologii Polimerów Przedmiot: Inżynieria polimerów Ćwiczenie laboratoryjne: Wskaźnik szybkości płynięcia termoplastów Wskaźnik szybkości płynięcia Wielkością która charakteryzuje prędkości płynięcia

Bardziej szczegółowo

MODELOWANIE POŁĄCZEŃ TYPU SWORZEŃ OTWÓR ZA POMOCĄ MES BEZ UŻYCIA ANALIZY KONTAKTOWEJ

MODELOWANIE POŁĄCZEŃ TYPU SWORZEŃ OTWÓR ZA POMOCĄ MES BEZ UŻYCIA ANALIZY KONTAKTOWEJ Jarosław MAŃKOWSKI * Andrzej ŻABICKI * Piotr ŻACH * MODELOWANIE POŁĄCZEŃ TYPU SWORZEŃ OTWÓR ZA POMOCĄ MES BEZ UŻYCIA ANALIZY KONTAKTOWEJ 1. WSTĘP W analizach MES dużych konstrukcji wykonywanych na skalę

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Zwykła próba rozciągania stali Numer ćwiczenia: 1 Laboratorium z przedmiotu:

Bardziej szczegółowo

Temat 2 (2 godziny) : Próba statyczna ściskania metali

Temat 2 (2 godziny) : Próba statyczna ściskania metali Temat 2 (2 godziny) : Próba statyczna ściskania metali 2.1. Wstęp Próba statyczna ściskania jest podstawowym sposobem badania materiałów kruchych takich jak żeliwo czy beton, które mają znacznie lepsze

Bardziej szczegółowo

Egzamin z MGIF, I termin, 2006 Imię i nazwisko

Egzamin z MGIF, I termin, 2006 Imię i nazwisko 1. Na podstawie poniższego wykresu uziarnienia proszę określić rodzaj gruntu, zawartość głównych frakcji oraz jego wskaźnik różnoziarnistości (U). Odpowiedzi zestawić w tabeli: Rodzaj gruntu Zawartość

Bardziej szczegółowo

Ocena przydatności proszków ceramicznych do formowania metodą prasowania

Ocena przydatności proszków ceramicznych do formowania metodą prasowania Wydział Inżynierii Metali i Informatyki Przemysłowej, Inżynieria Ciepła Materiały Inżynierskie laboratorium Ćwiczenie nr 8 Ocena przydatności proszków ceramicznych do formowania metodą prasowania Literatura:

Bardziej szczegółowo

CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ

CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ Ciepło i temperatura Pojemność cieplna i ciepło właściwe Ciepło przemiany Przejścia między stanami Rozszerzalność cieplna Sprężystość ciał Prawo Hooke a Mechaniczne

Bardziej szczegółowo

INSTRUKCJA DO CWICZENIA NR 4

INSTRUKCJA DO CWICZENIA NR 4 INSTRUKCJA DO CWICZENIA NR 4 Temat ćwiczenia: Statyczna próba rozciągania metali Celem ćwiczenia jest wykonanie próby statycznego rozciągania metali, na podstawie której można określić następujące własności

Bardziej szczegółowo

STATYCZNA PRÓBA ROZCIĄGANIA

STATYCZNA PRÓBA ROZCIĄGANIA Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: STATYCZNA PRÓBA ROZCIĄGANIA oprac. dr inż. Jarosław Filipiak Cel ćwiczenia 1. Zapoznanie się ze sposobem przeprowadzania statycznej

Bardziej szczegółowo

17. 17. Modele materiałów

17. 17. Modele materiałów 7. MODELE MATERIAŁÓW 7. 7. Modele materiałów 7.. Wprowadzenie Podstawowym modelem w mechanice jest model ośrodka ciągłego. Przyjmuje się, że materia wypełnia przestrzeń w sposób ciągły. Możliwe jest wyznaczenie

Bardziej szczegółowo

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał Statyka Cieczy i Gazów Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał 1. Podstawowe założenia teorii kinetyczno-molekularnej budowy ciał: Ciała zbudowane są z cząsteczek. Pomiędzy cząsteczkami

