INSTRUKCJA DO ĆWICZEŃ

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "INSTRUKCJA DO ĆWICZEŃ"

Transkrypt

1 UNIWERSYTET KAZIMIERZA WIELKIEGO Instytut Mechaniki Środowiska i Informatyki Stosowanej PRACOWNIA SPECJALISTYCZNA INSTRUKCJA DO ĆWICZEŃ Nr ćwiczenia TEMAT: Wyznaczanie porowatości objętościowej przez zanurzenie próbki w cieczy. Celem ćwiczenia jest zapoznanie się z podstawowymi metodami laboratoryjnego wyznaczania porowatości objętościowej materiałów porowatych oraz przeprowadzenie pomiarów porowatości materiałów metodą objętościowo - wagową. WYPOSAŻENIE STANOWISKA: 1. Waga laboratoryjna. 2. Suwmiarka. 3. Pompa próżniowa. 4. Próbki. 5. Instrukcja. LITERATURA:

2 1. Aksielrud G.A., Altszuler M.A., Ruch masy w ciałach porowatych, WNT, Warszawa Myślińska E., Laboratoryjne badanie gruntów, PWN, Warszawa Podstawy teoretyczne Wiele materiałów pochodzenia naturalnego i technicznie wytworzonych posiada w swej budowie wewnętrznej dużą liczbę pustych przestrzeni o wielkości względnie małej w porównaniu z wymiarem charakterystycznym samego ciała. Przestrzenie takie, niezależnie od ich kształtu i wymiarów nazywane są porami, a materiały, w których one występują materiałami porowatymi. Do materiałów porowatych technicznych i pochodzenia naturalnego należą: - grunty, skały, złoża węglowe, złoża roponośne, drewno, tkanki kostne, mięśnie, tkanki roślin, itp., - tworzywa sztuczne piankowe (pianki poliestrowe, poliuretanowe, szkło piankowe), włókniny, błony półprzepuszczalne, betony, ceramika, spieki metali, pumeks, itp. Wzajemnie połączone pory tworzą w materiale porowatym przestrzeń porową, przeważnie wypełnioną płynem, powietrzem, wodą, gazem ziemnym, ropą itd., który może się przemieszczać. Część stałą takich materiałów nazywamy szkieletem. W zależności od stopnia połączenia porów między sobą oraz z otoczeniem rozróżnia się pory przelotowe, nieprzelotowe (ślepe) i zamknięte. Przepływ cieczy i gazów możliwy jest tylko w porach otwartych. W porach takich przepływowi płynu towarzyszyć mogą zjawiska wymiany ciepła, filtracji, dyfuzji, sorpcji a także reakcji chemicznych. Z tego powodu objętość porów połączonych nazywana jest często objętością aktywną porów lub 2

3 objętością efektywną. Objętość wszystkich porów nazywana jest objętością całkowitą porów. Niezależnie od składu chemicznego i rodzaju materiałów porowatych różniących się własnościami fizycznymi, wspólną cechą takich materiałów jest wewnętrzna struktura wzajemnie połączonych porów. Do najważniejszych parametrów charakteryzujących strukturę materiałów porowatych należą: - porowatość objętościowa, - przepuszczalność, - powierzchnia właściwa. Porowatość objętościowa materiału porowatego oznaczana jest przez f v i definiowana jako stosunek objętości porów p zawartych w próbce materiału porowatego do całkowitej objętości próbki, tj. (1) f v p =, 0 f v 1. Ze względu na zależność (2) + p s = porowatość objętościową możemy zdefiniować równoważnie wzorem (3) f v s = = 1 s 3

4 gdzie s jest objętością materiału szkieletu w próbce. Dla materiałów porowatych złożonych z regularnie rozmieszczonych cząstek np. z kulek porowatość objętościowa może być obliczona na podstawie wymiarów i rozmieszczenia kulek. Nie zależy ona od wymiarów cząstek, które tworzą ośrodek, zależy natomiast od kształtu tych cząstek i ich rozmieszczenia w materiale porowatym. Dla rzeczywistych materiałów porowatych, których geometria porów jest bardzo złożona, bezpośrednie obliczenie porowatości jest trudne do wykonania. W takim przypadku porowatość objętościową wyznacza się eksperymentalnie wykorzystując definicje (1) bądź (3). W materiałach o złożonej budowie wewnętrznej porów obok tak zdefiniowanej porowatości objętościowej, nazywanej również porowatością całkowitą, wyróżniamy także porowatość: - rzeczywistą, - aktywną, - zamkniętą. Porowatość rzeczywista jest to stosunek objętości porów otwartych zawartych w próbce materiału porowatego do całkowitej objętości próbki. W ciałach o małej zawartości porów zamkniętych porowatość całkowita i rzeczywista przyjmują zbliżone wartości. Porowatość zamknięta jest różnicą porowatości całkowitej i rzeczywistej. W takich materiałach porowatych jak: szkło piankowe, piankowe tworzywa sztuczne, niektóre spieki ceramiczne i z proszków metali większą część przestrzeni porowej tworzą pory zamknięte. Porowatość aktywna jest to stosunek objętości porów przelotowych, przez które może zachodzić przepływ płynu, zawartych w jednostce objętości materiału porowatego. Przepuszczalność jest to zdolność materiału porowatego do przepuszczania cieczy i gazów przez przestrzeń porową pod wpływem różnicy ciśnień. 4

5 Przepuszczalność jest jednym z kryteriów oceny właściwości izolacyjnych i zdolności przepuszczania płynów materiałów budowlanych, izolacji cieplnych, materiałów filtracyjnych, sorbentów i katalizatorów. Przepuszczalność silnie zależy od powierzchni właściwej. Powierzchnia właściwa jest to stosunek pola powierzchni wewnętrznej porów zawartych w próbce materiału porowatego do objętości tej próbki. Powierzchnia właściwa jest ważną cechą przepuszczalnych materiałów porowatych, decyduje bowiem o przebiegu tych procesów, dla których wielkość rozwinięcia powierzchni porów ma podstawowe znaczenie (np. sorbenty, katalizatory, wypełniacze jonowe, izolacje cieplne). 2. Podstawowe metody wyznaczania porowatości objętościowej Z definicji (1) porowatości objętościowej f v próbki materiału porowatego, którą można zapisać w postaci (4) f v = p = 1 - s wynika, że dla określenia porowatości objętościowej należy wyznaczyć dwie z trzech następujących wielkości: - objętość próbki, p - objętość porów w próbce, s - objętość materiału szkieletu w próbce. Z tego względu przy ekstremalnym wyznaczaniu porowatości wykorzystywane są te wszystkie metody, które umożliwiają określenie wartości tych objętości. 5

6 Jeżeli próbka ma kształt regularny, to objętość próbki określa się mierząc jej wymiary. W przypadku, gdy próbka ma kształt nieregularny, jej objętość jest wyznaczana eksperymentalnie, przy użyciu piknometru. Pomiar ten należy przeprowadzić jednak w taki sposób, aby wykluczyć możliwość nasycenia próbki w czasie pomiaru. W tym celu badaną próbkę nasyca się przed badaniem cieczą dobrze zwilżającą jej powierzchnię. Można również pokryć ją nieprzepuszczalną warstwą parafiny lub kolodium. Stosuje się również hydrofobizującą obróbkę związkami krzemoorganicznymi, zabezpieczającą próbkę przed nasiąkaniem wodą. Jako ciecz piknometryczną często stosuje się rtęć, która w wielu przypadkach zwilża ale nie wsiąka do większości próbek. Objętość porów wyznacza się mierząc ilość cieczy lub gazu, które wniknęły do wnętrza próbki. Jako ciecz piknometryczną stosuje się, obok rtęci, naftę, benzen, czterochlorek węgla, alkohol etylowy i wodę. Napełnianie porów cieczą zwilżającą przebiega samoczynnie, w wyniku działania sił kapilarnych, natomiast napełnianie porów cieczą nie zwilżającą wymaga działania ciśnienia zewnętrznego. Eksperymentalny pomiar objętości, s, p próbki materiału porowatego może być równoważnie zastąpiony pomiarem gęstości pozornej szkieletu (5) ρ a = m s oraz jego gęstości właściwej (6) m s ρ s =, s gdyż obie te wielkości wyznaczają wartość porowatości f v. Mamy bowiem 6

