Fizyka atomowa, jądrowa zadania.
|
|
- Andrzej Domański
- 8 lat temu
- Przeglądów:
Transkrypt
1 Fizyka atomowa, jądrowa zadania. 1. (próbna matura podstawowa grudzień 2005) Przy pochłanianiu neutronu przez jądro izotopu magnezu wytwarza się radioaktywny izotop sodu. Równanie tej reakcji jądrowej można zapisać następująco: Emitowaną w wyniku tej reakcji cząstką X jest A. proton. B. neutron. C. elektron. D. cząstka alfa. 2. Atom wodoru ( pkt) (próbna matura podstawowa grudzień 2005) W swobodnym, wzbudzonym atomie wodoru elektron przeskakuje z orbity drugiej na pierwszą. Atom emituje wówczas w próżni kwant światła o długości fali 1, m. a) Wyjaśnij, dlaczego w wyniku emisji fotonu pęd atomu wodoru ulega zmianie. (2 pkt) b) Oblicz energię emitowanego fotonu. (2 pkt) 3. Rozpad (2 pkt) (próbna matura podstawowa grudzień 2005)Na wykresie przedstawiono zależność liczby jąder N pozostałych w próbce pewnego izotopu promieniotwórczego od czasu. a) Na podstawie wykresu odczytaj i podaj czas połowicznego rozpadu tego izotopu. (1 pkt) b) Oblicz liczbę jąder, która uległa rozpadowi do końca 6. godziny. (1 pkt). (1 pkt) (matura podstawowa maj 2008) Jądro izotopu uległo rozpadowi promieniotwórczemu. Powstało nowe jądro zawierające o jeden proton więcej i o jeden neutron mniej niż jądro wyjściowe. Przedstawiony powyżej opis dotyczy rozpadu A. alfa. B. gamma. C. beta plus. D. beta minus. 5. Rozpad promieniotwórczy ( pkt) (matura podstawowa maj 2008) Jądro uranu ( 92 U) rozpada się na jądro toru (Th) i cząstkę alfa. W tabeli poniżej podano masy atomowe uranu, toru i helu. a) (2 pkt) Zapisz, z uwzględnieniem liczb masowych i atomowych, równanie rozpadu jądra uranu. b) (2 pkt)oblicz energię wyzwalaną podczas opisanego powyżej rozpadu jądra. Wynik podaj w MeV. W obliczeniach przyjmij, że 1 u 931,5 MeV. 6. (1 pkt) (matura podstawowa maj 2009) Poniżej przedstawiono informacje dotyczące masy (M) jądra berylu 9 Be. Wskaż, która z informacji jest prawdziwa. (przez m p i m n oznaczono odpowiednio masę swobodnego protonu i masę swobodnego neutronu) A. M > m p + 5 m n B. M < m p + 5 m n C. M = m p + 9 m n D. M = m p + 5 m n 7. Izotop złota (3 pkt) (matura podstawowa maj 2009) Jądro izotopu złota ulega rozpadowi, w wyniku którego powstaje jądro rtęci (Hg) zawierające taką samą liczbę nukleonów, co jądro ulegające rozpadowi. Nowo powstałe jądro ma o jeden proton więcej od jądra izotopu. a) (1 pkt) Zapisz równanie opisanej reakcji rozpadu. b) (2 pkt) Oblicz masę izotopu złota po 8,1 dniach, jeżeli początkowa masa tego izotopu zawarta w preparacie promieniotwórczym wynosiła 10 μg, a przeprowadzone pomiary wykazały, że po 2,7 dnia połowa jąder tego izotopu ulega rozpadowi.
