Ewolucja Wszechświata Wykład 8

Wielkość: px
Rozpocząć pokaz od strony:

Download "Ewolucja Wszechświata Wykład 8"

Transkrypt

1 Ewolucja Wszechświata Wykład 8 Ewolucja gwiazd cz.

2 Diagram H

3 Biały karzeł Jeśli cząstek zajduje się w objętości V, to odległość między cząstkami: ΔxΔp Δx V Δp Więc ieokreśloość pędu: Dokładie: 8π V Elektroy (fermioy) stłoczoe w ograiczoej przestrzei ie mogą być w spoczyku awet w T = 0. Zajmują koleje stay pędowe aż do pędu Fermiego p f p f h V

4 Biały karzeł Pędowi Fermiego odpowiada eergia Fermiego (ierelatywistyczie): 8 V π m h m p E f f Z rówaia stau gazu: E PV Związek między średią eergią kietyczą a eergią Fermiego: f E 5 E f E PV V π m h V E P f

5 Biały karzeł Całkowita eergia białego karła: GM E U E E e f e e e 5 5 ) ( Kwatowo-mechaicza eergia gazu elektroowego Eergia potecjala grawitacji M G x π m h x E p e ) ( całkowita liczba ukleoów x = Z/A Masa gwiazdy M = M p Całkowita liczba elektroów: e = x 8 V π m h m p E f f

6 Eergia Biały karzeł x h 9 E( ) x 5 8m 4π e 5 G M p ~ Eergia kietycza cząstek Eergia ma miimum dla: de d 0 Sta rówowagi 0 - mi 0 0 ~ Eergia grawitacyja

7 Biały karzeł Sta rówowagi dla promieia: xh 9 x 4me 4π GM p Dla typowego białego karła o masie ~0,85 masy Słońca ( = 0 57, x=/) 8000 km 0 6 g/cm M Masa rośie promień maleje!

8 Biały karzeł Biały karzeł stygie i ie zmieia swoich rozmiarów. Promień zbliżoy do promieia Ziemi Masa: 0,4,4 masy Słońca Gęstość: 0 6 g/cm Jądro węglowo-tleowe Budowa typowego białego karła Syriusz B biały karzeł Syriusz jeda z ajbliższych Słońca gwiazd

9 Biały karzeł Zdjęcie z teleskopu Hubble a przedstawiające mały obszar blisko cetrum gromady gwiazd M4 w aszej Galaktyce z dużą kocetracją białych karłów (w kółkach)

10 Biały karzeł 8 V π m h m p E f f 4 V E f Gdy rośie, eergia Fermiego staje się porówywala z masą. Eergia kietycza relatywistycza: 4 mc m c p c E f f Jak zależy eergia Fermiego od masy gwiazdy? Dla cząstek skrajie relatywistyczych p f >> mc: πv hc c p E f f

11 Eergia Całkowita eergia: Biały karzeł E( ) E U E e e e f e 5 5 GM x hc 9 E( ) x 4 4π 5 G M p Gdy M p dostateczie duże, drugi składik domiuje i eergia maleje ze zmiejszającym się promieiem. Brak rówowagi! ~

12 Biały karzeł Jak duże musi być M p? x hc 9 E( ) x 4 4π 5 G M p wartość krytycza kr rówość człoów rówaia kr 5π c 4 x Dokłada wartość kr GM całkowaie umerycze p Masa kr M p =,44 M jest ajwiększą dopuszczalą masą białego karła (graica Chadrasekhara) A jeśli masa przekracza,44 M?

13 , km Zależość promieia od masy Biały karzeł Jowisz Eergia ierelatywistycza ~ M -/ 0 Eergia relatywistycza M/M Słońca kr M p

14 Masa/masa Słońca Biały karzeł Śmierć Syriusza Grawitacja większa od ciśieia degeeracji Śmierć Słońca Ciśieie degeeracji większe od grawitacji Białe karły Obwód w km

15 Ewolucja gwiazd masywych Gwiazdy o masach większych iż masy Słońca Nukleosyteza ie kończy się a węglu, jak dla gwiazd miejszych. Gdy wyczerpią się zapasy helu, jądro gwiazdy kurczy się i osiąga temperaturę (T > 600 ml K), przy której dochodzi do zapaleia węgla: C C 4 Mg γ +,90 MeV C C Na p +,8 MeV C C 0 Ne α 6 C C O α +4,6 MeV -0,4 MeV

16 Ewolucja gwiazd masywych Nukleosyteza kończy się a żelazie 56 Fe. Syteza żelaza jest już procesem edotermiczym.

17

18 Ewolucja gwiazd masywych Syteza coraz cięższych jąder trwa coraz krócej! Podczas sytezy żelaza jądro traci eergię Jądro zaczya się zapadać i ogrzewać.

19 Ewolucja gwiazd masywych Podczas zapadaia jądro przechodzi przez fazę białego karła (zdegeeroway gaz elektroowy), jedak masa jest większa iż,44m i ciśieie zdegeerowaego gazu ie może powstrzymać grawitacji. W temperaturze 5 0 mld K zaczya się proces fotodezitegracji jąder: 56 Fe γ 4 He 4 4 He γ p Jądra atomowe rozpadają się W procesie tym pobieraa jest wielka eergia Jądro gwiazdy zapada się coraz szybciej

20 Gwiazdy eutroowe Co dzieje się ze zdegeerowaym gazem elektroowym? Cząstki i ierozróżiale Cząstka w staie a, cząstka w staie b: Cząstka w staie a, cząstka w staie b: ab ba a b b a Bozoy (fukcja falowa symetrycza): s a b b a Fermioy (fukcja falowa atysymetrycza): s a b b a Fukcja falowa fermioów w tym samym staie zika.

21 Ewolucja gwiazd masywych Eergia elektroów większa od różicy masy eutrou i protou. Większość protoów zamieia się w eutroy w wyiku odwrotego rozpadu beta: p e ν Jest to proces ieodwracaly, poieważ rozpady beta ie mogą zachodzić. p e ν Na te elektroy ie ma miejsca w przestrzei fazowej, bo gaz elektroowy jest zdegeeroway Gdy elektroy zaczyają zikać ciśieie gwałtowie maleje Gwiazda zapada się

22 Gwiazdy eutroowe Neutroy też są fermioami Powstaje zdegeeroway gaz eutroowy o olbrzymim ciśieiu, które zatrzymuje proces kotrakcji. Jądro staje się gwiazdą eutroową liczba ukleoów - liczba elektroów i protoów: p x = Z/A = e = x Całkowita eergia gwiazdy: E(,x) = eergia eutroów + eergia elektroów + eergia grawitacji ierelatywistycza relatywistycza

23 Gwiazdy eutroowe W warukach silej degeeracji materii jej skład i struktura ie zależą praktyczie od temperatury. Struktura materii może więc być wyzaczoa w przybliżeiu T = 0 z waruku E = mi przy ustaloej wartości liczby ukleoów w jedostce objętości.

24 Gwiazdy eutroowe M G x π hc x x π M h x E p p ) ( M G x π m h x E p e ) ( ierelatywistyczie M G x π hc x E p ) ( relatywistyczie Szukamy i x, które miimalizują to wyrażeie dla daej masy gwiazdy M = M p 0 d de Wstawiamy x = 0...i otrzymujemy eergia eutroów eergia elektroów eergia grawitacji

25 Gwiazdy eutroowe M G M h E p p p p GM M h Sta rówowagi dla promieia: Wzór taki jak dla białego karła, tylko zamiast masy elektrou w miaowiku jest masa protou. Promień gwiazdy eutroowej o trzy rzędy wielkości miejszy iż promień białego karła.