7 f = 1 m s s = 1. ms s ρa f = 1 (7) ρs Laboratoryjnie porowatość objętościową przepuszczalnych materiałów porowatych wyznacza się trzema głównymi metodami: 1. wagową, 2. przez zanurzenie próbki w cieczy, 3. sprężania gazu Wyznaczanie porowatości objętościowej metodą wagową Metoda wagowa wyznaczania porowatości objętościowej materiałów porowatych polega na wykorzystaniu wagi jako głównego przyrządu pomiarowego. Metodą tą można wyznaczyć porowatość próbki materiału o regularnych kształtach, którego gęstość właściwa jest znana lub porowatych materiałów sypkich. W pierwszym przypadku ważąc próbkę materiału wyznaczamy masę próbki m s, a dokonując pomiarów geometrii próbki wyznaczamy jej objętość. Te dwie wielkości umożliwiają wyznaczenie gęstości pozornej szkieletu ρ a, zgodnie ze wzorem (5). Gęstość ρ a oraz znana wartość gęstości właściwej ρ s podstawione do wzoru (7) określają porowatość f v próbki. Metodą tą wyznacza się między innymi porowatość objętościową włóknistych materiałów filtracyjnych o dużej porowatości ( f v > 0,9 ) np. włóknin. 7

8 Przy wyznaczaniu porowatości materiałów sypkich znajomość gęstości pozornej szkieletu nie jest konieczna. Niezbędna jest natomiast ciecz o znanej gęstości, np. woda oraz naczynie o określonej objętości. W metodzie tej napełniamy naczynie płynem i zasypujemy całkowicie ziarnistym materiałem, lekko ubijając go w naczyniu. W trakcie zasypywania nadmiar cieczy wyleje się z naczynia. Taka kolejność postępowania ma na celu zapewnienie by płyn pozostający w naczyniu całkowicie wypełniał pory materiału porowatego. Zważenie tak przygotowanego naczynia umożliwia określenie całkowitej jego masy m. Jest ona sumą mas trzech składników, (8) m = m n + m s + m p, masy naczynia m n, masy materiału sypkiego m s oraz masy płynu m p. Ponieważ masę naczynia i masę materiału sypkiego możemy wyznaczyć ważąc każdy z tych składników oddzielnie (po ich uprzednim wysuszeniu), wyrażenie (8) umożliwia określenie masy płynu m p wypełniającego pory szkieletu co ze względu na znaną wartość gęstości płynu jest równoznaczne z wyznaczeniem objętości porów. m p (9) p = f ρ Wykorzystując definicję (4) oraz zależności (8), (9) porowatość objętościowa wyznaczona tą metodą dana będzie wzorem (10) f = m mn m f ρ s 8

9 2.2. Wyznaczanie porowatości objętościowej przez zanurzenie próbki w cieczy Metoda ta polega na zważeniu próbki o oznaczonej objętości całkowitej w powietrzu, a następnie w cieczy hydrofobowej (woda, benzyna, nafta, itp.). Na tej podstawie oblicza się objętość s jaką zajmuje materiał szkieletu w próbce: m2 m (11) s = f ρ 1 gdzie: m 1 - masa próbki w cieczy, m 2 - masa próbki w powietrzu, ρ f - gęstość cieczy. Mając objętość całkowitą próbki porowatość można obliczyć ze wzoru (4), tj. (12) f s = 1. Naczynie z cieczą I próbką Rys. 1 Schemat wyznaczania masy próbki w zanurzeniu w cieczy. 9

10 3. Opis stanowiska i procedury wyznaczania porowatości objętościowej metodą wagową Opis stanowiska pomiarowego W skład stanowiska pomiarowego wchodzi: waga laboratoryjna, stanowisko próżniowe, (obsługiwane przez prowadzącego), suwmiarka, woda destylowana, naczynie na próbki z wodą, materiał na próbki lub próbki Przebieg ćwiczenia 1. Przygotowanie 3 próbek tj. wycięcie próbek z materiału badanego o regularnych kształtach aby możliwy był pomiar objętości próbki. 2. Pomiar wymiarów próbek oraz wyznaczenie objętości próbek. 3. Pomiar masy próbek w powietrzu (suchych) m Nasycanie próżniowe próbek jeśli jest wymagane. 5. Pomiar masy próbek w wodzie m Wyznaczenie gęstości materiału ρ. 7. Wyznaczenie objętości szkieletu S. 8. Wyznaczenie porowatości materiału f. TREŚĆ SPRAWOZDANIA : 1. Krótki opis stanowiska laboratoryjnego i metody pomiaru 2. Zestawienie danych 3. Zestawienie wyników tabela 4. Uwagi i wnioski 10

POLITECHNIKA BIAŁOSTOCKA

POLITECHNIKA BIAŁOSTOCKA POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: Towaroznawstwo Kod przedmiotu: LS03282; LN03282 Ćwiczenie 2 WYZNACZANIE GĘSTOSCI CIAŁ STAŁYCH Autorzy:

Bardziej szczegółowo

Wersja z dnia: Metoda piknometryczna jest metodą porównawczą. Wyznaczanie gęstości substancji ciekłych

Wersja z dnia: Metoda piknometryczna jest metodą porównawczą. Wyznaczanie gęstości substancji ciekłych Wersja z dnia: 2008-02-25 Wyznaczanie gęstości metodą piknometryczną Gęstości ciała (ρ) jest definiowana jako masa (m) jednostkowej objętości tego ciała (V). Jeśli ciało jest jednorodne, to jego gęstość

Bardziej szczegółowo

POLITECHNIKA BIAŁOSTOCKA

POLITECHNIKA BIAŁOSTOCKA POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: Towaroznawstwo Kod przedmiotu: LS03282; LN03282 Ćwiczenie 1 WYZNACZANIE GĘSTOSCI CIECZY Autorzy:

Bardziej szczegółowo

POLITECHNIKA BIAŁOSTOCKA

POLITECHNIKA BIAŁOSTOCKA POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: Towaroznawstwo Kod przedmiotu: LS03282; LN03282 Ćwiczenie 2 WYZNACZANIE GĘSTOSCI CIAŁ STAŁYCH Autorzy:

Bardziej szczegółowo

Ćwiczenie 2: Wyznaczanie gęstości i lepkości płynów nieniutonowskich

Ćwiczenie 2: Wyznaczanie gęstości i lepkości płynów nieniutonowskich Gęstość 1. Część teoretyczna Gęstość () cieczy w danej temperaturze definiowana jest jako iloraz jej masy (m) do objętości (V) jaką zajmuje: Gęstość wyrażana jest w jednostkach układu SI. Gęstość cieczy

Bardziej szczegółowo

1. Część teoretyczna. Przepływ jednofazowy przez złoże nieruchome i ruchome

1. Część teoretyczna. Przepływ jednofazowy przez złoże nieruchome i ruchome 1. Część teoretyczna Przepływ jednofazowy przez złoże nieruchome i ruchome Przepływ płynu przez warstwę luźno usypanego złoża występuje w wielu aparatach, np. w kolumnie absorpcyjnej, rektyfikacyjnej,

Bardziej szczegółowo

Ćwiczenie 3: Wyznaczanie gęstości pozornej i porowatości złoża, przepływ gazu przez złoże suche, opory przepływu.