2 8. Atom wodoru (5 pkt) (matura podstawowa maj 2009) W tabeli przedstawiono wartości całkowitej energii atomu wodoru (E n ) oraz promieni orbit (r n ), po których elektron może się poruszać w zależności od numeru orbity (n). a) (1 pkt) Uzupełnij tabelę, wykonując konieczne obliczenia. b) (2 pkt) Przedstaw na wykresie związek energii atomu wodoru z promieniem orbity. Uwzględnij fakt, że energia atomu jest skwantowana. c) (2 pkt) Korzystając z postulatu Bohra, oblicz wartość prędkości elektronu na pierwszej orbicie. 9. Syriusz ( pkt) (matura rozszerzona maj 2005) Zimą najjaśniejszą gwiazdą naszego nocnego nieba jest Syriusz. Pod tą nazwą kryje się układ dwóch gwiazd poruszających się wokół wspólnego środka masy. Syriusz A jest gwiazdą ciągu głównego, a Syriusz B jest białym karłem i nie można go zobaczyć gołym okiem. a) (2 pkt) Na podstawie tekstu i własnej wiedzy wymień dwie charakterystyczne cechy białych karłów b) (3 pkt)średnia gęstość Syriusza B wynosi 2, 10 9 kg/m 3, a jego promień 5,9 106 m. Oblicz wartość przyspieszenia grawitacyjnego na powierzchni Syriusza B, pomijając wpływ Syriusza A. c) (2 pkt) Na rysunku przedstawiono budowę wnętrza Syriusza A. Energia zawarta w jądrze gwiazdy transportowana jest na powierzchnię przez warstwę konwektywną, a z powierzchni fotosfery wypromieniowana w przestrzeń kosmiczną. Zapisz, czym różni się transport energii w wyniku konwekcji od transportu poprzez promieniowanie. d) (3 pkt) Głównym źródłem energii Syriusza A są reakcje termojądrowe polegające na zamianie wodoru w hel za pośrednictwem węgla i tlenu (tzw. cykl CNO). Uzupełnij równanie reakcji będącej częścią cyklu CNO. Poniżej zamieszczono równania dwóch przemian jądrowych cyklu CNO. Obok równań reakcji zapisz nazwę tego typu procesu jądrowego. e) ( pkt) W zachodzącym w jądrze Syriusza A cyklu CNO najwięcej energii wydziela się podczas reakcji zamiany węgla w azot. Oblicz, ile jąder węgla w Syriuszu A musiałoby ulec tego typu reakcji, by wytworzona energia mogła w normalnych warunkach stopić 1 g lodu. Ciepło topnienia lodu wynosi 3, J/kg. Masy jąder wodoru, węgla i azotu mają wartości odpowiednio równe: m H = 1, kg, m C = 21, kg, m N = 23, kg
3 10. Węgiel (3 pkt) (matura podstawowa styczeń 2006) Okres połowicznego rozpadu izotopu węgla wynosi około 5700 lat. W znalezionych szczątkach kopalnych stwierdzono ośmiokrotnie niższą zawartość niż w atmosferze. Naszkicuj wykres zależności liczby jąder promieniotwórczych zawartych w szczątkach w zależności od czasu. Rozpocznij od chwili, gdy szczątki powstały (tkanki obumarły) do chwili obecnej. Początkową liczbę jąder oznacz przez N 0. Zaznacz na wykresie czas połowicznego zaniku. Oszacuj wiek znalezionych szczątków.. Dwoista natura światła ( pkt) (matura podstawowa styczeń 2006) Wzbudzony atom wodoru emituje promieniowanie związane z przejściem elektronu z powłoki trzeciej na drugą. Oblicz energię wyemitowanego kwantu i długość fali uzyskanej linii widmowej. Zapisz, czy linia ta wypada w zakresie światła widzialnego, jeśli światło widzialne zawiera fale w przedziale od 380 nm do 760 nm. Energia stanu podstawowego atomu wodoru E = 13,6 ev.\ 12. Naładowana cząstka w polu magnetycznym (12 pkt) (próbna matura rozszerzona listopad 2006) Naładowana cząstka porusza się w próżni z prędkością o stałej wartości w obszarze jednorodnego, stałego pola magnetycznego prostopadle do linii tego pola. a) (3 pkt)wykaż, że w opisanej powyżej sytuacji cząstka porusza się po okręgu o promieniu, oraz że promień ten jest stały. b) (2 pkt)w rzeczywistości tory naładowanych cząstek poruszających się w jednorodnym, stałym polu magnetycznym, (np. w cieczy w komorze pęcherzykowej) są najczęściej spiralne (promień krzywizny zmniejsza się patrz rys.). Wyjaśnij, dlaczego tak się dzieje odwołując się do odpowiednich zależności. c) (3 pkt) W pewnym eksperymencie w obszar jednorodnego pola magnetycznego wstrzeliwano z jednakowymi prędkościami cząstki α i β. Oszacuj stosunek promieni okręgów po jakich poruszają się cząstki wchodzące w skład tych wiązek, przyjmując, że masa protonu lub neutronu jest około 1800 razy większa od masy elektronu. d) (2 pkt) Cząstki α lub β powstają między innymi w wyniku samorzutnych rozpadów jąder atomowych. Napisz schemat rozpadu jądra, w wyniku którego powstaje cząstka α oraz schemat rozpadu w wyniku którego powstaje cząstka β e) (2 pkt) Zapisz nazwy dwóch zasad zachowania, z których korzystamy przy zapisywaniu tych schematów Reakcje rozszczepienia (12 pkt) (matura rozszerzona maj 2007)Spośród