Bardziej szczegółowo

gruntów Ściśliwość Wytrzymałość na ścinanie

gruntów Ściśliwość Wytrzymałość na ścinanie Właściwości mechaniczne gruntów Ściśliwość Wytrzymałość na ścinanie Ściśliwość gruntów definicja, podstawowe informacje o zjawisku, podstawowe informacje z teorii sprężystości, parametry ściśliwości, laboratoryjne

Bardziej szczegółowo

Zachodniopomorski Uniwersytet Technologiczny INSTYTUT INŻYNIERII MATERIAŁOWEJ ZAKŁAD METALOZNAWSTWA I ODLEWNICTWA

Zachodniopomorski Uniwersytet Technologiczny INSTYTUT INŻYNIERII MATERIAŁOWEJ ZAKŁAD METALOZNAWSTWA I ODLEWNICTWA Zachodniopomorski Uniwersytet Technologiczny INSTYTUT INŻYNIERII MATERIAŁOWEJ ZAKŁAD METALOZNAWSTWA I ODLEWNICTWA PRZEDMIOT: INŻYNIERIA WARSTWY WIERZCHNIEJ Temat ćwiczenia: Badanie prędkości zużycia materiałów

Bardziej szczegółowo

MODELOWANIE ROZKŁADU STOPNIA ZAGĘSZCZENIA MASY FORMIERSKIEJ Z WYKORZYSTANIEM SYSTEMÓW UCZĄCYCH SIĘ

MODELOWANIE ROZKŁADU STOPNIA ZAGĘSZCZENIA MASY FORMIERSKIEJ Z WYKORZYSTANIEM SYSTEMÓW UCZĄCYCH SIĘ Robert Biernacki, Marcin Perzyk, Jacek Kozłowski MODELOWANIE ROZKŁADU STOPNIA ZAGĘSZCZENIA MASY FORMIERSKIEJ Z WYKORZYSTANIEM SYSTEMÓW UCZĄCYCH SIĘ Streszczenie Omówiono czynniki wpływające na stopień

Bardziej szczegółowo

(12) OPIS PATENTOWY (19) PL (11) (13) B1

(12) OPIS PATENTOWY (19) PL (11) (13) B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 170477 (13) B1 (21) Numer zgłoszenia: 298926 (51) IntCl6: C22B 1/24 Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia: 13.05.1993 (54)

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH BADANIE ZACHOWANIA SIĘ MATERIAŁÓW PODCZAS ŚCISKANIA Instrukcja przeznaczona jest dla studentów

Bardziej szczegółowo

ĆWICZENIE 15 WYZNACZANIE (K IC )

ĆWICZENIE 15 WYZNACZANIE (K IC ) POLITECHNIKA WROCŁAWSKA Imię i Nazwisko... WYDZIAŁ MECHANICZNY Wydzia ł... Wydziałowy Zakład Wytrzymałości Materiałów Rok... Grupa... Laboratorium Wytrzymałości Materiałów Data ćwiczenia... ĆWICZENIE 15

Bardziej szczegółowo

Peter Schramm pracuje w dziale technicznym FRIATEC AG, oddział ceramiki technicznej.

Peter Schramm pracuje w dziale technicznym FRIATEC AG, oddział ceramiki technicznej. FRIALIT -DEGUSSIT ZAAWANSOWANA CERAMIKA TECHNICZNA NIEWYCZERPANY POTENCJAŁ Peter Schramm pracuje w dziale technicznym FRIATEC AG, oddział ceramiki technicznej. Jak produkuje się zaawansowaną ceramikę techniczną?

Bardziej szczegółowo

Naprężenia i odkształcenia spawalnicze

Naprężenia i odkształcenia spawalnicze Naprężenia i odkształcenia spawalnicze Cieplno-mechaniczne właściwości metali i stopów Parametrami, które określają stan mechaniczny metalu w różnych temperaturach, są: - moduł sprężystości podłużnej E,

Bardziej szczegółowo

Wstęp... CZĘŚĆ 1. Podstawy technologii materiałów budowlanych...

Wstęp... CZĘŚĆ 1. Podstawy technologii materiałów budowlanych... Spis treści Wstęp... CZĘŚĆ 1. Podstawy technologii materiałów budowlanych... 1. Spoiwa mineralne... 1.1. Spoiwa gipsowe... 1.2. Spoiwa wapienne... 1.3. Cementy powszechnego użytku... 1.4. Cementy specjalne...