26 Gwiazdy eutroowe Dla gwiazdy o masie Słońca ( =, 0 57 ):,6 km,4 0 4 g/cm gęstość materii jądrowej Z rówaia: de dx 0 x = 0,005 Gigatycze jądro atomowe zawierające 99,5% eutroów i 0,5 % protoów. (i tyle samo elektroów)

27 Gwiazdy eutroowe Obiekt o promieiu około 0-0 km, masie rówej mas Słońca i gęstości miliarda to a cm! Największą masą gwiazdy eutroowej jest prawdopodobie - masy Słońca (masa Oppeheimera-Volkoffa) Gdy masa jest większa, ciśieie zdegeerowaego gazu eutroowego i oddziaływaia sile ie mogą powstrzymać kotrakcji jądra i gwiazda zapada się w czarą dziurę.

28 Masa/masa Słońca Śmierć gwiazdy Śmierć Syriusza Grawitacja większa od ciśieia Śmierć Procjoa Śmierć Słońca g/cm plaety Obwód w km Wypaloe gwiazdy mogą zajmować położeia tylko a tych krawędziach.

29 Gwiazdy eutroowe Porówaie wielkości gwiazdy eutroowej i białego karła. Gęstość gwiazdy eutroowej jest ogroma!

30 Wybuch superowej Nagle żelaze jądro o masie ~M Słońca i promieiu ~ Ziemi w ciągu ułamka sekudy kurczy się do ~0 km tworząc gwiazdę eutroową Zewętrze warstwy zapadają się i z prędkością ~c/ odbijają się od jądra Przeciwbieże strumieie materii zderzają się Wytworzoa fala uderzeiowa przechodzi przez materię wytwarzając pierwiastki cięższe od Fe W końcu odrzucae są ajbardziej zewętrze części gwiazdy

31 Superowe Wyzwoloa eergia ~ J jest uoszoa przez eutria (~95%) i fotoy (~5%) Gwiazda staje się jaśiejsza iż cała galaktyka (miliardy gwiazd) Po kilku tygodiach stopiowo przygasa Barwa otoczka pozostaje widocza przez stulecia

32 Galeria superowych SN 987 SN 57 SN w Kasjopei Krab SN 86

33 Superowa Superowa emituje tyle eergii, ile cała galaktyka (miliardy gwiazd) W czasie wybuchu zachodzą szybkie reakcje sytezy ciężkich pierwiastków (cięższych od żelaza). Cykl życiowy masywej gwiazdy

34 Superowa Zmiay jasości superowej w czasie. Wybuch superowej trwa zaledwie kilka di.

35 Superowa ukleosyteza Wyczerpaie zapasów i kotrakcja jądra Początek wybuchu W trakcie wybuchu maleje jasość i zmieia się barwa od iebieskiej do czerwoej Pozostała wirująca gwiazda eutroowa - pulsar

36 Superowa Wybuch superowej w galaktyce Cetaurus A Jej jasość porówywala z jasością całej galaktyki Zmieość jasości superowej w czasie

37 Superowa Trzy zdjęcia wykoae za pomocą HST ukazują: (u góry) Głębokie Pole Hubble'a z liczymi odległymi galaktykami; (u dołu z lewej) strzałka wskazuje galaktykę eliptyczą, w której wybuchła superowa - obszar te to powiększoy kwadracik a górym zdjęciu; (u dołu z prawej) sama eksplodująca gwiazda. Fot. NASA/Adam iess/stsci. Porówao dwa zdjęcia Głębokiego Pola Hubble'a, wykoae w odstępie lat: w 995 i 997 r. Porówując komputerowo jasość galaktyk i jej zmiay, odkryto agłe pojaśieie a zdjęciu z 997 r. Superowa!

38 Kolizja dwóch galaktyk NGC 408 i NGC 409 w kostelacji Kruka (zdjęcie z obserwatorium Chadra). Czare dziury i gwiazdy eutroowe widocze jako sile źródła promieiowaia retgeowskiego (jaso świecące plamy). Autor: NASA

39 Wielkości gwiazd -porówaie

40 Ewolucja gwiazd - podsumowaie Ewolucja gwiazdy masywej Ewolucja gwiazdy podobej do Słońca Brązowe karły

41 Masa gwiazdy Ewolucja gwiazd - podsumowaie

42 Gromady gwiazd Droga Mlecza w otoczeiu gromad gwiazd. Fot. Obserwatorium w Lud

43 Gromady otwarte Gromady gwiazd Gromady otwarte są miejsze od gromad kulistych. W ich skład wchodzi do kilku tysięcy gwiazd. Są stosukowo młode, ich wiek dochodzi do kilku miliardów lat, ale ajmłodsze z ich liczą sobie zaledwie kilka milioów lat. Gromada otwarta NGC850

44 Gromady gwiazd Diagramy H dla gromad otwartych prawie wszystkie gwiazdy leżą a ciągu główym. Wiek gromady liczoy w milioach lat.

45 Gromady gwiazd Wiek gromady moża określić a podstawie puktu odejścia od ciągu główego.

46

47 Gromady gwiazd Gromady kuliste W skład gromad kulistych wchodzi wiele tysięcy lub awet milioów gwiazd, które tworzą sferę. Gromady tego typu są bardzo stare - czasem ich wiek jest zbliżoy do wieku Wszechświata.

48 Gromady gwiazd Diagram H dla gromady kulistej NGC66 Wiek gromady: mld lat

49 Populacje gwiazd Podział gwiazd wprowadzoy przez W. Baadego w latach 940: Populacja I - gwiazdy względie młode, występujące w ramioach spiralych galaktyk, zwykle w sąsiedztwie gazu i pyłu. Populacja II - gwiazdy starsze, występujące zwykle w obszarach pozbawioych gazu i pyłu takich jak gromady kuliste i jądra galaktyk.

Tworzenie protonów neutronów oraz jąder atomowych

Tworzenie protonów neutronów oraz jąder atomowych Tworzenie protonów neutronów oraz jąder atomowych kwarki, elektrony, neutrina oraz ich antycząstki anihilują aby stać się cząstkami 10-10 s światła fotonami energia kwarków jest już wystarczająco mała

Bardziej szczegółowo

Promieniowanie jonizujące

Promieniowanie jonizujące Promieniowanie jonizujące Wykład III Krzysztof Golec-Biernat Reakcje jądrowe Uniwersytet Rzeszowski, 8 listopada 2017 Wykład III Krzysztof Golec-Biernat Promieniowanie jonizujące 1 / 12 Energia wiązania

Bardziej szczegółowo

Ewolucja w układach podwójnych

Ewolucja w układach podwójnych Ewolucja w układach podwójnych Tylko światło Temperatura = barwa różnica dodatnia różnica równa 0 różnica ujemna Jasnośd absolutna m M 5 log R 10 pc Diagram H-R Powstawanie gwiazd Powstawanie gwiazd ciśnienie

Bardziej szczegółowo

Wykres Herzsprunga-Russela (H-R) Reakcje termojądrowe - B.Kamys 1

Wykres Herzsprunga-Russela (H-R) Reakcje termojądrowe - B.Kamys 1 Wykres Herzsprunga-Russela (H-R) 2012-06-07 Reakcje termojądrowe - B.Kamys 1 Proto-gwiazdy na wykresie H-R 2012-06-07 Reakcje termojądrowe - B.Kamys 2 Masa-jasność, temperatura-jasność n=3.5 2012-06-07