pierwiastków występujących naturalnie w Ziemi największą liczbę atomową ma uran. W uranie naturalnym występują głównie dwa izotopy 235 U i 238 U. W wyniku rozpadów promieniotwórczych uran 238 U przechodzi w tor 23 Th, a następnie w proaktyn 23 Pa. a) (2 pkt) Uzupełnij zapisy poniższych reakcji jądrowych. Rozszczepienie jądra uranu można spowodować bombardując jądra uranu powolnymi neutronami o energii około 1 ev. W reakcji tej uwalnia się energia około 210 MeV. Jedną z możliwych reakcji rozszczepienia uranu 235 U przedstawiono poniżej: Przez x i y oznaczono odpowiednio liczbę neutronów i liczbę elektronów b) (2 pkt) Oblicz liczbę neutronów x oraz liczbę elektronów y, w reakcji rozszczepienia uranu c) (2 pkt) Oblicz wartość prędkości neutronu wywołującego rozszczepienie uranu 235 U. d) (2 pkt) Podaj dwa warunki, które muszą być spełnione, aby w materiale zawierającym uran 235 U mogło dojść do reakcji łańcuchowej
4 2.... e) ( pkt) Oblicz liczbę jąder uranu 235 U, które powinny ulec rozszczepieniu, aby uwolniona w reakcji energia wystarczyła do ogrzania 1 litra wody od temperatury 20 C do 100 C. Do obliczeń przyjmij ciepło właściwe wody równe 200 J/kg K.. Jądro atomowe a gwiazda neutronowa (12 pkt) (matura rozszerzona maj 2007) a) (2 pkt) Zapisz dwie cechy sił jądrowych b) (3 pkt) Wykaż, że średnia gęstość materii jądrowej jest niezależna od liczby masowej. Wykorzystaj założenia podane poniżej. 1. Jądro atomowe można traktować jako kulę (objętość kuli ). 2. Empiryczny wzór określający promień jądra atomowego ma postać, gdzie r = 1, m, zaś A jest liczbą masową. 3. Masę jądra atomu można szacować jako iloczyn liczby masowej i masy neutronu. Masywne gwiazdy w końcowym etapie ewolucji odrzucają zewnętrzne warstwy materii i zapadając się mogą tworzyć gwiazdy neutronowe. Jeśli masa zapadającej się części gwiazdy jest dostatecznie duża to powstaje czarna dziura. Czarna dziura to obiekt astronomiczny, który tak silnie oddziałuje grawitacyjnie na swoje otoczenie, że żaden rodzaj materii ani energii nie może jej opuścić. c) (3 pkt) Oszacuj promień gwiazdy neutronowej o masie 12, kg i średniej gęstości równej kg/m 3. d) ( pkt) Masywna gwiazda w wyniku ewolucji utworzyła obiekt o masie 12, kg i promieniu 1 km. Oszacuj wartość drugiej prędkości kosmicznej dla tego obiektu. Oceń, czy ten obiekt może być czarną dziurą. Odpowiedź uzasadnij. 15. (1 pkt) (próbna matura rozszerzona listopad 2006) Pokazany obok wykres przedstawia zależność masy od czasu dla izotopu promieniotwórczego pewnego pierwiastka w próbce. Na jego podstawie można wywnioskować, że okres połowicznego rozpadu tego izotopu wynosi około A. 3 godziny. B. godziny. C. 6 godzin. D. 8 godzin. 16. (1 pkt) (próbna matura rozszerzona listopad 2006) 17. Atom wodoru (3 pkt) (próbna matura rozszerzona listopad 2006) Atom wodoru znajduje się w stanie podstawowym. Energia elektronu na pierwszej orbicie atomu wodoru jest równa 13,6 ev. a) (1 pkt) Podaj (w ev) najmniejszą wartość energii, jaką musi pochłonąć elektron, aby atom uległ jonizacji. b) (2 pkt) Określ (w ev) minimalną energię, jaką musi pochłonąć elektron, aby atom uległ wzbudzeniu. 18. Elektron (3 pkt) (próbna matura rozszerzona listopad 2006) Elektron porusza się w jednorodnym polu magnetycznym po okręgu o promieniu m. Długość fali de Broglie a dla tego elektronu jest równa 2, m. Oblicz wartość wektora indukcji magnetycznej pola magnetycznego, w którym porusza się ten elektron. Efekty relatywistyczne pomiń. 19. Radioterapia (2 pkt) (próbna matura rozszerzona listopad 2006) Radioterapia polega na niszczeniu komórek nowotworowych przy użyciu promieniowania jądrowego emitowanego przez różnego rodzaju izotopy promieniotwórcze umieszczone w pewnej odległości od tkanek. Wyjaśnij, odwołując się do własności promieniowania jądrowego α i γ, dlaczego w radioterapii stosuje się głównie izotopy emitujące promieniowanie γ, a nie korzysta się z np. izotopów emitujących promieniowanie α. 20. (1 pkt) (matura podstawowa maj 2007) Trzy czwarte początkowej liczby jąder pewnego izotopu promieniotwórczego ulega rozpadowi w czasie 2 godzin. Okres połowicznego rozpadu tego izotopu jest równy A. 2 godziny. B. godziny. C. 8 godzin. D. 12 godzin. 21. Atom wodoru (3 pkt) (matura podstawowa maj 2007) Elektron w atomie wodoru przechodzi z orbity drugiej na pierwszą. Atom emituje wówczas światło, którego długość fali w próżni wynosi 1, m. a) (1 pkt) Oblicz częstotliwość fali wysyłanej podczas tego przejścia. b) (2 pkt) Oblicz energię emitowanego fotonu. Wynik podaj w ev.