Bardziej szczegółowo

Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym).

Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym). Spis treści 1 Stan gazowy 2 Gaz doskonały 21 Definicja mikroskopowa 22 Definicja makroskopowa (termodynamiczna) 3 Prawa gazowe 31 Prawo Boyle a-mariotte a 32 Prawo Gay-Lussaca 33 Prawo Charlesa 34 Prawo

Bardziej szczegółowo

SKURCZ BETONU. str. 1

SKURCZ BETONU. str. 1 SKURCZ BETONU str. 1 C7 betonu jest zjawiskiem samoistnym spowodowanym odkształceniami niewynikającymi z obciążeń mechanicznych. Zachodzi w materiałach o strukturze porowatej, w wyniku utarty wody na skutek

Bardziej szczegółowo

Materiały Reaktorowe. Właściwości mechaniczne

Materiały Reaktorowe. Właściwości mechaniczne Materiały Reaktorowe Właściwości mechaniczne Naprężenie i odkształcenie F A 0 l i l 0 l 0 l l 0 a. naprężenie rozciągające b. naprężenie ściskające c. naprężenie ścinające d. Naprężenie torsyjne Naprężenie

Bardziej szczegółowo

WYTRZYMAŁOŚĆ RÓWNOWAŻNA FIBROBETONU NA ZGINANIE

WYTRZYMAŁOŚĆ RÓWNOWAŻNA FIBROBETONU NA ZGINANIE Artykul zamieszczony w "Inżynierze budownictwa", styczeń 2008 r. Michał A. Glinicki dr hab. inż., Instytut Podstawowych Problemów Techniki PAN Warszawa WYTRZYMAŁOŚĆ RÓWNOWAŻNA FIBROBETONU NA ZGINANIE 1.

Bardziej szczegółowo

Rys. 1. Obudowa zmechanizowana Glinik 15/32 Poz [1]: 1 stropnica, 2 stojaki, 3 spągnica

Rys. 1. Obudowa zmechanizowana Glinik 15/32 Poz [1]: 1 stropnica, 2 stojaki, 3 spągnica Górnictwo i Geoinżynieria Rok 30 Zeszyt 1 2006 Sławomir Badura*, Dariusz Bańdo*, Katarzyna Migacz** ANALIZA WYTRZYMAŁOŚCIOWA MES SPĄGNICY OBUDOWY ZMECHANIZOWANEJ GLINIK 15/32 POZ 1. Wstęp Obudowy podporowo-osłonowe

Bardziej szczegółowo

Metoda Elementów Skończonych

Metoda Elementów Skończonych Projekt Metoda Elementów Skończonych w programie COMSOL Multiphysics 3.4 Wykonali: Helak Bartłomiej Kruszewski Jacek Wydział, kierunek, specjalizacja, semestr, rok: BMiZ, MiBM, KMU, VII, 2011-2012 Prowadzący:

Bardziej szczegółowo

Wyznaczanie współczynnika sprężystości sprężyn i ich układów

Wyznaczanie współczynnika sprężystości sprężyn i ich układów Ćwiczenie 63 Wyznaczanie współczynnika sprężystości sprężyn i ich układów 63.1. Zasada ćwiczenia W ćwiczeniu określa się współczynnik sprężystości pojedynczych sprężyn i ich układów, mierząc wydłużenie

Bardziej szczegółowo

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Rozciąganie lub ściskanie Zginanie Skręcanie Ścinanie 1. Pręt rozciągany lub ściskany

Bardziej szczegółowo

Zakres wiadomości na II sprawdzian z mechaniki gruntów:

Zakres wiadomości na II sprawdzian z mechaniki gruntów: Zakres wiadomości na II sprawdzian z mechaniki gruntów: Wytrzymałość gruntów: równanie Coulomba, parametry wytrzymałościowe, zależność parametrów wytrzymałościowych od wiodących cech geotechnicznych gruntów

Bardziej szczegółowo

Dopuszczalne fluktuacje temperatury i wilgotności powietrza w otoczeniu zabytkowego drewna pomiary i modelowanie numeryczne