Ćwiczenie 3: Wyznaczanie gęstości pozornej i porowatości złoża, przepływ gazu przez złoże suche, opory przepływu. 1. Część teoretyczna Przepływ jednofazowy przez złoże nieruchome i ruchome Przepływ płynu przez warstwę luźno usypanego złoża występuje w wielu aparatach, np. w kolumnie absorpcyjnej, rektyfikacyjnej,

Bardziej szczegółowo

POLITECHNIKA BIAŁOSTOCKA

POLITECHNIKA BIAŁOSTOCKA POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: Podstawy techniki i technologii Kod przedmiotu: IS01123; IN01123 Ćwiczenie 3 WYZNACZANIE GĘSTOSCI

Bardziej szczegółowo

INSTYTUT INŻYNIERII MATERIAŁOWEJ

INSTYTUT INŻYNIERII MATERIAŁOWEJ Ćwiczenie: Oznaczanie chłonności wody tworzyw sztucznych 1 Cel ćwiczenia Celem ćwiczenia jest oznaczenie chłonności wody przez próbkę tworzywa jedną z metod przedstawionych w niniejszej instrukcji. 2 Określenie

Bardziej szczegółowo

1. Wprowadzenie: dt q = - λ dx. q = lim F

1. Wprowadzenie: dt q = - λ dx. q = lim F PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W PILE INSTYTUT POLITECHNICZNY Zakład Budowy i Eksploatacji Maszyn PRACOWNIA TERMODYNAMIKI TECHNICZNEJ INSTRUKCJA Temat ćwiczenia: WYZNACZANIE WSPÓŁCZYNNIKA PRZEWODNOŚCI

Bardziej szczegółowo

Zachodniopomorski Uniwersytet Technologiczny INSTYTUT INŻYNIERII MATERIAŁOWEJ ZAKŁAD METALOZNAWSTWA I ODLEWNICTWA

Zachodniopomorski Uniwersytet Technologiczny INSTYTUT INŻYNIERII MATERIAŁOWEJ ZAKŁAD METALOZNAWSTWA I ODLEWNICTWA Zachodniopomorski Uniwersytet Technologiczny INSTYTUT INŻYNIERII MATERIAŁOWEJ ZAKŁAD METALOZNAWSTWA I ODLEWNICTWA PRZEDMIOT: INŻYNIERIA WARSTWY WIERZCHNIEJ Temat ćwiczenia: Badanie prędkości zużycia materiałów

Bardziej szczegółowo

1. BADANIE SPIEKÓW 1.1. Oznaczanie gęstości i porowatości spieków

1. BADANIE SPIEKÓW 1.1. Oznaczanie gęstości i porowatości spieków 1. BADANIE SPIEKÓW 1.1. Oznaczanie gęstości i porowatości spieków Gęstością teoretyczną spieku jest stosunek jego masy do jego objętości rzeczywistej, to jest objętości całkowitej pomniejszonej o objętość

Bardziej szczegółowo

BADANIE PARAMETRÓW PROCESU SUSZENIA

BADANIE PARAMETRÓW PROCESU SUSZENIA BADANIE PARAMETRÓW PROCESU SUSZENIA 1. Cel ćwiczenia Celem ćwiczenia jest poznanie budowy i zasady działania suszarki konwekcyjnej z mikrofalowym wspomaganiem oraz wyznaczenie krzywej suszenia dla suszenia

Bardziej szczegółowo

Ćwiczenie 1: Podstawowe parametry stanu.

Ćwiczenie 1: Podstawowe parametry stanu. Gęstość 1. Część teoretyczna Gęstość () cieczy w danej temperaturze definiowana jest jako iloraz jej masy (m) do objętości (V) jaką zajmuje: m V kg Gęstość wyrażana jest w jednostkach układu SI Gęstość

Bardziej szczegółowo

WSPÓŁCZYNNIK PRZEJMOWANIA CIEPŁA PRZEZ KONWEKCJĘ

WSPÓŁCZYNNIK PRZEJMOWANIA CIEPŁA PRZEZ KONWEKCJĘ INSYU INFORMAYKI SOSOWANEJ POLIECHNIKI ŁÓDZKIEJ Ćwiczenie Nr2 WSPÓŁCZYNNIK PRZEJMOWANIA CIEPŁA PRZEZ KONWEKCJĘ 1.WPROWADZENIE. Wymiana ciepła pomiędzy układami termodynamicznymi może być realizowana na

Bardziej szczegółowo

BADANIE PROCESU ROZDRABNIANIA MATERIAŁÓW ZIARNISTYCH 1/8 PROCESY MECHANICZNE I URZĄDZENIA. Ćwiczenie L6

BADANIE PROCESU ROZDRABNIANIA MATERIAŁÓW ZIARNISTYCH 1/8 PROCESY MECHANICZNE I URZĄDZENIA. Ćwiczenie L6 BADANIE PROCESU ROZDRABNIANIA MATERIAŁÓW ZIARNISTYCH /8 PROCESY MECHANICZNE I URZĄDZENIA Ćwiczenie L6 Temat: BADANIE PROCESU ROZDRABNIANIA MATERIAŁÓW ZIARNISTYCH Cel ćwiczenia: Poznanie metod pomiaru wielkości

Bardziej szczegółowo

POLITECHNIKA BIAŁOSTOCKA

POLITECHNIKA BIAŁOSTOCKA POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: Towaroznawstwo Kod przedmiotu: LS03282; LN03282 Ćwiczenie 3 WYZNACZANIE GĘSTOSCI SYPKICH CIAŁ STAŁYCH

Bardziej szczegółowo

POLITECHNIKA BIAŁOSTOCKA

POLITECHNIKA BIAŁOSTOCKA POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: Towaroznawstwo Kod przedmiotu: LS03282; LN03282 Ćwiczenie 1 WYZNACZANIE GĘSTOSCI CIECZY Autorzy:

Bardziej szczegółowo

OFERTA BADAŃ MATERIAŁOWYCH Instytutu Mechaniki i Informatyki Stosowanej Uniwersytetu Kazimierza Wielkiego

OFERTA BADAŃ MATERIAŁOWYCH Instytutu Mechaniki i Informatyki Stosowanej Uniwersytetu Kazimierza Wielkiego OFERTA BADAŃ MATERIAŁOWYCH Instytutu Mechaniki i Informatyki Stosowanej Uniwersytetu Kazimierza Wielkiego Mariusz Kaczmarek J. Kubik, M. Cieszko, R. Drelich, M. Pakuła, M. Macko, K. Tyszczuk, J. Łukowski,

Bardziej szczegółowo

Wyznaczanie współczynnika sprężystości sprężyn i ich układów

Wyznaczanie współczynnika sprężystości sprężyn i ich układów Ćwiczenie 63 Wyznaczanie współczynnika sprężystości sprężyn i ich układów 63.1. Zasada ćwiczenia W ćwiczeniu określa się współczynnik sprężystości pojedynczych sprężyn i ich układów, mierząc wydłużenie

Bardziej szczegółowo

III r. EiP (Technologia Chemiczna)