5 22. Reakcje jądrowe (3 pkt) (matura podstawowa maj 2007) Bombardowanie jąder glinu 27 Al. 13 neutronami wywołuje różne skutki w zależności od ich prędkości. Powolne neutrony zostają pochłonięte przez jądra glinu. Neutrony o większych prędkościach powodują powstanie jąder magnezu (Mg) i emisję protonów. Jeszcze szybsze neutrony wyzwalają emisję cząstek α i powstanie jąder sodu (Na). Zapisz opisane powyżej reakcje Sonda Pioneer (9 pkt) (matura rozszerzona styczeń 2006) Pod koniec kwietnia wielki radioteleskop w Madrycie wykrył słaby sygnał sztucznego pochodzenia z kierunku konstelacji Byka. To nie kosmici. Odezwała się sonda Pioneer 10, która z niewiadomych przyczyn milczała, od ośmiu miesięcy. [...] Sygnał miał moc słabszą niż miliardowa (10-9 ) część bilionowej(10-12 ) części wata. Leciał do Ziemi prawie godzin. To dlatego, że Pioneer 10 zawędrował już bardzo daleko - jest dziś w odległości dwa razy większej od Słońca niż planeta Pluton, czyli ok.,2 mld km. [...] Teraz Pioneer 10 leci z prędkością 13 km/s w kierunku czerwonej gwiazdy Aldebaran w konstelacji Byka, która jest oddalona o 71 lat świetlnych i 155 razy jaśniejsza niż nasze Słońce. Sonda zmaga się tylko z upływem czasu. - Nasza gwarancja skończyła się już po 21 miesiącach, a dziś upływa 28. rok działania sondy - mówi szef misji Larry Lasher z NASA. Pioneer 10 jest zasilany przez radioaktywny pluton-238. Rozpad plutonu generuje ciepło, zamieniane potem na elektryczność. Pluton wprawdzie rozpada się dość wolno połowa paliwa znika po 92 latach, ale szybciej ulegają degradacji elementy, które przekształcają ciepło w prąd elektryczny... (na podstawie: Piotr Cieśliński, Wieści z daleka. Gazeta Wyborcza maja 2001 r.) a) ( pkt) Oszacuj czas (w latach) potrzebny na dotarcie sondy z Ziemi w pobliże orbity Plutona oraz czas podróży w pobliże gwiazdy Aldebaran. Odpowiedź uzasadnij obliczeniami. Przyjmij, że wartość prędkości sondy jest stała. b) (1 pkt) Poniższy diagram ma przedstawiać ciąg przemian energetycznych związanych z wysłaniem informacji przez sondę Pioneer 10. Uzupełnij diagram, wpisując w puste ramki rodzaj energii. c) ( pkt) Stosowany do zasilania sondy Pioneer 10 izotop promieniotwórczy rozpada się na. Z kolei uran rozpada się na (czas połowicznego rozpadu uranu około 2, lat). Energie wydzielane w tych dwóch przemianach promieniotwórczych nie różnią się znacząco. Uran mógłby więc stanowić nowe źródło energii. Jaka cząstka wyzwala się w czasie rozpadu plutonu, a jaka w czasie rozpadu uranu Zapisz te reakcje. (1 pkt) Oszacuj stosunek mocy wydzielanej przez próbki plutonu 238 i uranu 23, zawierające takie same liczby jąder. Czy powstający na pokładzie Pioneera 10 uran mógłby stanowić dla sondy nowe wydajne źródło energii Odpowiedź uzasadnij. (3 pkt) 2. (1 pkt) (matura podstawowa maj 2006) Jądro izotopu zawiera A. 235 neutronów. B. 327 nukleonów. C. 3 neutrony. D. 92 nukleony. 25. (1 pkt) (matura podstawowa maj 2006) Energia elektromagnetyczna emitowana z powierzchni Słońca powstaje w jego wnętrzu w procesie A. syntezy lekkich jąder atomowych. B. rozszczepienia ciężkich jąder atomowych. C. syntezy związków chemicznych. D. rozpadu związków chemicznych. 26. Energia wiązania ( pkt) (matura podstawowa maj 2006) Wykres przedstawia przybliżoną zależność energii wiązania jądra przypadającej na jeden nukleon od liczby masowej jądra. a) (2 pkt) Oblicz wartość energii wiązania jądra izotopu radonu (Rn) zawierającego 86 protonów i 13 neutrony. Wynik podaj w megaelektronowoltach. b) (2 pkt) Wyjaśnij krótko pojęcie jądrowego niedoboru masy ( deficytu masy ). Zapisz formułę matematyczną pozwalającą obliczyć wartość niedoboru masy, jeśli znana jest energia wiązania jądra. 27. (matura podstawowa styczeń 2003) (1 pkt) Izotop wodoru ma w porównaniu z izotopem helu : A. większą liczbę nukleonów, B. mniejszą liczbę nukleonów, C. większą liczbę neutronów, D. mniejszą liczbę neutronów.