Dopuszczalne fluktuacje temperatury i wilgotności powietrza w otoczeniu zabytkowego drewna pomiary i modelowanie numeryczne Dopuszczalne fluktuacje temperatury i wilgotności powietrza w otoczeniu zabytkowego drewna pomiary i modelowanie numeryczne Łukasz Bratasz Sławomir Jakieła Roman Kozłowski Polska Akademia Nauk, Kraków

Bardziej szczegółowo

STATYCZNA PRÓBA SKRĘCANIA

STATYCZNA PRÓBA SKRĘCANIA Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: Wprowadzenie STATYCZNA PRÓBA SKRĘCANIA Opracowała: mgr inż. Magdalena Bartkowiak-Jowsa Skręcanie pręta występuje w przypadku

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Zwykła statyczna próba ściskania metali Numer ćwiczenia: 3 Laboratorium z przedmiotu:

Bardziej szczegółowo

INSTYTUT INŻYNIERII MATERIAŁOWEJ

INSTYTUT INŻYNIERII MATERIAŁOWEJ Ćwiczenie: Oznaczanie chłonności wody tworzyw sztucznych 1 Cel ćwiczenia Celem ćwiczenia jest oznaczenie chłonności wody przez próbkę tworzywa jedną z metod przedstawionych w niniejszej instrukcji. 2 Określenie

Bardziej szczegółowo

NAPRĘŻENIA ŚCISKAJĄCE PRZY 10% ODKSZTAŁCENIU WZGLĘDNYM PRÓBEK NORMOWYCH POBRANYCH Z PŁYT EPS O RÓŻNEJ GRUBOŚCI

NAPRĘŻENIA ŚCISKAJĄCE PRZY 10% ODKSZTAŁCENIU WZGLĘDNYM PRÓBEK NORMOWYCH POBRANYCH Z PŁYT EPS O RÓŻNEJ GRUBOŚCI PRACE INSTYTUTU TECHNIKI BUDOWLANEJ - KWARTALNIK 1 (145) 2008 BUILDING RESEARCH INSTITUTE - QUARTERLY No 1 (145) 2008 Zbigniew Owczarek* NAPRĘŻENIA ŚCISKAJĄCE PRZY 10% ODKSZTAŁCENIU WZGLĘDNYM PRÓBEK NORMOWYCH

Bardziej szczegółowo

Dekohezja materiałów. Przedmiot: Degradacja i metody badań materiałów Wykład na podstawie materiałów prof. dr hab. inż. Jerzego Lisa, prof. zw.

Dekohezja materiałów. Przedmiot: Degradacja i metody badań materiałów Wykład na podstawie materiałów prof. dr hab. inż. Jerzego Lisa, prof. zw. Dekohezja materiałów Przedmiot: Degradacja i metody badań materiałów Wykład na podstawie materiałów prof. dr hab. inż. Jerzego Lisa, prof. zw. AGH Nauka o Materiałach Treść wykładu: 1. Dekohezja materiałów

Bardziej szczegółowo

Mechanika i wytrzymałość materiałów instrukcja do ćwiczenia laboratoryjnego

Mechanika i wytrzymałość materiałów instrukcja do ćwiczenia laboratoryjnego Mechanika i wytrzymałość materiałów instrukcja do ćwiczenia laboratoryjnego Cel ćwiczenia STATYCZNA PRÓBA ŚCISKANIA autor: dr inż. Marta Kozuń, dr inż. Ludomir Jankowski 1. Zapoznanie się ze sposobem przeprowadzania

Bardziej szczegółowo

11. WŁASNOŚCI SPRĘŻYSTE CIAŁ

11. WŁASNOŚCI SPRĘŻYSTE CIAŁ 11. WŁANOŚCI PRĘŻYTE CIAŁ Efektem działania siły może być przyspieszanie ciała, ae może być także jego deformacja. Przykładami tego ostatniego są np.: rozciąganie gumy a także zginanie ub rozciąganie pręta.