III r. EiP (Technologia Chemiczna) AKADEMIA GÓRNICZO HUTNICZA WYDZIAŁ ENERGETYKI I PALIW III r. EiP (Technologia Chemiczna) INŻYNIERIA CHEMICZNA I PROCESOWA (przenoszenie pędu) Prof. dr hab. Leszek CZEPIRSKI Kontakt: A4, p. 424 Tel. 12

Bardziej szczegółowo

FILTRACJA CIŚNIENIOWA

FILTRACJA CIŚNIENIOWA KATEDRA TECHNIKI WODNO-MUŁOWEJ I UTYLIZACJI ODPADÓW INSTRUKCJA DO LABORATORIUM INŻYNIERIA PORCESOWA FILTRACJA CIŚNIENIOWA BADANIE WPŁYWU CIŚNIENIA NA STOPIEŃ ODWODNIENIA PLACKA FILTRACYJNEGO KOSZALIN 2014

Bardziej szczegółowo

Teoria i praktyka procesów ceramicznych laboratorium Studia Magisterskie Uzupełniające WIMIC AGH

Teoria i praktyka procesów ceramicznych laboratorium Studia Magisterskie Uzupełniające WIMIC AGH Teoria i praktyka procesów ceramicznych laboratorium Studia Magisterskie Uzupełniające WIMIC AGH Ćwiczenie 1 OZNACZENIE GĘSTOŚCI RZECZYWISTEJ I POZORNEJ, POROWATOŚCI I NASIĄKLIWOŚCI TWORZYW CERAMICZNYCH

Bardziej szczegółowo

INSTYTUT INŻYNIERII MATERIAŁOWEJ

INSTYTUT INŻYNIERII MATERIAŁOWEJ Ćwiczenie: Oznaczanie gęstości tworzyw sztucznych 1 Cel ćwiczenia Celem ćwiczenia jest oznaczenie gęstości tworzyw sztucznych różnymi metodami i porównanie otrzymanych wartości dla określonego tworzywa.

Bardziej szczegółowo

METODA PODSTAWOWA POMIARU NA PRZYKŁADZIE WYZNACZANIA GĘSTOŚCI. BŁĘDY W METODZIE POŚREDNIEJ

METODA PODSTAWOWA POMIARU NA PRZYKŁADZIE WYZNACZANIA GĘSTOŚCI. BŁĘDY W METODZIE POŚREDNIEJ Podstawy Metrologii i Technik Eksperymentu Laboratorium METODA PODSTAWOWA POMIARU NA PRZYKŁADZIE WYZNACZANIA GĘSTOŚCI. BŁĘDY W METODZIE POŚREDNIEJ Instrukcja do ćwiczenia nr Opracował: dr inż. Arkadiusz

Bardziej szczegółowo

Warunki izochoryczno-izotermiczne

Warunki izochoryczno-izotermiczne WYKŁAD 5 Pojęcie potencjału chemicznego. Układy jednoskładnikowe W zależności od warunków termodynamicznych potencjał chemiczny substancji czystej definiujemy następująco: Warunki izobaryczno-izotermiczne

Bardziej szczegółowo

Kinetyka procesu suszenia w suszarce fontannowej

Kinetyka procesu suszenia w suszarce fontannowej Kinetyka procesu suszenia w suszarce fontannowej 1. Wstęp 1 Aparaty fluidyzacyjne o stałym przekroju, ze względu na: niemożliwość pracy w zakresie wyższych prędkości przepływu gazu, trudność suszenia materiałów

Bardziej szczegółowo

Ćw. M 12 Pomiar współczynnika lepkości cieczy metodą Stokesa i za pomocą wiskozymetru Ostwalda.

Ćw. M 12 Pomiar współczynnika lepkości cieczy metodą Stokesa i za pomocą wiskozymetru Ostwalda. Ćw. M 12 Pomiar współczynnika lepkości cieczy metodą Stokesa i za pomocą wiskozymetru Ostwalda. Zagadnienia: Oddziaływania międzycząsteczkowe. Ciecze idealne i rzeczywiste. Zjawisko lepkości. Równanie

Bardziej szczegółowo

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał Statyka Cieczy i Gazów Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał 1. Podstawowe założenia teorii kinetyczno-molekularnej budowy ciał: Ciała zbudowane są z cząsteczek. Pomiędzy cząsteczkami

Bardziej szczegółowo

Ćwiczenie 2: Wyznaczanie gęstości i lepkości płynów. Rodzaje przepływów.

Ćwiczenie 2: Wyznaczanie gęstości i lepkości płynów. Rodzaje przepływów. Ćwiczenie : Wyznaczanie gęstości i lepkości płynów. Rodzaje przepływów. Gęstość 1. Część teoretyczna Gęstość () cieczy w danej temperaturze definiowana jest jako iloraz jej masy (m) do objętości (V) jaką

Bardziej szczegółowo

Człowiek najlepsza inwestycja FENIKS

Człowiek najlepsza inwestycja FENIKS Człowiek najlepsza inwestycja ENIKS - długofalowy program odbudowy, popularyzacji i wspomagania fizyki w szkołach w celu rozwijania podstawowych kompetencji naukowo-technicznych, matematycznych i informatycznych

Bardziej szczegółowo

KLIWOŚCI WYZNACZANIE NASIĄKLIWO. eu dział laboratoria. Więcej na: www.tremolo.prv.pl, www.tremolo.elektroda.eu. Robert Gabor, Krzysztof Klepacz

KLIWOŚCI WYZNACZANIE NASIĄKLIWO. eu dział laboratoria. Więcej na: www.tremolo.prv.pl, www.tremolo.elektroda.eu. Robert Gabor, Krzysztof Klepacz Robert Gabor, Krzysztof Klepacz WYZNACZANIE NASIĄKLIWO KLIWOŚCI Więcej na: www.tremolo.prv.pl, www.tremolo.elektroda.eu eu dział laboratoria Materiały ceramiczne Materiały ceramiczne są tworzone głównie

Bardziej szczegółowo

Materiały pomocnicze do laboratorium z przedmiotu Metody i Narzędzia Symulacji Komputerowej

Materiały pomocnicze do laboratorium z przedmiotu Metody i Narzędzia Symulacji Komputerowej Materiały pomocnicze do laboratorium z przedmiotu Metody i Narzędzia Symulacji Komputerowej w Systemach Technicznych Symulacja prosta dyszy pomiarowej Bendemanna Opracował: dr inż. Andrzej J. Zmysłowski

Bardziej szczegółowo

POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI. Ćwiczenie 5 POMIAR WZGLĘDNEJ LEPKOŚCI CIECZY PRZY UŻYCIU

POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI. Ćwiczenie 5 POMIAR WZGLĘDNEJ LEPKOŚCI CIECZY PRZY UŻYCIU POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI Ćwiczenie 5 POMIAR WZGLĘDNEJ LEPKOŚCI CIECZY PRZY UŻYCIU WISKOZYMETRU KAPILARNEGO I. WSTĘP TEORETYCZNY Ciecze pod względem struktury

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 13: Współczynnik lepkości

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 13: Współczynnik lepkości Nazwisko i imię: Zespół: Data: Ćwiczenie nr 13: Współczynnik lepkości Cel ćwiczenia: Wyznaczenie współczynnika lepkości gliceryny metodą Stokesa, zapoznanie się z własnościami cieczy lepkiej. Literatura

Bardziej szczegółowo

Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze.

Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze. Siły w przyrodzie Oddziaływania Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze. Występujące w przyrodzie rodzaje oddziaływań dzielimy na:

Bardziej szczegółowo

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Wyznaczanie ciepła właściwego cieczy metodą kalorymetryczną

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Wyznaczanie ciepła właściwego cieczy metodą kalorymetryczną Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Wyznaczanie ciepła właściwego cieczy metodą kalorymetryczną opracowanie ćwiczenia: dr J. Woźnicka, dr S. Belica ćwiczenie nr 38 Zakres zagadnień obowiązujących

Bardziej szczegółowo

WYDZIAŁ LABORATORIUM FIZYCZNE

WYDZIAŁ LABORATORIUM FIZYCZNE 1 W S E i Z W WARSZAWIE WYDZIAŁ LABORATORIUM FIZYCZNE Ćwiczenie Nr 3 Temat: WYZNACZNIE WSPÓŁCZYNNIKA LEPKOŚCI METODĄ STOKESA Warszawa 2009 2 1. Podstawy fizyczne Zarówno przy przepływach płynów (ciecze

Bardziej szczegółowo

Wyznaczenie gęstości cieczy za pomocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), komplet odważników, obciążnik, ławeczka.

Wyznaczenie gęstości cieczy za pomocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), komplet odważników, obciążnik, ławeczka. Cel ćwiczenia: WYZNACZANIE GĘSTOŚCI CIECZY ZA POMOCĄ WAGI HYDROSTATYCZNEJ Wyznaczenie gęstości cieczy za poocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), koplet odważników, obciążnik,

Bardziej szczegółowo

Data wykonania ćwiczenia Data oddania sprawozdania Ilość pkt/ocena... Nazwisko Imię:

Data wykonania ćwiczenia Data oddania sprawozdania Ilość pkt/ocena... Nazwisko Imię: Zakład Współdziałania Budowli z PodłoŜem, WIL, Politechnika Krakowska, Ćwiczenie 3 1/5 Data wykonania ćwiczenia Data oddania sprawozdania Ilość pkt/ocena.... Nazwisko Imię: Rok akad.: 2006/2007 Grupa:

Bardziej szczegółowo

Polskie Normy opracowane przez Komitet Techniczny nr 277 ds. Gazownictwa

Polskie Normy opracowane przez Komitet Techniczny nr 277 ds. Gazownictwa Polskie Normy opracowane przez Komitet Techniczny nr 277 ds. Gazownictwa Podkomitet ds. Przesyłu Paliw Gazowych 1. 334+A1:2011 Reduktory ciśnienia gazu dla ciśnień wejściowych do 100 bar 2. 1594:2014-02

Bardziej szczegółowo

Ćwiczenie 8: 1. CEL ĆWICZENIA

Ćwiczenie 8: 1. CEL ĆWICZENIA Ćwiczenie 8: BADANIE PROCESU FILTRACJI ZAWIESINY 1. CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się z przebiegiem procesu filtracji izobarycznej oraz wyznaczenie stałych filtracji i współczynnika ściśliwości

Bardziej szczegółowo

Kontrola procesu spalania

Kontrola procesu spalania Kontrola procesu spalania Spalanie paliw polega na gwałtownym utlenieniu składników palnych zawartych w paliwie przebiegającym z wydzieleniem ciepła i zjawiskami świetlnymi. Ostatecznymi produktami utleniania

Bardziej szczegółowo

Szczegółowy rozkład materiału z fizyki dla klasy I gimnazjum zgodny z nową podstawą programową.

Szczegółowy rozkład materiału z fizyki dla klasy I gimnazjum zgodny z nową podstawą programową. Szczegółowy rozkład materiału z fizyki dla klasy I gimnazjum zgodny z nową podstawą programową. Klasa I Lekcja wstępna omówienie programu nauczania i Przedmiotowego Systemu Oceniania Tytuł rozdziału w

Bardziej szczegółowo

POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA

POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA ĆWICZENIE LABORATORYJNE NR 1 Temat: Wyznaczanie współczynnika

Bardziej szczegółowo

WYZNACZANIE ROZMIARÓW

WYZNACZANIE ROZMIARÓW POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI Ćwiczenie 6 WYZNACZANIE ROZMIARÓW MAKROCZĄSTECZEK I. WSTĘP TEORETYCZNY Procesy zachodzące między atomami lub cząsteczkami w skali molekularnej

Bardziej szczegółowo

2013-06-12. Konsolidacja Nanoproszków I - Formowanie. Zastosowanie Nanoproszków. Konsolidacja. Konsolidacja Nanoproszków - Formowanie

2013-06-12. Konsolidacja Nanoproszków I - Formowanie. Zastosowanie Nanoproszków. Konsolidacja. Konsolidacja Nanoproszków - Formowanie Konsolidacja Nanoproszków I - Formowanie Zastosowanie Nanoproszków w stanie zdyspergowanym katalizatory, farby, wypełniacze w stanie zestalonym(?): układy porowate katalizatory, sensory, elektrody, układy

Bardziej szczegółowo

ZAKŁAD GEOMECHANIKI. BADANIA LABORATORYJNE -Właściwości fizyczne. gęstość porowatość nasiąkliwość KOMPLEKSOWE BADANIA WŁAŚCIWOŚCI SKAŁ

ZAKŁAD GEOMECHANIKI. BADANIA LABORATORYJNE -Właściwości fizyczne. gęstość porowatość nasiąkliwość KOMPLEKSOWE BADANIA WŁAŚCIWOŚCI SKAŁ KOMPLEKSOWE BADANIA WŁAŚCIWOŚCI SKAŁ BADANIA LABORATORYJNE -Właściwości fizyczne gęstość porowatość nasiąkliwość ZAKŁAD GEOMECHANIKI POLSKA NORMA PN-EN 1936, październik 2001 METODY BADAŃ KAMIENIA NATURALNEGO

Bardziej szczegółowo

Ćwiczenie 402. Wyznaczanie siły wyporu i gęstości ciał. PROSTOPADŁOŚCIAN (wpisz nazwę ciała) WALEC (wpisz numer z wieczka)

Ćwiczenie 402. Wyznaczanie siły wyporu i gęstości ciał. PROSTOPADŁOŚCIAN (wpisz nazwę ciała) WALEC (wpisz numer z wieczka) 2012 Katedra Fizyki SGGW Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Ćwiczenie 402 Godzina... Wyznaczanie siły wyporu i gęstości ciał WIELKOŚCI FIZYCZNE JEDNOSTKI WALEC (wpisz

Bardziej szczegółowo

Ciśnienie definiujemy jako stosunek siły parcia działającej na jednostkę powierzchni do wielkości tej powierzchni.

Ciśnienie definiujemy jako stosunek siły parcia działającej na jednostkę powierzchni do wielkości tej powierzchni. Ciśnienie i gęstość płynów Autorzy: Zbigniew Kąkol, Bartek Wiendlocha Powszechnie przyjęty jest podział materii na ciała stałe i płyny. Pod pojęciem substancji, która może płynąć rozumiemy zarówno ciecze

Bardziej szczegółowo

NAGRZEWANIE ELEKTRODOWE

NAGRZEWANIE ELEKTRODOWE INSTYTUT INFORMATYKI STOSOWANEJ POLITECHNIKI ŁÓDZKIEJ Ćwiczenia Nr 7 NAGRZEWANIE ELEKTRODOWE 1.WPROWADZENIE. Nagrzewanie elektrodowe jest to nagrzewanie elektryczne oparte na wydzielaniu, ciepła przy przepływie

Bardziej szczegółowo

Tabela wymagań programowych i kategorii celów poznawczych

Tabela wymagań programowych i kategorii celów poznawczych Przedmiotowe Ocenianie część 1 nowej wersji cyklu Ciekawa fizyka zgodnego z NPP Tabela wymagań programowych i kategorii celów poznawczych Temat lekcji w podręczniku 1. Czym zajmuje się fizyka, czyli o