6 28. (matura podstawowa styczeń 2003) (1 pkt) Jądro uranu przechodzi w jądro ołowiu w wyniku kilku rozpadów promieniotwórczych. Liczba rozpadów α i β, odpowiadająca temu procesowi, jest odpowiednio równa: A. 8 i 6, B. 8 i 8, C. 8 i 10, D. 16 i Oblicz długość 2 i 3 linii widmowej serii Lymana (n=1). 30. Oblicz częstotliwość 1 i 2 linii widmowych serii Balmera (n=2) 31. Oblicz w jakim przedziale długości fal mieści się seria Paschena (n=3) 32. Wiedząc, że masa jądra helu jest równa u, masa protonu u a masa neutronu wynosi obliczyć deficyt masy jądra, energię wiązania i energię wiązania na 1 nukleon. u = *10-27 kg oznacza jednostkę masy atomowej. 33. Wiedząc, że masa jądra srebra jest równa u, obliczyć deficyt masy jądra, energię wiązania i energię wiązania na 1 nukleon. 3. Okres połowicznego zaniku pewnego pierwiastka wynosi milion lat. Ile z początkowej liczby 100 miliardów cząsteczek rozpadnie się po milionach lat 35. Po 8 latach aktywnych pozostało spośród promieniotwórczych pierwiastków. Wyznaczyć okres połowicznego zaniku. Zad.8 Okres połowicznego zaniku wynosi 5 dni. Po 15 dniach w próbce znajduje się nadal 1000 aktywnych izotopów. Ile promieniotwórczych izotopów znajdowało się w próbce początkowo 36. W próbce znajduje się promieniotwórczych izotopów. Ile z nich pozostanie aktywnych za miliard lat, jeśli okres połowicznego zaniku wynosi 200 mln lat 37. Uzupełnij reakcje i nazwij rodzaj promieniowania: 38. Uzupełnij reakcje: 2 0 Bi e B He N Na 13 0 Al n Ac Pb U 0 1 e Ra 158 Tb He 65 8 Po P Si Al n Na N... B He 2... Po B... N n D He Ac U e 158 Tb He N O 39. Pojemnik K z polonem (Po) znajdował się w polu elektrycznym (rysunek). Otrzymane wiązki promieniowania 1, 2 i 3 to odpowiednio: Okres połowicznego zaniku promieniotwórczego izotopu sodu ( 2 Na) wynosi 15h. Oblicz, jaka masa tego izotopu zostanie z 1g po 5 h.