Bardziej szczegółowo

WPŁYW TEMPERATURY SPIEKANIA NA WŁAŚCIWOŚCI TWORZYW Z ZnO. INFLUENCE OF SINTERING TEMPERATURE ON PROPERTIES OF ZnO - BASED MATERIALS

WPŁYW TEMPERATURY SPIEKANIA NA WŁAŚCIWOŚCI TWORZYW Z ZnO. INFLUENCE OF SINTERING TEMPERATURE ON PROPERTIES OF ZnO - BASED MATERIALS Dr inż. Paweł Wiśniewski Wydział Chemiczny Politechniki Warszawskiej Zakład Technologii Nieorganicznej i Ceramiki WPŁYW TEMPERATURY SPIEKANIA NA WŁAŚCIWOŚCI TWORZYW Z ZnO W artykule opisano podstawowe

Bardziej szczegółowo

Rodzaje obciążeń, odkształceń i naprężeń

Rodzaje obciążeń, odkształceń i naprężeń Rodzaje obciążeń, odkształceń i naprężeń 1. Podział obciążeń i odkształceń Oddziaływania na konstrukcję, w zależności od sposobu działania sił, mogą być statyczne lun dynamiczne. Obciążenia statyczne występują

Bardziej szczegółowo

Laboratorium. Hydrostatyczne Układy Napędowe

Laboratorium. Hydrostatyczne Układy Napędowe Laboratorium Hydrostatyczne Układy Napędowe Instrukcja do ćwiczenia nr Eksperymentalne wyznaczenie charakteru oporów w przewodach hydraulicznych opory liniowe Opracowanie: Z.Kudżma, P. Osiński J. Rutański,

Bardziej szczegółowo

SPRAWOZDANIE LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW B Badanie własności mechanicznych materiałów konstrukcyjnych

SPRAWOZDANIE LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW B Badanie własności mechanicznych materiałów konstrukcyjnych Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji SPRAWOZDANIE B Badanie własności mechanicznych materiałów konstrukcyjnych Wydział Specjalność.. Nazwisko

Bardziej szczegółowo

Dobór materiałów konstrukcyjnych cz. 7

Dobór materiałów konstrukcyjnych cz. 7 Dobór materiałów konstrukcyjnych cz. 7 dr inż. Hanna Smoleńska Katedra Inżynierii Materiałowej i Spajania Wydział Mechaniczny, Politechnika Gdańska Materiały edukacyjne Sprężystość i wytrzymałość Naprężenie

Bardziej szczegółowo

Wyznaczenie współczynnika restytucji

Wyznaczenie współczynnika restytucji 1 Ćwiczenie 19 Wyznaczenie współczynnika restytucji 19.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie współczynnika restytucji dla różnych materiałów oraz sprawdzenie słuszności praw obowiązujących

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH BADANIE TWORZYW SZTUCZNYCH OZNACZENIE WŁASNOŚCI MECHANICZNYCH PRZY STATYCZNYM ROZCIĄGANIU

Bardziej szczegółowo

Wykład 8: Lepko-sprężyste odkształcenia ciał

Wykład 8: Lepko-sprężyste odkształcenia ciał Wykład 8: Lepko-sprężyste odkształcenia ciał Leszek CHODOR dr inż. bud, inż.arch. leszek@chodor.pl Literatura: [1] Piechnik St., Wytrzymałość materiałów dla wydziałów budowlanych,, PWN, Warszaw-Kraków,

Bardziej szczegółowo

Kompozyty Ceramiczne. Materiały Kompozytowe. kompozyty. ziarniste. strukturalne. z włóknami

Kompozyty Ceramiczne. Materiały Kompozytowe. kompozyty. ziarniste. strukturalne. z włóknami Kompozyty Ceramiczne Materiały Kompozytowe intencjonalnie wytworzone materiały składające się, z co najmniej dwóch faz, które posiadają co najmniej jedną cechę lepszą niż tworzące je fazy. Pozostałe właściwości

Bardziej szczegółowo

1 Badania strukturalne materiału przeciąganego

1 Badania strukturalne materiału przeciąganego Zbigniew Rudnicki Janina Daca Włodzimierz Figiel 1 Badania strukturalne materiału przeciąganego Streszczenie Przy badaniach mechanizmu zużycia oczek ciągadeł przyjęto założenie, że przeciągany materiał

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA Katedra Geotechniki i Mechaniki Konstrukcji Wytrzymałość Materiałów Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 3 Temat ćwiczenia:

Bardziej szczegółowo

Wydział Inżynierii Materiałowej i Ceramiki AGH. Ceramika Konstrukcyjna i Techniczna. Kierunek: Ceramika 2015/16

Wydział Inżynierii Materiałowej i Ceramiki AGH. Ceramika Konstrukcyjna i Techniczna. Kierunek: Ceramika 2015/16 Wydział Inżynierii Materiałowej i Ceramiki AGH Ceramika Konstrukcyjna i Techniczna Kierunek: Ceramika 2015/16 Ćwiczenie 1 Formowanie proszków ceramicznych przez prasowanie Część 1. Prasowanie proszków

Bardziej szczegółowo

09 - Dobór siłownika i zaworu. - Opór przepływu w przewodzie - Dobór rozmiaru zaworu - Dobór rozmiaru siłownika

09 - Dobór siłownika i zaworu. - Opór przepływu w przewodzie - Dobór rozmiaru zaworu - Dobór rozmiaru siłownika - Dobór siłownika i zaworu - Opór przepływu w przewodzie - Dobór rozmiaru zaworu - Dobór rozmiaru siłownika OPÓR PRZEPŁYWU W ZAWORZE Objętościowy współczynnik przepływu Qn Przepływ oblicza się jako stosunek

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ

INSTRUKCJA DO ĆWICZEŃ UNIWERSYTET KAZIMIERZA WIELKIEGO Instytut Mechaniki Środowiska i Informatyki Stosowanej PRACOWNIA SPECJALISTYCZNA INSTRUKCJA DO ĆWICZEŃ Nr ćwiczenia TEMAT: Wyznaczanie porowatości objętościowej przez zanurzenie

Bardziej szczegółowo

Dobór materiałów konstrukcyjnych cz. 9

Dobór materiałów konstrukcyjnych cz. 9 Dobór materiałów konstrukcyjnych cz. 9 dr inż. Hanna Smoleńska Katedra Inżynierii Materiałowej i Spajania Wydział Mechaniczny, Politechnika Gdańska Materiały edukacyjne Materiały na uszczelki Ashby M.F.:

Bardziej szczegółowo

30/01/2018. Wykład X: Właściwości cieplne. Treść wykładu: Stabilność termiczna materiałów

30/01/2018. Wykład X: Właściwości cieplne. Treść wykładu: Stabilność termiczna materiałów Wykład X: Właściwości cieplne JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych Treść wykładu:. Stabilność termiczna materiałów 2. 3. 4. Rozszerzalność cieplna

Bardziej szczegółowo

BADANIA WŁASNOŚCI MECHANICZNYCH MATERIAŁÓW KONSTRUKCYJNYCH 1. Próba rozciągania metali w temperaturze otoczenia (zg. z PN-EN :2002)

BADANIA WŁASNOŚCI MECHANICZNYCH MATERIAŁÓW KONSTRUKCYJNYCH 1. Próba rozciągania metali w temperaturze otoczenia (zg. z PN-EN :2002) Nazwisko i imię... Akademia Górniczo-Hutnicza Nazwisko i imię... Laboratorium z Wytrzymałości Materiałów Wydział... Katedra Wytrzymałości Materiałów Rok... Grupa... i Konstrukcji Data ćwiczenia... Ocena...

Bardziej szczegółowo

Analiza porównawcza dwóch metod wyznaczania wskaźnika wytrzymałości na przebicie kulką dla dzianin

Analiza porównawcza dwóch metod wyznaczania wskaźnika wytrzymałości na przebicie kulką dla dzianin Analiza porównawcza dwóch metod wyznaczania wskaźnika wytrzymałości na przebicie kulką dla dzianin B. Wilbik-Hałgas, E. Ledwoń Instytut Technologii Bezpieczeństwa MORATEX Wprowadzenie Wytrzymałość na działanie

Bardziej szczegółowo

POLITECHNIKA GDAŃSKA WYDZIAŁ CHEMICZNY KATEDRA TECHNOLOGII POLIMERÓW

POLITECHNIKA GDAŃSKA WYDZIAŁ CHEMICZNY KATEDRA TECHNOLOGII POLIMERÓW POLITECHNIKA GDAŃSKA WYDZIAŁ CHEMICZNY KATEDRA TECHNOLOGII POLIMERÓW PRZETWÓRSTWO TWORZYW SZTUCZNYCH I GUMY Lab 8. Wyznaczanie optimum wulkanizacji mieszanek kauczukowych na reometrze Monsanto oraz analiza