Bardziej szczegółowo

I etap ewolucji :od ciągu głównego do olbrzyma

I etap ewolucji :od ciągu głównego do olbrzyma I etap ewolucji :od ciągu głównego do olbrzyma Spalanie wodoru a następnie helu i cięższych jąder doprowadza do zmiany składu gwiazdy i do przesunięcia gwiazdy na wykresie H-R II etap ewolucji: od olbrzyma

Bardziej szczegółowo

Od Wielkiego Wybuchu do Gór Izerskich. Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słońca CBK PAN

Od Wielkiego Wybuchu do Gór Izerskich. Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słońca CBK PAN Od Wielkiego Wybuchu do Gór Izerskich Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słońca CBK PAN Góry Izerskie Góry Izerskie Góry Izerskie Góry Izerskie Góry Izerskie Góry Izerskie Góry Izerskie

Bardziej szczegółowo

E Z m c N m c Mc A Z N. J¹dro atomowe Wielkoœci charakteryzuj¹ce j¹dro atomowe. Neutron

E Z m c N m c Mc A Z N. J¹dro atomowe Wielkoœci charakteryzuj¹ce j¹dro atomowe. Neutron J¹dro atomowe Wielkoœci charakteryzuj¹ce j¹dro atomowe liczba masowa Zliczba porz¹dkowa pierwiastka w uk³adzie okresowym - liczba eutroów Z X Z R 3 3 /, 3 cm eutro Schemat rozpadu swobodego eutrou p e

Bardziej szczegółowo

Elementy Fizyki Jądrowej. Wykład 11 Pochodzenie pierwiastków

Elementy Fizyki Jądrowej. Wykład 11 Pochodzenie pierwiastków Elementy Fizyki Jądrowej Wykład 11 Pochodzenie pierwiastków Powstawanie gwiazd Mgławica gazowo - pyłowa (masa od kilkuset tysięcy do miliona mas Słońca) Niestabilność grawitacyjną wywołuje zwykle fala

Bardziej szczegółowo

Następnie powstały trwały izotop - azot-14 - reaguje z trzecim protonem, przekształcając się w nietrwały tlen-15:

Następnie powstały trwały izotop - azot-14 - reaguje z trzecim protonem, przekształcając się w nietrwały tlen-15: Reakcje syntezy lekkich jąder są podstawowym źródłem energii wszechświata. Słońce - gwiazda, która dostarcza energii niezbędnej do życia na naszej planecie Ziemi, i w której 94% masy stanowi wodór i hel

Bardziej szczegółowo

Synteza jądrowa (fuzja) FIZYKA 3 MICHAŁ MARZANTOWICZ

Synteza jądrowa (fuzja) FIZYKA 3 MICHAŁ MARZANTOWICZ Synteza jądrowa (fuzja) Cykl życia gwiazd Narodziny gwiazd: obłok molekularny Rozmiary obłoków (Giant Molecular Cloud) są rzędu setek lat świetlnych. Masa na ogół pomiędzy 10 5 a 10 7 mas Słońca. W obłoku

Bardziej szczegółowo

Podstawy Fizyki Jądrowej

Podstawy Fizyki Jądrowej Podstawy Fizyki Jądrowej III rok Fizyki Kurs WFAIS.IF-D008.0 Składnik egzaminu licencjackiego (sesja letnia)! OPCJA (zalecana): Po uzyskaniu zaliczenia z ćwiczeń możliwość zorganizowania ustnego egzaminu

Bardziej szczegółowo

Budowa i ewolucja gwiazd I. Skale czasowe Równania budowy wewnętrznej Modele Diagram H-R Ewolucja gwiazd

Budowa i ewolucja gwiazd I. Skale czasowe Równania budowy wewnętrznej Modele Diagram H-R Ewolucja gwiazd Budowa i ewolucja gwiazd I Skale czasowe Równania budowy wewnętrznej Modele Diagram H-R Ewolucja gwiazd Dynamiczna skala czasowa Dla Słońca: 3 h Twierdzenie o wiriale Temperatura wewnętrzna Cieplna skala

Bardziej szczegółowo

Liceum dla Dorosłych semestr 1 FIZYKA MAŁGORZATA OLĘDZKA

Liceum dla Dorosłych semestr 1 FIZYKA MAŁGORZATA OLĘDZKA Liceum dla Dorosłych semestr 1 FIZYKA MAŁGORZATA OLĘDZKA Temat 10 : PRAWO HUBBLE A. TEORIA WIELKIEGO WYBUCHU. 1) Prawo Hubble a [czyt. habla] 1929r. Edwin Hubble, USA, (1889-1953) Jedno z największych

Bardziej szczegółowo

Teoria Wielkiego Wybuchu FIZYKA 3 MICHAŁ MARZANTOWICZ

Teoria Wielkiego Wybuchu FIZYKA 3 MICHAŁ MARZANTOWICZ Teoria Wielkiego Wybuchu Epoki rozwoju Wszechświata Wczesny Wszechświat Epoka Plancka (10-43 s): jedno podstawowe oddziaływanie Wielka Unifikacja (10-36 s): oddzielenie siły grawitacji od reszty oddziaływań

Bardziej szczegółowo

Życie rodzi się gdy gwiazdy umierają

Życie rodzi się gdy gwiazdy umierają Życie rodzi się gdy gwiazdy umierają Promieniowanie elektromagnetyczne Ciało doskonale czarne (promiennik zupełny) Tak świeci ciało znajdujące się w równowadze termodynamicznej Gwiazdy gorące są niebieskie,

Bardziej szczegółowo

Model Bohra atomu wodoru

Model Bohra atomu wodoru Model Bohra atomu wodoru Widma liiowe pierwiastków. wodór hel eo tle węgiel azot sód Ŝelazo Aby odpowiedzieć a pytaie dlaczego wodór i ie pierwiastki ie emitują wszystkich częstotliwości fal elektromagetyczych

Bardziej szczegółowo

Sens życia według gwiazd. dr Tomasz Mrozek Instytut Astronomiczny Uniwersytet Wrocławski

Sens życia według gwiazd. dr Tomasz Mrozek Instytut Astronomiczny Uniwersytet Wrocławski Sens życia według gwiazd dr Tomasz Mrozek Instytut Astronomiczny Uniwersytet Wrocławski Diagram H-R Materia międzygwiazdowa Składa się z gazu i pyłu Typowa gęstośd to kilka (!) atomów na cm3 Zasilana przez

Bardziej szczegółowo

Budowa i ewolucja gwiazd I. Skale czasowe Równania budowy wewnętrznej Modele Diagram H-R Ewolucja gwiazd

Budowa i ewolucja gwiazd I. Skale czasowe Równania budowy wewnętrznej Modele Diagram H-R Ewolucja gwiazd Budowa i ewolucja gwiazd I Skale czasowe Równania budowy wewnętrznej Modele Diagram H-R Ewolucja gwiazd Dynamiczna skala czasowa Dla Słońca: 3 h Twierdzenie o wiriale Temperatura wewnętrzna Cieplna skala

Bardziej szczegółowo

Diagram Hertzsprunga Russela. Barwa gwiazdy a jasność bezwzględna

Diagram Hertzsprunga Russela. Barwa gwiazdy a jasność bezwzględna Astrofizyka Gwiazdy, gwiazdozbiory Obserwowane własności gwiazd diagram HR Parametry gwiazd i ich relacje Modele gwiazd: gwiazdy ciągu głównego, białe karły, gwiazdy neutronowe Ewolucja gwiazd i procesy

Bardziej szczegółowo

Czarne dziury. Grażyna Karmeluk

Czarne dziury. Grażyna Karmeluk Czarne dziury Grażyna Karmeluk Termin czarna dziura Termin czarna dziura powstał stosunkowo niedawno w 1969 roku. Po raz pierwszy użył go amerykański uczony John Wheeler, przedstawiając za jego pomocą