7 Podaj ile protonów, neutronów i nukleonów znajduje się w jądrze U. Podaj ładunek tego jądra w 92 kulombach. 2. W pewnej substancji stwierdzono obecność 1 g promieniotwórczego fosforu o okresie połowicznego zaniku dni. Oblicz ile tego fosforu było 28 dni wcześniej. 3. Oblicz deficyt masy (w kg) w jądrze deuteru wiedząc, że masa tego jądra jest równa u. Oblicz energię wiązania tego jądra (w J i ev).. Po 25 dniach rozpadło się 9g z początkowej masy 56g pewnego radioaktywnego pierwiastka. Oblicz okres połowicznego zaniku tego pierwiastka. 5. Wiedząc, że początkowo próbka zawierała 100g radioaktywnego pierwiastka o okresie połowicznego zaniku 500 lat, podpisz osie poniższego wykresu, który obrazuje zależność masy tego pierwiastka w próbce od czasu. m [g] Oblicz, wykorzystując wykres, ile g tego pierwiastka rozpadnie się po 700 latach od chwili początkowej Jądro uranu U przechodzi w jądro ołowiu Pb w wyniku kilku rozpadów promieniotwórczych i Oblicz liczbę rozpadów i liczbę rozpadów podczas tego procesu. t [lat]
Zadanie 3. (2 pkt) Uzupełnij zapis, podając liczbę masową i atomową produktu przemiany oraz jego symbol chemiczny. Th... + α
Zadanie: 1 (2 pkt) Określ liczbę atomową pierwiastka powstającego w wyniku rozpadów promieniotwórczych izotopu radu 223 88Ra, w czasie których emitowane są 4 cząstki α i 2 cząstki β. Podaj symbol tego
A - liczba nukleonów w jądrze (protonów i neutronów razem) Z liczba protonów A-Z liczba neutronów
Włodzimierz Wolczyński 40 FIZYKA JĄDROWA A - liczba nukleonów w jądrze (protonów i neutronów razem) Z liczba protonów A-Z liczba neutronów O nazwie pierwiastka decyduje liczba porządkowa Z, a więc ilość
pobrano z serwisu Fizyka Dla Każdego - - zadania z fizyki, wzory fizyczne, fizyka matura
14. Fizyka jądrowa zadania z arkusza I 14.10 14.1 14.2 14.11 14.3 14.12 14.4 14.5 14.6 14.13 14.7 14.8 14.14 14.9 14. Fizyka jądrowa - 1 - 14.15 14.23 14.16 14.17 14.24 14.18 14.25 14.19 14.26 14.27 14.20
Fizyka jądrowa poziom podstawowy
Fizyka jądrowa poziom podstawowy Zadanie 1. (1 pkt) Źródło: CKE 2005 (PP), zad. 7. Zadanie 2. (2 pkt) Źródło: CKE 2005 (PP), zad. 13. v v 1 Zadanie 3. (3 pkt) Źródło: CKE 01.2006 (PP), zad. 18. 14 Okres
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 40 FIZYKA JĄDROWA
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 40 FIZYKA JĄDROWA Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania TEST JEDNOKROTNEGO WYBORU UWAGA: Tekst poniżej,
EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII
Miejsce na naklejkę z kodem szkoły dysleksja MFA-R1_1P-072 EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM ROZSZERZONY MAJ ROK 2007 Czas pracy 150 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny
CHEMIA LEKCJA 1. Budowa atomu, Izotopy Promieniotwórczość naturalna i sztuczna. Model atomu Bohra
CHEMIA LEKCJA 1. Budowa atomu, Izotopy Promieniotwórczość naturalna i sztuczna Model atomu Bohra SPIS TREŚCI: 1. Modele budowy atomu Thomsona, Rutherforda i Bohra 2. Budowa atomu 3. Liczba atomowa a liczba
ZADANIA MATURALNE Z FIZYKI I ASTRONOMII
ZADANIA ZAMKNIĘTE W zadaniach od 1. do 10. wybierz i zaznacz na karcie odpowiedzi jedną poprawną odpowiedź. Zadanie 1. (1 pkt) Samochód porusza się po prostoliniowym odcinku autostrady. Drogę przebytą
EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII
Miejsce na naklejkę z kodem szkoły dysleksja MFA-R1A1P-061 EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM ROZSZERZONY Czas pracy 120 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny
Zadania powtórkowe do egzaminu maturalnego z chemii Budowa atomu, układ okresowy i promieniotwórczość
strona 1/11 Zadania powtórkowe do egzaminu maturalnego z chemii Budowa atomu, układ okresowy i promieniotwórczość Monika Gałkiewicz Zad. 1 () Przedstaw pełną konfigurację elektronową atomu pierwiastka
Opracowała: mgr Agata Wiśniewska PRZYKŁADOWE SPRAWDZIANY WIADOMOŚCI l UMIEJĘTNOŚCI Współczesny model budowy atomu (wersja A)
PRZYKŁADOW SPRAWDZIANY WIADOMOŚCI l UMIJĘTNOŚCI Współczesny model budowy atomu (wersja A) 1. nuklid A. Zbiór atomów o tej samej wartości liczby atomowej. B. Nazwa elektrycznie obojętnej cząstki składowej
Reakcje rozpadu jądra atomowego
Reakcje rozpadu jądra atomowego O P R A C O W A N I E : P A W E Ł Z A B O R O W S K I K O N S U L T A C J A M E R Y T O R Y C Z N A : M A Ł G O R Z A T A L E C H Trwałość izotopów Czynnikiem decydującym
Grawitacja + Astronomia
Grawitacja + Astronomia Matura 2005 Zadanie 31. Syriusz (14 pkt) Zimą najjaśniejszą gwiazdą naszego nocnego nieba jest Syriusz. Pod tą nazwą kryje się układ dwóch gwiazd poruszających się wokół wspólnego