Bardziej szczegółowo

Wpływ promieniowania na wybrane właściwości folii biodegradowalnych

Wpływ promieniowania na wybrane właściwości folii biodegradowalnych WANDA NOWAK, HALINA PODSIADŁO Politechnika Warszawska Wpływ promieniowania na wybrane właściwości folii biodegradowalnych Słowa kluczowe: biodegradacja, kompostowanie, folie celulozowe, właściwości wytrzymałościowe,

Bardziej szczegółowo

LABORATORIUM NAUKI O MATERIAŁACH

LABORATORIUM NAUKI O MATERIAŁACH Imię i Nazwisko Grupa dziekańska Indeks Ocena (kol.wejściowe) Ocena (sprawozdanie)........................................................... Ćwiczenie: MISW2 Podpis prowadzącego Politechnika Łódzka Wydział

Bardziej szczegółowo

Spis treści. Przedmowa 11

Spis treści. Przedmowa 11 Podstawy konstrukcji maszyn. T. 1 / autorzy: Marek Dietrich, Stanisław Kocańda, Bohdan Korytkowski, Włodzimierz Ozimowski, Jacek Stupnicki, Tadeusz Szopa ; pod redakcją Marka Dietricha. wyd. 3, 2 dodr.

Bardziej szczegółowo

Metody badań kamienia naturalnego: Oznaczanie wytrzymałości na zginanie pod działaniem siły skupionej

Metody badań kamienia naturalnego: Oznaczanie wytrzymałości na zginanie pod działaniem siły skupionej Metody badań kamienia naturalnego: Oznaczanie wytrzymałości na zginanie pod działaniem siły skupionej 1. Zasady metody Zasada metody polega na stopniowym obciążaniu środka próbki do badania, ustawionej

Bardziej szczegółowo

WPŁYW RODZAJU I ZAWARTOŚCI DIELEKTRYKU NA WŁAŚCIWOŚCI DIELEKTROMAGNETYKÓW

WPŁYW RODZAJU I ZAWARTOŚCI DIELEKTRYKU NA WŁAŚCIWOŚCI DIELEKTROMAGNETYKÓW KOMPOZYTY (COMPOSITES) 5(25)1 Dominika Gaworska 1, Bogumił Węgliński 2 Politechnika Wrocławska, Instytut Maszyn, Napędów i Pomiarów Elektrycznych, ul. Smoluchowskiego 19, 5-372 Wrocław Mikołaj Szafran

Bardziej szczegółowo

SPRAWOZDANIE Z BADAŃ

SPRAWOZDANIE Z BADAŃ POLITECHNIKA ŁÓDZKA ul. Żeromskiego 116 90-924 Łódź KATEDRA BUDOWNICTWA BETONOWEGO NIP: 727 002 18 95 REGON: 000001583 LABORATORIUM BADAWCZE MATERIAŁÓW I KONSTRUKCJI BUDOWLANYCH Al. Politechniki 6 90-924

Bardziej szczegółowo

WYZNACZANIE WYTRZYMAŁOŚCI BETONU NA ROZCIĄGANIE W PRÓBIE ZGINANIA

WYZNACZANIE WYTRZYMAŁOŚCI BETONU NA ROZCIĄGANIE W PRÓBIE ZGINANIA WYZNACZANIE WYTRZYMAŁOŚCI BETONU NA ROZCIĄGANIE W PRÓBIE ZGINANIA Jacek Kubissa, Wojciech Kubissa Wydział Budownictwa, Mechaniki i Petrochemii Politechniki Warszawskiej. WPROWADZENIE W 004 roku wprowadzono

Bardziej szczegółowo

Wyboczenie ściskanego pręta

Wyboczenie ściskanego pręta Wszelkie prawa zastrzeżone Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: 1. Wstęp Wyboczenie ściskanego pręta oprac. dr inż. Ludomir J. Jankowski Zagadnienie wyboczenia