Bardziej szczegółowo

Ekspansja Wszechświata

Ekspansja Wszechświata Ekspansja Wszechświata Odkrycie Hubble a w 1929 r. Galaktyki oddalają się od nas z prędkościami wprost proporcjonalnymi do odległości. Prędkości mierzymy za pomocą przesunięcia ku czerwieni efekt Dopplera

Bardziej szczegółowo

Fizyka 3. Konsultacje: p. 329, Mechatronika

Fizyka 3. Konsultacje: p. 329, Mechatronika Fizyka 3 Konsultacje: p. 329, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 2 sprawdziany (10 pkt każdy) lub egzamin (2 części po 10 punktów) 10.1 12 3.0 12.1 14 3.5 14.1 16 4.0 16.1 18 4.5 18.1 20 5.0

Bardziej szczegółowo

GWIAZDY SUPERNOWEJ. WSZYSTKO WE WSZECHŚWIECIE WIECIE PODLEGA ZMIANOM GWIAZDY RÓWNIER. WNIEś. PRZECHODZĄ ONE : FAZĘ NARODZIN, WIEK DOJRZAŁY,

GWIAZDY SUPERNOWEJ. WSZYSTKO WE WSZECHŚWIECIE WIECIE PODLEGA ZMIANOM GWIAZDY RÓWNIER. WNIEś. PRZECHODZĄ ONE : FAZĘ NARODZIN, WIEK DOJRZAŁY, WSZYSTKO WE WSZECHŚWIECIE WIECIE PODLEGA ZMIANOM GWIAZDY RÓWNIER WNIEś. PRZECHODZĄ ONE : FAZĘ NARODZIN, WIEK DOJRZAŁY, W KOŃCU UMIERAJĄ. NIEKTÓRE Z NICH KOŃCZ CZĄ śycie W SPEKTAKULARNYM AKCIE WYBUCHU tzw.

Bardziej szczegółowo

Teoria ewolucji gwiazd (najpiękniejsza z teorii) dr Tomasz Mrozek Instytut Astronomiczny Uniwersytetu Wrocławskiego

Teoria ewolucji gwiazd (najpiękniejsza z teorii) dr Tomasz Mrozek Instytut Astronomiczny Uniwersytetu Wrocławskiego Teoria ewolucji gwiazd (najpiękniejsza z teorii) dr Tomasz Mrozek Instytut Astronomiczny Uniwersytetu Wrocławskiego Prolog Teoria z niczego Dla danego obiektu możemy określić: - Ilość światła - widmo -

Bardziej szczegółowo

Ewolucja Wszechświata Wykład 8

Ewolucja Wszechświata Wykład 8 Ewolucja Wszechświata Wykład 8 Ewolucja gwiazd Zderzenia galaktyk Spiralne ramiona utworzone z gromad młodych, niebieskich gwiazd. Obraz z teleskopu naziemnego Obraz z teleskopu Hubble a Burzliwa działalność

Bardziej szczegółowo

ν = c/λ [s -1 = Hz] ν = [cm -1 ] ZASADY ZALICZENIA PRZEDMIOTU MBS c = m/s cos x H = H o E = E o cos x c = λν 1 ν = _ λ

ν = c/λ [s -1 = Hz] ν = [cm -1 ] ZASADY ZALICZENIA PRZEDMIOTU MBS c = m/s cos x H = H o E = E o cos x c = λν 1 ν = _ λ ZASADY ZALICZENIA PRZEDMIOTU MBS LABORATORIUM Z MBS. ROZWIĄZYWANIE WIDM kolokwium NMR 23 kwietia 208 IR maja 208 złożoe czerwca 208 poiedziałek czwartek piątek 9.3 22.3 23.3 26.3 5. 6. 9. 2. 3. H NMR 23.

Bardziej szczegółowo

Podstawowe własności jąder atomowych

Podstawowe własności jąder atomowych Podstawowe własności jąder atomowych 1. Ilość protonów i neutronów Z, N 2. Masa jądra M j = M p + M n - B 2 2 Q ( M c ) ( M c ) 3. Energia rozpadu p 0 k 0 Rozpad zachodzi jeżeli Q > 0, ta nadwyżka energii

Bardziej szczegółowo

Galaktyka. Rysunek: Pas Drogi Mlecznej

Galaktyka. Rysunek: Pas Drogi Mlecznej Galaktyka Rysunek: Pas Drogi Mlecznej Galaktyka Ośrodek międzygwiazdowy - obłoki molekularne - możliwość formowania się nowych gwiazd. - ekstynkcja i poczerwienienie (diagramy dwuwskaźnikowe E(U-B)/E(B-V)=0.7,

Bardziej szczegółowo

Astronomia. Znając przyspieszenie grawitacyjne planety (ciała), obliczyć możemy ciężar ciała drugiego.

Astronomia. Znając przyspieszenie grawitacyjne planety (ciała), obliczyć możemy ciężar ciała drugiego. Astronomia M = masa ciała G = stała grawitacji (6,67 10-11 [N m 2 /kg 2 ]) R, r = odległość dwóch ciał/promień Fg = ciężar ciała g = przyspieszenie grawitacyjne ( 9,8 m/s²) V I = pierwsza prędkość kosmiczna

Bardziej szczegółowo

doświadczenie Rutheforda Jądro atomowe składa się z nuklonów: neutronów (obojętnych elektrycznie) i protonów (posiadających ładunek dodatni +e)

doświadczenie Rutheforda Jądro atomowe składa się z nuklonów: neutronów (obojętnych elektrycznie) i protonów (posiadających ładunek dodatni +e) 1 doświadczenie Rutheforda Jądro atomowe składa się z nuklonów: neutronów (obojętnych elektrycznie) i protonów (posiadających ładunek dodatni +e) Ilość protonów w jądrze określa liczba atomowa Z Ilość

Bardziej szczegółowo

Dane o kinematyce gwiazd

Dane o kinematyce gwiazd Wykład 10 - Charakterystyka podstawowych systemów gwiazdowych: otoczenie Słońca, Galaktyka, gromady gwiazd, galaktyki, grupy i gromady galaktyk. Ciemna materia. 25.05.2015 Dane o kinematyce gwiazd Ruchy

Bardziej szczegółowo

FIZYKA KLASA I LO LICEUM OGÓLNOKSZTAŁCĄCEGO wymagania edukacyjne

FIZYKA KLASA I LO LICEUM OGÓLNOKSZTAŁCĄCEGO wymagania edukacyjne FIZYKA KLASA I LO LICEUM OGÓLNOKSZTAŁCĄCEGO wymagania edukacyjne TEMAT (rozumiany jako lekcja) 1.1. Kinematyka ruchu jednostajnego po okręgu 1.2. Dynamika ruchu jednostajnego po okręgu 1.3. Układ Słoneczny

Bardziej szczegółowo

Wykład 10 - Charakterystyka podstawowych systemów gwiazdowych: otoczenie Słońca, Galaktyka, gromady gwiazd, galaktyki, grupy i gromady galaktyk

Wykład 10 - Charakterystyka podstawowych systemów gwiazdowych: otoczenie Słońca, Galaktyka, gromady gwiazd, galaktyki, grupy i gromady galaktyk Wykład 10 - Charakterystyka podstawowych systemów gwiazdowych: otoczenie Słońca, Galaktyka, gromady gwiazd, galaktyki, grupy i gromady galaktyk 28.04.2014 Dane o kinematyce gwiazd Ruchy własne gwiazd (Halley

Bardziej szczegółowo

PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA. Ruch cząstki nieograniczony z klasycznego punktu widzenia. mamy do rozwiązania równanie 0,,

PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA. Ruch cząstki nieograniczony z klasycznego punktu widzenia. mamy do rozwiązania równanie 0,, PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA Ruch cząstki ieograiczoy z klasyczego puktu widzeia W tym przypadku V = cost, przejmiemy V ( x ) = 0, cząstka porusza się wzdłuż osi x. Rozwiązujemy

Bardziej szczegółowo

Wszechświat: spis inwentarza. Typy obiektów Rozmieszczenie w przestrzeni Symetrie

Wszechświat: spis inwentarza. Typy obiektów Rozmieszczenie w przestrzeni Symetrie Wszechświat: spis inwentarza Typy obiektów Rozmieszczenie w przestrzeni Symetrie Curtis i Shapley 1920 Heber D. Curtis 1872-1942 Mgławice spiralne są układami gwiazd równoważnymi Drodze Mlecznej Mgławice

Bardziej szczegółowo

Wykłady z Geochemii Ogólnej

Wykłady z Geochemii Ogólnej Wykłady z Geochemii Ogólnej III rok WGGiOŚ AGH 2010/11 dr hab. inż. Maciej Manecki A-0 p.24 www.geol.agh.edu.pl/~mmanecki ELEMENTY KOSMOCHEMII Nasza wiedza o składzie materii Wszechświata pochodzi z dwóch

Bardziej szczegółowo

FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych

FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych Wykład 1 własności jąder atomowych Odkrycie jądra atomowego Rutherford (1911) Ernest Rutherford (1871-1937) R 10 fm 1908 Skala przestrzenna jądro

Bardziej szczegółowo

pobrano z serwisu Fizyka Dla Każdego - - zadania z fizyki, wzory fizyczne, fizyka matura

pobrano z serwisu Fizyka Dla Każdego -  - zadania z fizyki, wzory fizyczne, fizyka matura 14. Fizyka jądrowa zadania z arkusza I 14.10 14.1 14.2 14.11 14.3 14.12 14.4 14.5 14.6 14.13 14.7 14.8 14.14 14.9 14. Fizyka jądrowa - 1 - 14.15 14.23 14.16 14.17 14.24 14.18 14.25 14.19 14.26 14.27 14.20

Bardziej szczegółowo

To ciała niebieskie o średnicach większych niż 1000 km, obiegające gwiazdę i nie mające własnych źródeł energii promienistej, widoczne dzięki

To ciała niebieskie o średnicach większych niż 1000 km, obiegające gwiazdę i nie mające własnych źródeł energii promienistej, widoczne dzięki Jest to początek czasu, przestrzeni i materii tworzącej wszechświat. Podstawę idei Wielkiego Wybuchu stanowił model rozszerzającego się wszechświata opracowany w 1920 przez Friedmana. Obecnie Wielki Wybuch

Bardziej szczegółowo

fizyka w zakresie podstawowym

fizyka w zakresie podstawowym mi edukacyjne z przedmiotu fizyka w zakresie podstawowym dla klasy pierwszej szkoły ponadgimnazjalnej Poziom Kategoria celów Zakres Poziom podstawowy - Uczeń opanował pewien zakres WIADOMOŚCI Poziom ponadpodstawowy

Bardziej szczegółowo

u t 1 v u(x,t) - odkształcenie, v - prędkość rozchodzenia się odkształceń (charakterystyczna dla danego ośrodka) Drgania sieci krystalicznej FONONY

u t 1 v u(x,t) - odkształcenie, v - prędkość rozchodzenia się odkształceń (charakterystyczna dla danego ośrodka) Drgania sieci krystalicznej FONONY Drgaia sieci krystaliczej FONONY 1. model klasyczy (iekwatowy) a) model ośrodka ciągłego (model Debye a) - przypadek jedowymiarowy - drgaia struy drgaia mogą być podłuże (guma, sprężya) i dwie prostopadłe

Bardziej szczegółowo

Wszechświat w mojej kieszeni. Wszechświat mgławic. Grażyna Stasińska. Nr. 1. Obserwatorium paryskie ES 001

Wszechświat w mojej kieszeni. Wszechświat mgławic. Grażyna Stasińska. Nr. 1. Obserwatorium paryskie ES 001 Wszechświat w mojej kieszeni Wszechświat mgławic Nr. 1 ES 001 Grażyna Stasińska Obserwatorium paryskie Każdy z nas obserwował nocą gwiazdy. Wyglądają one odizolowane w ciemnościach nieba! Ale jest to tylko

Bardziej szczegółowo

A - liczba nukleonów w jądrze (protonów i neutronów razem) Z liczba protonów A-Z liczba neutronów

A - liczba nukleonów w jądrze (protonów i neutronów razem) Z liczba protonów A-Z liczba neutronów Włodzimierz Wolczyński 40 FIZYKA JĄDROWA A - liczba nukleonów w jądrze (protonów i neutronów razem) Z liczba protonów A-Z liczba neutronów O nazwie pierwiastka decyduje liczba porządkowa Z, a więc ilość

Bardziej szczegółowo

PROJEKT KOSMOLOGIA PROJEKT KOSMOLOGIA. Aleksander Gendarz Mateusz Łukasik Paweł Stolorz

PROJEKT KOSMOLOGIA PROJEKT KOSMOLOGIA. Aleksander Gendarz Mateusz Łukasik Paweł Stolorz PROJEKT KOSMOLOGIA Aleksander Gendarz Mateusz Łukasik Paweł Stolorz 1 1. Definicja kosmologii. Kosmologia dział astronomii, obejmujący budowę i ewolucję wszechświata. Kosmolodzy starają się odpowiedzieć

Bardziej szczegółowo

FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych

FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych Wykład 13 Początki Wszechświata c.d. Nukleosynteza czas Przebieg pierwotnej nukleosyntezy w czasie pierwszych kilkunastu minut. Krzywe ukazują stopniowy

Bardziej szczegółowo

fizyka w zakresie podstawowym

fizyka w zakresie podstawowym Plan wynikowy z wymaganiami edukacyjnymi przedmiotu fizyka w zakresie podstawowym dla klasy pierwszej szkoły ponadgimnazjalnej W trakcie nauczania fizyki w szkole realizujemy założone na początku cele

Bardziej szczegółowo

Ewolucja galaktyk. Agnieszka Pollo Instytut Problemów Jądrowych Warszawa Obserwatorium Astronomiczne UJ Kraków

Ewolucja galaktyk. Agnieszka Pollo Instytut Problemów Jądrowych Warszawa Obserwatorium Astronomiczne UJ Kraków Ewolucja galaktyk Agnieszka Pollo Instytut Problemów Jądrowych Warszawa Obserwatorium Astronomiczne UJ Kraków 380 000 lat po BB do dziś: era galaktyk 380 000 lat po Wielkim Wybuchu: niemal jednorodna materia,

Bardziej szczegółowo

ALMA. Atacama Large (sub)millimeter Array

ALMA. Atacama Large (sub)millimeter Array Atacama Large (sub)millimeter Array Największy na świecie Interferometr Radiowy - znajdujący się na płaskowyżu Chajnantor w Chilijskich Andach na wysokości ok. 5000 m n.p.m. 66 anten o średnicy 12m i

Bardziej szczegółowo

Gwiazdy neutronowe. Michał Bejger,

Gwiazdy neutronowe. Michał Bejger, Gwiazdy neutronowe Michał Bejger, 06.04.09 Co to jest gwiazda neutronowa? To obiekt, którego jedna łyżeczka materii waży tyle ile wszyscy ludzie na Ziemi! Gwiazda neutronowa: rzędy wielkości Masa: ~1.5

Bardziej szczegółowo

Astronomia na egzaminie maturalnym. Część 2

Astronomia na egzaminie maturalnym. Część 2 Astronomia na egzaminie maturalnym. Część 2 Poprzedni artykuł dotyczył zagadnień związanych z wymaganiami z podstawy programowej dotyczącymi astronomii. W obecnym będzie kontynuacja omawiania tego problemu.