1. JĄDROWA BUDOWA ATOMU. A1 - POZIOM PODSTAWOWY.
. JĄDROWA BUDOWA ATOMU. A - POIOM PODSTAWOWY. Na początek - przeczytaj uważnie tekst i wykonaj zawarte pod nim polecenia.. Dwie reakcje jądrowe zachodzące w górnych warstwach atmosfery: N + n C + p N +
Fizyka 3. Konsultacje: p. 329, Mechatronika
Fizyka 3 Konsultacje: p. 329, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 2 sprawdziany (10 pkt każdy) lub egzamin (2 części po 10 punktów) 10.1 12 3.0 12.1 14 3.5 14.1 16 4.0 16.1 18 4.5 18.1 20 5.0
Autorzy: Zbigniew Kąkol, Piotr Morawski
Rodzaje rozpadów jądrowych Autorzy: Zbigniew Kąkol, Piotr Morawski Rozpady jądrowe zachodzą zawsze (prędzej czy później) jeśli jądro o pewnej liczbie nukleonów znajdzie się w stanie energetycznym, nie
Promieniowanie jonizujące
Promieniowanie jonizujące Wykład III Krzysztof Golec-Biernat Reakcje jądrowe Uniwersytet Rzeszowski, 8 listopada 2017 Wykład III Krzysztof Golec-Biernat Promieniowanie jonizujące 1 / 12 Energia wiązania
Zadanie 2. (1 pkt) Jądro izotopu U zawiera A. 235 neutronów. B. 327 nukleonów. C. 143 neutrony. D. 92 nukleony
Zadanie 1. (1 pkt) W jednym z naturalnych szeregów promieniotwórczych występują m.in. trzy izotopy polonu, których okresy półtrwania podano w nawiasach: Po-218 (T 1/2 = 3,1minuty), Po-214 (T 1/2 = 0,0016
Matura z fizyki i astronomii 2012
Matura z fizyki i astronomii 2012 Zadania przygotowawcze do matury na poziomie podstawowym 7 maja 2012 Arkusz A1 Czas rozwiązywania: 120 minut Liczba punktów do uzyskania: 50 Zadanie 1 (1 pkt) Dodatni
PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII
Miejsce na naklejkę z kodem szkoły dysleksja PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM PODSTAWOWY Czas pracy 120 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera
FIZYKA IV etap edukacyjny zakres podstawowy
FIZYKA IV etap edukacyjny zakres podstawowy Cele kształcenia wymagania ogólne I. Wykorzystanie wielkości fizycznych do opisu poznanych zjawisk lub rozwiązania prostych zadań obliczeniowych. II. Przeprowadzanie
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH OCEN ŚRÓROCZNYCH I ROCZNYCH FIZYKA - ZAKRES PODSTAWOWY KLASA I
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH OCEN ŚRÓROCZNYCH I ROCZNYCH FIZYKA - ZAKRES PODSTAWOWY KLASA I GRAWITACJA opowiedzieć o odkryciach Kopernika, Keplera i Newtona, opisać ruchy
Reakcje jądrowe dr inż. Romuald Kędzierski
Reakcje jądrowe dr inż. Romuald Kędzierski Wybuch bomby Ivy Mike (fot. National Nuclear Security Administration/Nevada Site Office, domena publiczna) Przemiany jądrowe 1. Spontaniczne (niewymuszone) związane
I ,11-1, 1, C, , 1, C
Materiał powtórzeniowy - budowa atomu - cząstki elementarne, izotopy, promieniotwórczość naturalna, okres półtrwania, średnia masa atomowa z przykładowymi zadaniami I. Cząstki elementarne atomu 1. Elektrony
EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MFA-P1_1P-092 EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII MAJ ROK 2009 POZIOM PODSTAWOWY Czas pracy 120 minut
41P6 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - V POZIOM PODSTAWOWY
41P6 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - V Optyka fizyczna POZIOM PODSTAWOWY Dualizm korpuskularno-falowy Atom wodoru. Widma Fizyka jądrowa Teoria względności Rozwiązanie zadań należy
OCHRONA RADIOLOGICZNA PACJENTA. Promieniotwórczość
OCHRONA RADIOLOGICZNA PACJENTA Promieniotwórczość PROMIENIOTWÓRCZOŚĆ (radioaktywność) zjawisko samorzutnego rozpadu jąder atomowych niektórych izotopów, któremu towarzyszy wysyłanie promieniowania α, β,
Foton, kwant światła. w klasycznym opisie świata, światło jest falą sinusoidalną o częstości n równej: c gdzie: c prędkość światła, długość fali św.