Bardziej szczegółowo

Temat ćwiczenia. Pomiary otworów na przykładzie tulei cylindrowej

Temat ćwiczenia. Pomiary otworów na przykładzie tulei cylindrowej POLITECHNIKA ŚLĄSKA W YDZIAŁ TRANSPORTU Temat ćwiczenia Pomiary otworów na przykładzie tulei cylindrowej I Cel ćwiczenia Zapoznanie się z metodami pomiaru otworów na przykładzie pomiaru zuŝycia gładzi

Bardziej szczegółowo

LABORATORIUM NAUKI O MATERIAŁACH

LABORATORIUM NAUKI O MATERIAŁACH Imię i Nazwisko Grupa dziekańska Indeks Ocena (kol.wejściowe) Ocena (sprawozdanie)........................................................... Ćwiczenie: MISW1 Podpis prowadzącego Politechnika Łódzka Wydział

Bardziej szczegółowo

DOBÓR KSZTAŁTEK DO SYSTEMÓW RUROWYCH.SZTYWNOŚCI OBWODOWE

DOBÓR KSZTAŁTEK DO SYSTEMÓW RUROWYCH.SZTYWNOŚCI OBWODOWE Bogdan Majka Przedsiębiorstwo Barbara Kaczmarek Sp. J. DOBÓR KSZTAŁTEK DO SYSTEMÓW RUROWYCH.SZTYWNOŚCI OBWODOWE 1. WPROWADZENIE W branży związanej z projektowaniem i budową systemów kanalizacyjnych, istnieją

Bardziej szczegółowo

Temat: kruszyw Oznaczanie kształtu ziarn. pomocą wskaźnika płaskości Norma: PN-EN 933-3:2012 Badania geometrycznych właściwości

Temat: kruszyw Oznaczanie kształtu ziarn. pomocą wskaźnika płaskości Norma: PN-EN 933-3:2012 Badania geometrycznych właściwości Wydział Geoinżynierii, Górnictwa i Geologii Politechniki Wrocławskiej Instrukcja do zajęć laboratoryjnych Eksploatacja i obróbka skał Badania geometrycznych właściwości Temat: kruszyw Oznaczanie kształtu

Bardziej szczegółowo

Pracownia Technologiczna - Wydział Zarządzania PW

Pracownia Technologiczna - Wydział Zarządzania PW Pracownia Technologiczna - Wydział Zarządzania PW Temat: Ceramika tradycyjna i specjalna: metody formowania, badanie właściwości tworzyw ceramicznych Prowadzący: dr inż. Paulina Wiecińska Gmach Technologii

Bardziej szczegółowo

Spis treści Przedmowa

Spis treści Przedmowa Spis treści Przedmowa 1. Wprowadzenie do problematyki konstruowania - Marek Dietrich (p. 1.1, 1.2), Włodzimierz Ozimowski (p. 1.3 -i-1.7), Jacek Stupnicki (p. l.8) 1.1. Proces konstruowania 1.2. Kryteria

Bardziej szczegółowo

ĆWICZENIE 1 STATYCZNA PRÓBA ROZCIĄGANIA METALI - UPROSZCZONA. 1. Protokół próby rozciągania Rodzaj badanego materiału. 1.2.

ĆWICZENIE 1 STATYCZNA PRÓBA ROZCIĄGANIA METALI - UPROSZCZONA. 1. Protokół próby rozciągania Rodzaj badanego materiału. 1.2. Ocena Laboratorium Dydaktyczne Zakład Wytrzymałości Materiałów, W2/Z7 Dzień i godzina ćw. Imię i Nazwisko ĆWICZENIE 1 STATYCZNA PRÓBA ROZCIĄGANIA METALI - UPROSZCZONA 1. Protokół próby rozciągania 1.1.

Bardziej szczegółowo

Temat: NAROST NA OSTRZU NARZĘDZIA

Temat: NAROST NA OSTRZU NARZĘDZIA AKADEMIA TECHNICZNO-HUMANISTYCZNA w Bielsku-Białej Katedra Technologii Maszyn i Automatyzacji Ćwiczenie wykonano: dnia:... Wykonał:... Wydział:... Kierunek:... Rok akadem.:... Semestr:... Ćwiczenie zaliczono:

Bardziej szczegółowo