Bardziej szczegółowo

Reakcje rozpadu jądra atomowego

Reakcje rozpadu jądra atomowego Reakcje rozpadu jądra atomowego O P R A C O W A N I E : P A W E Ł Z A B O R O W S K I K O N S U L T A C J A M E R Y T O R Y C Z N A : M A Ł G O R Z A T A L E C H Trwałość izotopów Czynnikiem decydującym

Bardziej szczegółowo

Fizyka statystyczna Zwyrodniały gaz Fermiego. P. F. Góra

Fizyka statystyczna Zwyrodniały gaz Fermiego. P. F. Góra Fizyka statystyczna Zwyrodniały gaz Fermiego P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2016 Fermiony w niskich temperaturach Wychodzimy ze znanego już wtrażenia na wielka sumę statystyczna: Ξ = i=0

Bardziej szczegółowo

Zjawiska kontaktowe. Pojęcia.

Zjawiska kontaktowe. Pojęcia. Zjawiska kotaktowe. Pojęcia. Próżia, E vac =0 Φ m W Φ s χ E c µ E v metal półprzewodik W praca przeiesieia elektrou z da pasma przewodictwa do próżi, bez zwiększaia jego eergii kietyczej (którą ma zerową).

Bardziej szczegółowo

Ciemna materia w sferoidalnych galaktykach karłowatych. Ewa L. Łokas Centrum Astronomiczne PAN, Warszawa

Ciemna materia w sferoidalnych galaktykach karłowatych. Ewa L. Łokas Centrum Astronomiczne PAN, Warszawa Ciemna materia w sferoidalnych galaktykach karłowatych Ewa L. Łokas Centrum Astronomiczne PAN, Warszawa Sferoidalne galaktyki karłowate Leo I Grupy Lokalnej Carina Fornax Klasyczne sferoidalne galaktyki

Bardziej szczegółowo

Energetyka konwencjonalna odnawialna i jądrowa

Energetyka konwencjonalna odnawialna i jądrowa Energetyka konwencjonalna odnawialna i jądrowa Wykład 8-27.XI.2018 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Wykład 8 Energia atomowa i jądrowa

Bardziej szczegółowo

oraz Początek i kres

oraz Początek i kres oraz Początek i kres Powstanie Wszechświata szacuje się na 13, 75 mld lat temu. Na początku jego wymiary były bardzo małe, a jego gęstość bardzo duża i temperatura niezwykle wysoka. Ponieważ w tej niezmiernie

Bardziej szczegółowo

Grawitacja + Astronomia

Grawitacja + Astronomia Grawitacja + Astronomia Matura 2005 Zadanie 31. Syriusz (14 pkt) Zimą najjaśniejszą gwiazdą naszego nocnego nieba jest Syriusz. Pod tą nazwą kryje się układ dwóch gwiazd poruszających się wokół wspólnego

Bardziej szczegółowo

Autorzy: Zbigniew Kąkol, Piotr Morawski

Autorzy: Zbigniew Kąkol, Piotr Morawski Rodzaje rozpadów jądrowych Autorzy: Zbigniew Kąkol, Piotr Morawski Rozpady jądrowe zachodzą zawsze (prędzej czy później) jeśli jądro o pewnej liczbie nukleonów znajdzie się w stanie energetycznym, nie

Bardziej szczegółowo

Galaktyki i Gwiazdozbiory

Galaktyki i Gwiazdozbiory Galaktyki i Gwiazdozbiory Co to jest Galaktyka? Galaktyka (z gr. γαλα mleko) duży, grawitacyjnie związany układ gwiazd, pyłu i gazu międzygwiazdowego oraz niewidocznej ciemnej materii. Typowa galaktyka

Bardziej szczegółowo

Materia i jej powstanie Wykłady z chemii Jan Drzymała

Materia i jej powstanie Wykłady z chemii Jan Drzymała Materia i jej powstanie Wykłady z chemii Jan Drzymała Przyjmuje się, że wszystko zaczęło się od Wielkiego Wybuchu, który nastąpił około 15 miliardów lat temu. Model Wielkiego Wybuch wynika z rozwiązań

Bardziej szczegółowo

Równowaga reakcji chemicznej

Równowaga reakcji chemicznej Rówowaga reakcji chemiczej Sta i stała rówowagi reakcji chemiczej (K) Reakcje dysocjacji Stopień dysocjacji Prawo rozcieńczeń Ostwalda utodysocjacja wody p roztworów p roztworów. p roztworów mocych elektrolitów

Bardziej szczegółowo

Wykład 9 - Ewolucja przed ciągiem głównym. Ciąg główny wieku zerowego (ZAMS)

Wykład 9 - Ewolucja przed ciągiem głównym. Ciąg główny wieku zerowego (ZAMS) Wykład 9 - Ewolucja przed ciągiem głównym. Ciąg główny wieku zerowego (ZAMS) 30.11.2017 Masa Jeansa Załóżmy, że mamy jednorodny, kulisty obłok gazu o masie M, średniej masie cząsteczkowej µ, promieniu

Bardziej szczegółowo

Czym są gwiazdy Gwiazdy

Czym są gwiazdy Gwiazdy GWIAZDY Czym są gwiazdy Gwiazdy to ciała niebieskie będące skupiskiem związanej grawitacyjnie materii, powierzchnia ma bardzo wysoką temperaturę. Energię potrzebną do podtrzymywania swej temperatury czerpią

Bardziej szczegółowo

Czarna dziura obszar czasoprzestrzeni, którego, z uwagi na wpływ grawitacji, nic, łącznie ze światłem, nie może opuścić.

Czarna dziura obszar czasoprzestrzeni, którego, z uwagi na wpływ grawitacji, nic, łącznie ze światłem, nie może opuścić. Czarna dziura obszar czasoprzestrzeni, którego, z uwagi na wpływ grawitacji, nic, łącznie ze światłem, nie może opuścić. Czarne dziury są to obiekty nie do końca nam zrozumiałe. Dlatego budzą ciekawość

Bardziej szczegółowo

Zderzenie galaktyki Andromedy z Drogą Mleczną

Zderzenie galaktyki Andromedy z Drogą Mleczną Zderzenie galaktyki Andromedy z Drogą Mleczną Katarzyna Mikulska Zimowe Warsztaty Naukowe Naukowe w Żninie, luty 2014 Wszyscy doskonale znamy teorię Wielkiego Wybuchu. Wiemy, że Wszechświat się rozszerza,

Bardziej szczegółowo

STRUKTURA MATERII PO WIELKIM WYBUCHU

STRUKTURA MATERII PO WIELKIM WYBUCHU Wykład I STRUKTURA MATERII -- -- PO WIELKIM WYBUCHU Człowiek zajmujący się nauką nigdy nie zrozumie, dlaczego miałby wierzyć w pewne opinie tylko dlatego, że znajdują się one w jakiejś książce. (...) Nigdy

Bardziej szczegółowo

Galaktyki aktywne II. Przesłanki istnienia,,centralnego silnika'' Dyski akrecyjne Czarne dziury

Galaktyki aktywne II. Przesłanki istnienia,,centralnego silnika'' Dyski akrecyjne Czarne dziury Galaktyki aktywne II Przesłanki istnienia,,centralnego silnika'' Dyski akrecyjne Czarne dziury Asymetria strug Na ogół jedna ze strug oddala się a druga przybliża do obserwatora Natężenie promieniowania