Bardziej szczegółowo

Politechnika Gdańska Wydział Chemiczny. Katedra Technologii Chemicznej

Politechnika Gdańska Wydział Chemiczny. Katedra Technologii Chemicznej Politechnika Gdańska Wydział Cheiczny Katedra Technologii Cheicznej Bezpieczeństwo Środowiskowe: Badanie chłonności sorbentów Przygotował: Dr inż. Andrzej P. Nowak Część teoretyczna y są to rozdrobnione

Bardziej szczegółowo

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne OLITEHNIKA OZNAŃSKA INSTYTUT INŻYNIERII ŚRODOWISKA ROWADZĄY: mgr inż. Łukasz Amanowicz Systemy Ochrony owietrza Ćwiczenia Laboratoryjne 6 TEAT ĆWIZENIA: Oznaczanie bezwzględnej gęstości pyłu. OSOBY WYKONUJĄE

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ OZNACZANIE ŚREDNIEJ MASY CZĄSTECZKOWEJ POLIMERU WSTĘP Lepkość roztworu polimeru jest z reguły większa od lepkości rozpuszczalnika. Dla polimeru lepkość graniczna [η ] określa zmianę lepkości roztworu przypadającą

Bardziej szczegółowo

- naturalne materiały kamienie: skały zwarte, piaski, Ŝwiry; - ceramika porowata, zwarta, półszlachetna; - spoiwa mineralne: cement, wapno, gips; -

- naturalne materiały kamienie: skały zwarte, piaski, Ŝwiry; - ceramika porowata, zwarta, półszlachetna; - spoiwa mineralne: cement, wapno, gips; - - naturalne materiały kamienie: skały zwarte, piaski, Ŝwiry; - ceramika porowata, zwarta, półszlachetna; - spoiwa mineralne: cement, wapno, gips; - zaczyny, zaprawy, betony na spoiwach mineralnych; - masy,

Bardziej szczegółowo

Pomiary wybranych właściwości fizycznych mieszanin ziarnistych i pasz

Pomiary wybranych właściwości fizycznych mieszanin ziarnistych i pasz Katedra Inżynierii Systemów Wydział Nauk Technicznych Pomiary wybranych właściwości fizycznych mieszanin ziarnistych i pasz Rok. grupa.. Nr grupy laboratoryjnej. Imiona i nazwiska TEMAT: Pomiary wybranych

Bardziej szczegółowo

Hydrodynamika warstwy fluidalnej trójczynnikowej

Hydrodynamika warstwy fluidalnej trójczynnikowej Politechnika Śląska Gliwice Wydział Inżynierii Środowiska i Energetyki Katedra Technologii i Urządzeń Zagospodarowania Odpadów Ćwiczenia laboratoryjne Hydrodynamika warstwy fluidalnej trójczynnikowej PROWADZĄCY

Bardziej szczegółowo

Badania modelowe przelewu mierniczego

Badania modelowe przelewu mierniczego LABORATORIUM MECHANIKI PŁYNÓW Badania modelowe przelewu mierniczego dr inż. Przemysław Trzciński ZAKŁAD APARATURY PRZEMYSŁOWEJ POLITECHNIKA WARSZAWSKA WYDZ. BMiP, PŁOCK Płock 2007 1. Cel ćwiczenia Celem

Bardziej szczegółowo

LABORATORIUM MECHANIKI PŁYNÓW

LABORATORIUM MECHANIKI PŁYNÓW LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie nr 1 Pomiar własności fizycznych cieczy dr inż. Maria Boszko ZAKŁAD APARATURY PRZEMYSŁOWEJ POLITECHNIKA WARSZAWSKA, WYDZ. BMiP Płock 2001 1. Cel ćwiczenia Celem

Bardziej szczegółowo

Kryteria oceny uczniów

Kryteria oceny uczniów Kryteria oceny uczniów Ocena dopuszczająca (2) dostateczna (3) dobra (4) bardzo dobra (5) celująca (6) Poziom wymagań 70 % K + P K + P K + P + R K + P + R+ D K + P + R + D + W Temat lekcji w podręczniku

Bardziej szczegółowo

TERMOCHEMIA SPALANIA

TERMOCHEMIA SPALANIA TERMOCHEMIA SPALANIA I ZASADA TERMODYNAMIKI dq = dh Vdp W przemianach izobarycznych: dp = 0 dq = dh dh = c p dt dq = c p dt Q = T 2 T1 c p ( T)dT Q ciepło H - entalpia wewnętrzna V objętość P - ciśnienie

Bardziej szczegółowo

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Zastosowanie destylacji z parą wodną do oznaczania masy cząsteczkowej cieczy niemieszającej się z wodą opracował prof. B. Pałecz ćwiczenie nr 35 Zakres zagadnień

Bardziej szczegółowo

Wykład 5. przemysłu spożywczego- wykład 5

Wykład 5. przemysłu spożywczego- wykład 5 Wykład spożywczego- wykład Katedra Inżynierii i Aparatury Przemysłu Spożywczego 4maja2014 1/1 Układy gaz-ciecz Rozpuszczalnośćwybranychgazówwcieczachw20 o Cw g/100g cieczy CIECZ H 2 N 2 O 2 CO 2 H 2 S

Bardziej szczegółowo

WYKONUJEMY POMIARY. Ocenę DOSTATECZNĄ otrzymuje uczeń, który :

WYKONUJEMY POMIARY. Ocenę DOSTATECZNĄ otrzymuje uczeń, który : WYKONUJEMY POMIARY Ocenę DOPUSZCZAJĄCĄ otrzymuje uczeń, który : wie, w jakich jednostkach mierzy się masę, długość, czas, temperaturę wie, do pomiaru jakich wielkości służy barometr, menzurka i siłomierz

Bardziej szczegółowo

KONDUKCYJNA WYMIANA CIEPŁA - STYKOWY POMIAR TEMPERATURY

KONDUKCYJNA WYMIANA CIEPŁA - STYKOWY POMIAR TEMPERATURY IŃSTYTUT INFORMATYKI STOSOWANEJ POLITECHNIKI ŁÓDZKIEJ Ćwiczenie Nr1 KONDUKCYJNA WYMIANA CIEPŁA - STYKOWY POMIAR TEMPERATURY 1.WPROWADZENIE Przewodzenie ciepła (kondukcja) jest to wymiana ciepła między

Bardziej szczegółowo

Nauka o Materiałach. Wykład XI. Właściwości cieplne. Jerzy Lis

Nauka o Materiałach. Wykład XI. Właściwości cieplne. Jerzy Lis Nauka o Materiałach Wykład XI Właściwości cieplne Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Stabilność termiczna materiałów 2. Pełzanie wysokotemperaturowe 3. Przewodnictwo cieplne 4. Rozszerzalność

Bardziej szczegółowo

KOŃCOWOROCZNE KRYTERIA OCENIANIA Z FIZYKI DLA KLAS I. przygotowała mgr Magdalena Murawska

KOŃCOWOROCZNE KRYTERIA OCENIANIA Z FIZYKI DLA KLAS I. przygotowała mgr Magdalena Murawska KOŃCOWOROCZNE KRYTERIA OCENIANIA Z FIZYKI DLA KLAS I przygotowała mgr Magdalena Murawska Ocenę dopuszczającą otrzymuje uczeń, który: podaje definicję fizyki jako nauki. wykonuje pomiar jednej z podstawowych