Bardziej szczegółowo

Budowa Galaktyki. Materia rozproszona Rozkład przestrzenny materii Krzywa rotacji i ramiona spiralne

Budowa Galaktyki. Materia rozproszona Rozkład przestrzenny materii Krzywa rotacji i ramiona spiralne Budowa Galaktyki Materia rozproszona Rozkład przestrzenny materii Krzywa rotacji i ramiona spiralne Gwiazdy w otoczeniu Słońca Gaz międzygwiazdowy Hartmann (1904) Delta Orionis (gwiazda podwójna) obserwowana

Bardziej szczegółowo

FIZYKA IV etap edukacyjny zakres podstawowy

FIZYKA IV etap edukacyjny zakres podstawowy FIZYKA IV etap edukacyjny zakres podstawowy Cele kształcenia wymagania ogólne I. Wykorzystanie wielkości fizycznych do opisu poznanych zjawisk lub rozwiązania prostych zadań obliczeniowych. II. Przeprowadzanie

Bardziej szczegółowo

Galaktyki aktywne I. (,,galaktyki o aktywnych jądrach'') (,,aktywne jądra galaktyk'') ( active galactic nuclei =AGN)

Galaktyki aktywne I. (,,galaktyki o aktywnych jądrach'') (,,aktywne jądra galaktyk'') ( active galactic nuclei =AGN) Galaktyki aktywne I (,,galaktyki o aktywnych jądrach'') (,,aktywne jądra galaktyk'') ( active galactic nuclei =AGN) System klasyfikacji Hubble a (1936) Galaktyki normalne / zwyczajne -różnoraka morfologia

Bardziej szczegółowo

Fizyka wykład dla studentów kierunku Informatyka Wydział Automatyki, Elektroniki i Informatyki Politechniki Śląskiej

Fizyka wykład dla studentów kierunku Informatyka Wydział Automatyki, Elektroniki i Informatyki Politechniki Śląskiej Fizyka wykład dla studentów kierunku Informatyka Wydział Automatyki, Elektroniki i Informatyki Politechniki Śląskiej Jacek Pawlyta Zakład Zastosowań Radioizotopów Instytut Fizyki, Politechnika Śląska,

Bardziej szczegółowo

Informacje podstawowe

Informacje podstawowe Informacje podstawowe Autor: Sarah Roberts Koautorzy: Vanessa Stroud & Fraser Lewis The Faulkes Telescope Project, Anglia Dawid Basak Wydział Fizyki i Astronomii Uniwersytet Mikołaja Kopernika, Toruń Tłumaczenie:

Bardziej szczegółowo

1100-3Ind06 Astrofizyka

1100-3Ind06 Astrofizyka 1100-3Ind06 Astrofizyka 2016/2017 Michał Jaroszyński (+Tomasz Bulik +Igor Soszyński ) Różne informacje mogą znajdować się na: http://www.astrouw.edu.pl/~mj Zasady zaliczeń: Pozytywny wynik w teście otwartym

Bardziej szczegółowo

Fizyka gwiazd. 1 Budowa gwiazd. 19 maja Stosunek r g R = 2GM

Fizyka gwiazd. 1 Budowa gwiazd. 19 maja Stosunek r g R = 2GM Fizyka gwiazd 19 maja 2004 1 Budowa gwiazd Stosunek r g R = 2GM c 2 R (gdzie M, R jest masa i promieniem gwiazdy) daje nam informację konieczności uwzględnienia poprawek relatywistycznych. 0-0 Rysunek

Bardziej szczegółowo

Numeryczny opis zjawiska zaniku

Numeryczny opis zjawiska zaniku FOTON 8, iosa 05 7 Numeryczy opis zjawiska zaiku Jerzy Giter ydział Fizyki U Postawieie problemu wielu zagadieiach z różych działów fizyki spotykamy się z astępującym problemem: zmiay w czasie t pewej

Bardziej szczegółowo

Promieniowanie jonizujące

Promieniowanie jonizujące Promieniowanie jonizujące Wykład IV Krzysztof Golec-Biernat Promieniotwórczość naturalna Uniwersytet Rzeszowski, 22 listopada 2017 Wykład IV Krzysztof Golec-Biernat Promieniowanie jonizujące 1 / 21 Reakcja

Bardziej szczegółowo

Oddziaływanie podstawowe rodzaj oddziaływania występującego w przyrodzie i nie dającego sprowadzić się do innych oddziaływań.

Oddziaływanie podstawowe rodzaj oddziaływania występującego w przyrodzie i nie dającego sprowadzić się do innych oddziaływań. 1 Oddziaływanie podstawowe rodzaj oddziaływania występującego w przyrodzie i nie dającego sprowadzić się do innych oddziaływań. Wyróżniamy cztery rodzaje oddziaływań (sił) podstawowych: oddziaływania silne

Bardziej szczegółowo

OPIS MODUŁ KSZTAŁCENIA (SYLABUS)

OPIS MODUŁ KSZTAŁCENIA (SYLABUS) OPIS MODUŁ KSZTAŁCENIA (SYLABUS) I. Informacje ogólne: 1 Nazwa modułu kształcenia Astronomia ogólna 2 Kod modułu kształcenia 04-ASTR1-ASTROG90-1Z 3 Rodzaj modułu kształcenia obowiązkowy 4 Kierunek studiów

Bardziej szczegółowo

Z czego i jak zbudowany jest Wszechświat? Jak powstał? Jak się zmienia?

Z czego i jak zbudowany jest Wszechświat? Jak powstał? Jak się zmienia? Z czego i jak zbudowany jest Wszechświat? Jak powstał? Jak się zmienia? Cząstki elementarne Kosmologia Wielkość i kształt Świata Ptolemeusz (~100 n.e. - ~165 n.e.) Mikołaj Kopernik (1473 1543) geocentryzm

Bardziej szczegółowo

Fizyka 2. Janusz Andrzejewski

Fizyka 2. Janusz Andrzejewski Fizyka 2 wykład 15 Janusz Andrzejewski Janusz Andrzejewski 2 Egzamin z fizyki I termin 31 stycznia2014 piątek II termin 13 luty2014 czwartek Oba egzaminy odbywać się będą: sala 301 budynek D1 Janusz Andrzejewski

Bardziej szczegółowo

Zadania powtórkowe do egzaminu maturalnego z chemii Budowa atomu, układ okresowy i promieniotwórczość

Zadania powtórkowe do egzaminu maturalnego z chemii Budowa atomu, układ okresowy i promieniotwórczość strona 1/11 Zadania powtórkowe do egzaminu maturalnego z chemii Budowa atomu, układ okresowy i promieniotwórczość Monika Gałkiewicz Zad. 1 () Przedstaw pełną konfigurację elektronową atomu pierwiastka

Bardziej szczegółowo

Najbardziej zwarte obiekty we Wszechświecie

Najbardziej zwarte obiekty we Wszechświecie Najbardziej zwarte obiekty we Wszechświecie Sławomir Stachniewicz, IF PK 1. Ciśnienie a stabilność Dla stabilności dowolnego obiektu na tyle masywnego, że siły grawitacji nie pozwalają mu się rozpaść,

Bardziej szczegółowo

ASTROFIZYKA I KOSMOLOGIA

ASTROFIZYKA I KOSMOLOGIA ASTROFIZYKA I KOSMOLOGIA Wyjaśnimy jak mogły powstać gwiazdy i planety, skąd pochodzi ogromna energia wysyłana przez gwiazdy i co się dzieje z gwiazdą, gdy jej źródło energii wyczerpuje się. Zajmiemy się