Bardziej szczegółowo

AKADEMIA GÓRNICZO HUTNICZA INSTRUKCJE DO ĆWICZEŃ LABORATORYJNYCH: TECHNIKA PROCESÓW SPALANIA

AKADEMIA GÓRNICZO HUTNICZA INSTRUKCJE DO ĆWICZEŃ LABORATORYJNYCH: TECHNIKA PROCESÓW SPALANIA AKADEMIA GÓRNICZO HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE WYDZIAŁ INŻYNIERII METALI I INFORMATYKI PRZEMYSŁOWEJ KATEDRA TECHNIKI CIEPLNEJ I OCHRONY ŚRODOWISKA INSTRUKCJE DO ĆWICZEŃ LABORATORYJNYCH:

Bardziej szczegółowo

Wykład 2. Anna Ptaszek. 7 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 2. Anna Ptaszek 1 / 1

Wykład 2. Anna Ptaszek. 7 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 2. Anna Ptaszek 1 / 1 Wykład 2 Katedra Inżynierii i Aparatury Przemysłu Spożywczego 7 października 2015 1 / 1 Zjawiska koligatywne Rozpuszczenie w wodzie substancji nielotnej powoduje obniżenie prężności pary nasyconej P woda

Bardziej szczegółowo

SPIS TREŚCI WPROWADZENIE... 9

SPIS TREŚCI WPROWADZENIE... 9 SPIS TREŚCI WPROWADZENIE... 9 ZASADY BHP I REGULAMIN LABORATORIUM POJAZDÓW... 10 Bezpieczne warunki pracy zapewni przestrzeganie podstawowych zasad bhp i przepisów porządkowych........... 10 Regulamin

Bardziej szczegółowo

Scenariusz zajęć. - współpracuje w grupie - interpretuje uzyskane wyniki i wykorzystuje je do formułowania wniosków

Scenariusz zajęć. - współpracuje w grupie - interpretuje uzyskane wyniki i wykorzystuje je do formułowania wniosków Scenariusz zajęć Źródło: Scenariusz napisany w oparciu o projekt M. Bartosiewicz pt. Obliczanie objętości brył o nieregularnych kształtach. Przedmiot: matematyka Temat: Różne metody obliczanie objętości

Bardziej szczegółowo

Wyznaczanie współczynnika przenikania ciepła dla przegrody płaskiej

Wyznaczanie współczynnika przenikania ciepła dla przegrody płaskiej Katedra Silników Spalinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI Wyznaczanie współczynnika przenikania ciepła dla przegrody płaskiej - - Wstęp teoretyczny Jednym ze sposobów wymiany ciepła jest przewodzenie.

Bardziej szczegółowo

dr inż. Szymon Woziwodzki

dr inż. Szymon Woziwodzki dr inż. Szymon Woziwodzki SCHEMATY TECHNOLOGICZNE dr inż. Szymon Woziwodzki Aparatura Procesowa Schematy technologiczne: jakie normy? PN-EN ISO 10628-1:2015-05 Zakres Niniejsza norma określa klasyfikację,

Bardziej szczegółowo

Ćwiczenie nr 2. Badanie kształtu i wielkości porów oraz połączeń między porami w biomateriałach ceramicznych

Ćwiczenie nr 2. Badanie kształtu i wielkości porów oraz połączeń między porami w biomateriałach ceramicznych Ćwiczenie nr 2 Badanie kształtu i wielkości porów oraz połączeń między porami w biomateriałach ceramicznych Cel ćwiczenia: Zapoznanie się z obrazami mikroskopowymi biomateriałów porowatych. Opanowanie

Bardziej szczegółowo

C O N S T R U C T I O N

C O N S T R U C T I O N C O N S T R U C T I O N SKRÓCONY OPIS PROGRAMU NA ROK 2018 Wydanie 2 z dnia 02-01-2018 r. Opracował: Zatwierdził: Imię i Nazwisko Przemysław Domoradzki Karolina Sójka Data 02-01-2018 02-01-2018 Podpis

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na kierunku Mechanika i Budowa Maszyn Rodzaj zajęć: wykład, ćwiczenia, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU

Bardziej szczegółowo

Aluminium (glin) 2,72 Cegła 1,40-2,20 Magnez 1,74 Beton Krzem 2,33 Kreda 1,80-2,60 Duraluminium (stop glinu i miedzi)

Aluminium (glin) 2,72 Cegła 1,40-2,20 Magnez 1,74 Beton Krzem 2,33 Kreda 1,80-2,60 Duraluminium (stop glinu i miedzi) Ćwiczenie 4 Wyznaczenie gęstości i porowatości materiałów metodą waŝenia hydrostatycznego 1.1. CEL ĆWICZENIA Wyznaczenie gęstości pozornej i porowatości całkowitej materiałów z wykorzystaniem waŝenia hydrostatycznego.

Bardziej szczegółowo

ĆWICZENIE NR 2,3. Zakład Budownictwa Ogólnego

ĆWICZENIE NR 2,3. Zakład Budownictwa Ogólnego Zakład Budownictwa Ogólnego ĆWICZENIE NR 2,3 Materiały kaienne - oznaczenie gęstości objętościowej i porowatości otwartej - oznaczenie gęstości i porowatości całkowitej Instrukcja z laboratoriu: Budownictwo

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 5 Temat: Wyznaczanie gęstości ciała stałego i cieczy za pomocą wagi elektronicznej z zestawem Hydro. 1. Wprowadzenie Gęstość

Bardziej szczegółowo

CIEPŁO (Q) jedna z form przekazu energii między układami termodynamicznymi. Proces przekazu energii za pośrednictwem oddziaływania termicznego

CIEPŁO (Q) jedna z form przekazu energii między układami termodynamicznymi. Proces przekazu energii za pośrednictwem oddziaływania termicznego CIEPŁO, PALIWA, SPALANIE CIEPŁO (Q) jedna z form przekazu energii między układami termodynamicznymi. Proces przekazu energii za pośrednictwem oddziaływania termicznego WYMIANA CIEPŁA. Zmiana energii wewnętrznej

Bardziej szczegółowo

C14. Badanie kinetyki suszenia materiałów porowatych

C14. Badanie kinetyki suszenia materiałów porowatych 1/5 C14. Badanie kinetyki suszenia materiałów porowatych Celem ćwiczenia jest poznanie zjawiska higroskopijności materiałów biopolimerowych, obserwacja zjawiska suszenia tych materiałów oraz doświadczalne

Bardziej szczegółowo

Filtracja prowadzona pod stałą różnicą ciśnień

Filtracja prowadzona pod stałą różnicą ciśnień Filtracja prowadzona pod stałą różnicą ciśnień Cel ćwiczenia Celem ćwiczenia jest: 1. Zapoznanie się z aparaturą do procesu filtracji plackowej prowadzonej przy stałej różnicy ciśnień. Opis procesu filtracji

Bardziej szczegółowo

ANALIZA SITOWA ZŁOŻA FILTRACYJNEGO, WYZNACZANIE WSPÓŁCZYNNIKA POROWATOŚCI ZŁÓŻ FILTRACYJNYCH ORAZ OZNACZANIE ICH WSPÓŁCZYNNIKÓW FILTRACJI.