Bardziej szczegółowo

Grawitacja - powtórka

Grawitacja - powtórka Grawitacja - powtórka 1. Oceń prawdziwość każdego zdania. Zaznacz, jeśli zdanie jest prawdziwe, lub, jeśli jest A. Jednorodne pole grawitacyjne istniejące w obszarze sali lekcyjnej jest wycinkiem centralnego

Bardziej szczegółowo

I. Podzielność liczb całkowitych

I. Podzielność liczb całkowitych I Podzielość liczb całkowitych Liczba a = 57 przy dzieleiu przez pewą liczbę dodatią całkowitą b daje iloraz k = 3 i resztę r Zaleźć dzieik b oraz resztę r a = 57 = 3 b + r, 0 r b Stąd 5 r b 8, 3 więc

Bardziej szczegółowo

Podstawy fizyki jądrowej dla inŝynierów

Podstawy fizyki jądrowej dla inŝynierów Wojciech Wierzchowski Podstawy fizyki jądrowej dla iŝyierów Materiały pomocicze do wykładów z podstaw fizyki Wrocław 8 Spis treści Rozdział. Wstęp... 5 Rozdział. Budowa jądra atomowego... 7.. Rozmiary

Bardziej szczegółowo

2 n < 2n + 2 n. 2 n = 2. 2 n 2 +3n+2 > 2 0 = 1 = 2. n+2 n 1 n+1 = 2. n+1

2 n < 2n + 2 n. 2 n = 2. 2 n 2 +3n+2 > 2 0 = 1 = 2. n+2 n 1 n+1 = 2. n+1 Tekst a iebiesko jest kometarzem lub treścią zadaia. Zadaie 1. Zbadaj mootoiczość i ograiczoość ciągów. a = + 3 + 1 Ciąg jest mootoiczie rosący i ieograiczoy poieważ różica kolejych wyrazów jest dodatia.

Bardziej szczegółowo

Astronomia galaktyczna

Astronomia galaktyczna Zakład Astrofizyki i Kosmologii Uniwersytet Śląski Zakład Astrofizyki Instytutu Astronomicznego Uniwersytet Wrocławski »»»»»»»»» SPIS TREŚCI «««««««««Odkrywanie natury Drogi Mlecznej Budowa Drogi Mlecznej

Bardziej szczegółowo

Nasza Galaktyka

Nasza Galaktyka 13.1.1 Nasza Galaktyka Skupisko ok. 100 miliardów gwiazd oraz materii międzygwiazdowej składa się na naszą Galaktykę (w odróżnieniu od innych pisaną wielką literą). Większość gwiazd (podobnie zresztą jak

Bardziej szczegółowo

Astrofizyka teoretyczna II. Równanie stanu materii gęstej

Astrofizyka teoretyczna II. Równanie stanu materii gęstej Astrofizyka teoretyczna II Równanie stanu materii gęstej 1 Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects by Stuart L. Shapiro, Saul A. Teukolsky " Rozdziały 2, 3 i 8 2 Odkrycie

Bardziej szczegółowo

Promieniotwórczość naturalna. Jądro atomu i jego budowa.

Promieniotwórczość naturalna. Jądro atomu i jego budowa. Promieniotwórczość naturalna. Jądro atomu i jego budowa. Doświadczenie Rutherforda (1909). Polegało na bombardowaniu złotej folii strumieniem cząstek alfa (jąder helu) i obserwacji odchyleń ich toru ruchu.

Bardziej szczegółowo

Neutrina i ich oscylacje. Neutrina we Wszechświecie Oscylacje neutrin Masy neutrin

Neutrina i ich oscylacje. Neutrina we Wszechświecie Oscylacje neutrin Masy neutrin Neutrina i ich oscylacje Neutrina we Wszechświecie Oscylacje neutrin Masy neutrin Neutrina wokół nas n n n γ ν ν 410 cm 340 cm 10 10 nbaryon 3 3 Pozostałe z wielkiego wybuchu: Słoneczne Już obserwowano

Bardziej szczegółowo

Polecam - The Dark Universe by R. Kolb (Wykłady w CERN (2008))

Polecam - The Dark Universe by R. Kolb (Wykłady w CERN (2008)) Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 15 Maria Krawczyk, Wydział Fizyki UW 12.01. 2010 Ciemny Wszechświat Polecam - The Dark Universe by R. Kolb (Wykłady w CERN (2008)) http://indico.cern.ch/conferencedisplay.py?confid=24743

Bardziej szczegółowo

Podstawy fizyki subatomowej. 3 kwietnia 2019 r.

Podstawy fizyki subatomowej. 3 kwietnia 2019 r. Podstawy fizyki subatomowej Wykład 7 3 kwietnia 2019 r. Atomy, nuklidy, jądra atomowe Atomy obiekt zbudowany z jądra atomowego, w którym skupiona jest prawie cała masa i krążących wokół niego elektronów.

Bardziej szczegółowo

NUKLEOGENEZA. Barbara Becker

NUKLEOGENEZA. Barbara Becker Barbara Becker NUKLEOGENEZA nukleony - wspólna nazwa dla protonów i neutronów jako składników jąder atomowych geneza - pochodzenie, rodowód - zespół warunków powstania i rozwoju danego zjawiska Układ okresowy

Bardziej szczegółowo

Efekt Dopplera. dr inż. Romuald Kędzierski

Efekt Dopplera. dr inż. Romuald Kędzierski Efekt Dopplera dr inż. Romuald Kędzierski Christian Andreas Doppler W 1843 roku opublikował swoją najważniejszą pracę O kolorowym świetle gwiazd podwójnych i niektórych innych ciałach niebieskich. Opisał

Bardziej szczegółowo

OPIS MODUŁ KSZTAŁCENIA (SYLABUS)

OPIS MODUŁ KSZTAŁCENIA (SYLABUS) OPIS MODUŁ KSZTAŁCENIA (SYLABUS) I. Informacje ogólne: 1 Nazwa modułu Astronomia ogólna 2 Kod modułu 04-A-AOG-90-1Z 3 Rodzaj modułu obowiązkowy 4 Kierunek studiów astronomia 5 Poziom studiów I stopień

Bardziej szczegółowo

Spis treści. Przedmowa PRZESTRZEŃ I CZAS W FIZYCE NEWTONOWSKIEJ ORAZ SZCZEGÓLNEJ TEORII. 1 Grawitacja 3. 2 Geometria jako fizyka 14

Spis treści. Przedmowa PRZESTRZEŃ I CZAS W FIZYCE NEWTONOWSKIEJ ORAZ SZCZEGÓLNEJ TEORII. 1 Grawitacja 3. 2 Geometria jako fizyka 14 Spis treści Przedmowa xi I PRZESTRZEŃ I CZAS W FIZYCE NEWTONOWSKIEJ ORAZ SZCZEGÓLNEJ TEORII WZGLĘDNOŚCI 1 1 Grawitacja 3 2 Geometria jako fizyka 14 2.1 Grawitacja to geometria 14 2.2 Geometria a doświadczenie

Bardziej szczegółowo

Po co wymyślono ciemną materię i ciemną energię. Artykuł pobrano ze strony eioba.pl

Po co wymyślono ciemną materię i ciemną energię. Artykuł pobrano ze strony eioba.pl Po co wymyślono ciemną materię i ciemną energię. Artykuł pobrano ze strony eioba.pl Oto powód dla którego wymyślono ciemną materię i ciemną energię. Jest nim galaktyka spiralna. Potrzebna była naukowcom

Bardziej szczegółowo