ANALIZA SITOWA ZŁOŻA FILTRACYJNEGO, WYZNACZANIE WSPÓŁCZYNNIKA POROWATOŚCI ZŁÓŻ FILTRACYJNYCH ORAZ OZNACZANIE ICH WSPÓŁCZYNNIKÓW FILTRACJI. ANALIZA SITOWA ZŁOŻA FILTRACYJNEGO, WYZNACZANIE WSPÓŁCZYNNIKA POROWATOŚCI ZŁÓŻ FILTRACYJNYCH ORAZ OZNACZANIE ICH WSPÓŁCZYNNIKÓW FILTRACJI. WPROWADZENIE 1. PROCES FILTRACJI Filtracja jest jednym z podstawowych

Bardziej szczegółowo

Szkło kuloodporne: składa się z wielu warstw różnych materiałów, połączonych ze sobą w wysokiej temperaturze. Wzmacnianie szkła

Szkło kuloodporne: składa się z wielu warstw różnych materiałów, połączonych ze sobą w wysokiej temperaturze. Wzmacnianie szkła Wzmacnianie szkła Laminowanie szkła. Są dwa sposoby wytwarzania szkła laminowanego: 1. Jak na zdjęciach, czyli umieszczenie polimeru pomiędzy warstwy szkła i sprasowanie całego układu; polimer (PVB ma

Bardziej szczegółowo

Skuteczność izolacji termicznych

Skuteczność izolacji termicznych Skuteczność izolacji termicznych Opracowanie Polskiego Stowarzyszenia Wykonawców Izolacji Przemysłowych Warszawa, marzec 2014 rok 1.1. Rola izolacji termicznych. W naszych warunkach klimatycznych izolacje

Bardziej szczegółowo

Badanie zależności temperatury wrzenia wody od ciśnienia

Badanie zależności temperatury wrzenia wody od ciśnienia Ćwiczenie C2 Badanie zależności temperatury wrzenia wody od ciśnienia C2.1. Cel ćwiczenia Celem ćwiczenia jest pomiar zależności temperatury wrzenia wody od ciśnienia (poniżej ciśnienia atmosferycznego),

Bardziej szczegółowo

MECHANIKA PŁYNÓW Płyn

MECHANIKA PŁYNÓW Płyn MECHANIKA PŁYNÓW Płyn - Każda substancja, która może płynąć, tj. pod wpływem znikomo małych sił dowolnie zmieniać swój kształt w zależności od naczynia, w którym się znajduje, oraz może swobodnie się przemieszczać

Bardziej szczegółowo

WŁASNOŚCI WYBRANYCH MATERIAŁÓW BUDOWLANYCH

WŁASNOŚCI WYBRANYCH MATERIAŁÓW BUDOWLANYCH WŁASNOŚCI WYBRANYCH MATERIAŁÓW BUDOWLANYCH W celu właściwego zaprojektowania przegród budynków pod względem zarówno cieplno-wilgotnościowym (komfort cieplny), jak i z uwagi na jakość powietrza wewnętrznego

Bardziej szczegółowo

Temat: Badanie Proctora wg PN EN

Temat: Badanie Proctora wg PN EN Instrukcja do ćwiczeń laboratoryjnych Technologia robót drogowych Temat: Badanie wg PN EN 13286-2 Celem ćwiczenia jest oznaczenie maksymalnej gęstości objętościowej szkieletu gruntowego i wilgotności optymalnej

Bardziej szczegółowo

LABORATORIUM NAUKI O MATERIAŁACH

LABORATORIUM NAUKI O MATERIAŁACH Imię i Nazwisko Grupa dziekańska Indeks Ocena (kol.wejściowe) Ocena (sprawozdanie)........................................................... Ćwiczenie: MISW2 Podpis prowadzącego Politechnika Łódzka Wydział

Bardziej szczegółowo

HYDRAULIKA KOLUMNY WYPEŁNIONEJ

HYDRAULIKA KOLUMNY WYPEŁNIONEJ Ćwiczenie 5: HYDRAULIKA KOLUMNY WYPEŁNIONEJ 1. CEL ĆWICZENIA Celem ćwiczenia jest wyznaczenie oporów przepływu gazu przez wypełnienie zraszane cieczą oraz określenie granicy zachłystywania aparatu wypełnionego.

Bardziej szczegółowo

KOMPUTEROWE WSPOMAGANIE PROCESU PROJEKTOWANIA ODSTOJNIKA

KOMPUTEROWE WSPOMAGANIE PROCESU PROJEKTOWANIA ODSTOJNIKA Piotr KOWALIK Uniwersytet Przyrodniczy w Lublinie Studenckie Koło Naukowe Informatyków KOMPUTEROWE WSPOMAGANIE PROCESU PROJEKTOWANIA ODSTOJNIKA 1. Ciekłe układy niejednorodne Ciekły układ niejednorodny

Bardziej szczegółowo

Skraplanie czynnika chłodniczego R404A w obecności gazu inertnego. Autor: Tadeusz BOHDAL, Henryk CHARUN, Robert MATYSKO Środa, 06 Czerwiec :42

Skraplanie czynnika chłodniczego R404A w obecności gazu inertnego. Autor: Tadeusz BOHDAL, Henryk CHARUN, Robert MATYSKO Środa, 06 Czerwiec :42 Przeprowadzono badania eksperymentalne procesu skraplania czynnika chłodniczego R404A w kanale rurowym w obecności gazu inertnego powietrza. Wykazano negatywny wpływ zawartości powietrza w skraplaczu na

Bardziej szczegółowo

DZIAŁ TEMAT NaCoBeZu kryteria sukcesu w języku ucznia

DZIAŁ TEMAT NaCoBeZu kryteria sukcesu w języku ucznia ODDZIAŁYWANIA DZIAŁ TEMAT NaCoBeZu kryteria sukcesu w języku ucznia 1. Organizacja pracy na lekcjach fizyki w klasie I- ej. Zapoznanie z wymaganiami na poszczególne oceny. Fizyka jako nauka przyrodnicza.

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY Z PRAWA STOKESA

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY Z PRAWA STOKESA WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY Z PRAWA STOKESA I. Cel ćwiczenia: obserwacja ruchu ciał stałych w ciekłym ośrodku lepkim, pomiar współczynnika lepkości gliceryny przy wykorzystaniu prawa Stokesa.

Bardziej szczegółowo

Ćwiczenie nr 1. Oznaczanie porowatości otwartej, gęstości pozornej i nasiąkliwości wodnej biomateriałów ceramicznych

Ćwiczenie nr 1. Oznaczanie porowatości otwartej, gęstości pozornej i nasiąkliwości wodnej biomateriałów ceramicznych Ćwiczenie nr 1 Oznaczanie orowatości otwartej, gęstości ozornej i nasiąkliwości wodnej biomateriałów ceramicznych Cel ćwiczenia: Zaoznanie się z metodyką oznaczania orowatości otwartej, gęstości ozornej

Bardziej szczegółowo

Laboratorium metrologii

Laboratorium metrologii Wydział Inżynierii Mechanicznej i Mechatroniki Instytut Technologii Mechanicznej Laboratorium metrologii Instrukcja do ćwiczeń laboratoryjnych Temat ćwiczenia: Pomiary wymiarów zewnętrznych Opracował:

Bardziej szczegółowo

LABORATORIUM MECHANIKI PŁYNÓW. Ćwiczenie N 2 RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ

LABORATORIUM MECHANIKI PŁYNÓW. Ćwiczenie N 2 RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ . Cel ćwiczenia Pomiar współrzędnych powierzchni swobodnej w naczyniu cylindrycznym wirującym wokół

Bardziej szczegółowo

KRYTERIA OCEN Z FIZYKI DLA KLASY I GIMNAZJUM

KRYTERIA OCEN Z FIZYKI DLA KLASY I GIMNAZJUM KRYTERIA OCEN Z FIZYKI DLA KLASY I GIMNAZJUM WŁASNOŚCI MATERII - Uczeń nie opanował wiedzy i umiejętności niezbędnych w dalszej nauce. - Wie, że substancja występuje w trzech stanach skupienia. - Wie,

Bardziej szczegółowo