Foton, kwant światła Wielkość fizyczna jest skwantowana jeśli istnieje w pewnych minimalnych (elementarnych) porcjach lub ich całkowitych wielokrotnościach w klasycznym opisie świata, światło jest falą
Fizyka współczesna. Jądro atomowe podstawy Odkrycie jądra atomowego: 1911, Rutherford Rozpraszanie cząstek alfa na cienkich warstwach metalu
Odkrycie jądra atomowego: 9, Rutherford Rozpraszanie cząstek alfa na cienkich warstwach metalu Tor ruchu rozproszonych cząstek (fakt, że część cząstek rozprasza się pod bardzo dużym kątem) wskazuje na
Promieniotwórczość naturalna. Jądro atomu i jego budowa.
Promieniotwórczość naturalna. Jądro atomu i jego budowa. Doświadczenie Rutherforda (1909). Polegało na bombardowaniu złotej folii strumieniem cząstek alfa (jąder helu) i obserwacji odchyleń ich toru ruchu.
Budowa atomu. Izotopy
Budowa atomu. Izotopy Zadanie. atomu lub jonu Fe 3+ atomowa Z 9 masowa A Liczba protonów elektronów neutronów 64 35 35 36 Konfiguracja elektronowa Zadanie 2. Atom pewnego pierwiastka chemicznego o masie
SYMULACJA GAMMA KAMERY MATERIAŁ DLA STUDENTÓW. Szacowanie pochłoniętej energii promieniowania jonizującego
SYMULACJA GAMMA KAMERY MATERIAŁ DLA STUDENTÓW Szacowanie pochłoniętej energii promieniowania jonizującego W celu analizy narażenia na promieniowanie osoby, której podano radiofarmaceutyk, posłużymy się
doświadczenie Rutheforda Jądro atomowe składa się z nuklonów: neutronów (obojętnych elektrycznie) i protonów (posiadających ładunek dodatni +e)
1 doświadczenie Rutheforda Jądro atomowe składa się z nuklonów: neutronów (obojętnych elektrycznie) i protonów (posiadających ładunek dodatni +e) Ilość protonów w jądrze określa liczba atomowa Z Ilość
Stałe : h=6, Js h= 4, eVs 1eV= J nie zależy
T_atom-All 1 Nazwisko i imię klasa Stałe : h=6,626 10 34 Js h= 4,14 10 15 evs 1eV=1.60217657 10-19 J Zaznacz zjawiska świadczące o falowej naturze światła a) zjawisko fotoelektryczne b) interferencja c)
Poziom nieco zaawansowany Wykład 2
W2Z Poziom nieco zaawansowany Wykład 2 Witold Bekas SGGW Promieniotwórczość Henri Becquerel - 1896, Paryż, Sorbona badania nad solami uranu, odkrycie promieniotwórczości Maria Skłodowska-Curie, Piotr Curie
Temat: Promieniowanie atomu wodoru (teoria)
Temat: Promieniowanie atomu wodoru (teoria) Zgodnie z drugim postulatem Bohra elektron poruszając się po dozwolonej orbicie nie wypromieniowuje energii. Promieniowanie zostaje wyemitowane, gdy elektron
Rozpady promieniotwórcze
Rozpady promieniotwórcze Przez rozpady promieniotwórcze rozumie się spontaniczne procesy, w których niestabilne jądra atomowe przekształcają się w inne jądra atomowe i emitują specyficzne promieniowanie
FIZYKA KLASA I LO LICEUM OGÓLNOKSZTAŁCĄCEGO wymagania edukacyjne
FIZYKA KLASA I LO LICEUM OGÓLNOKSZTAŁCĄCEGO wymagania edukacyjne TEMAT (rozumiany jako lekcja) 1.1. Kinematyka ruchu jednostajnego po okręgu 1.2. Dynamika ruchu jednostajnego po okręgu 1.3. Układ Słoneczny
Wymagania edukacyjne z fizyki zakres podstawowy. Grawitacja
Wymagania edukacyjne z fizyki zakres podstawowy opowiedzieć o odkryciach Kopernika, Keplera i Newtona, Grawitacja opisać ruchy planet, podać treść prawa powszechnej grawitacji, narysować siły oddziaływania
Podstawowe własności jąder atomowych
Podstawowe własności jąder atomowych 1. Ilość protonów i neutronów Z, N 2. Masa jądra M j = M p + M n - B 2 2 Q ( M c ) ( M c ) 3. Energia rozpadu p 0 k 0 Rozpad zachodzi jeżeli Q > 0, ta nadwyżka energii
I etap ewolucji :od ciągu głównego do olbrzyma
I etap ewolucji :od ciągu głównego do olbrzyma Spalanie wodoru a następnie helu i cięższych jąder doprowadza do zmiany składu gwiazdy i do przesunięcia gwiazdy na wykresie H-R II etap ewolucji: od olbrzyma
fizyka w zakresie podstawowym
mi edukacyjne z przedmiotu fizyka w zakresie podstawowym dla klasy pierwszej szkoły ponadgimnazjalnej Poziom Kategoria celów Zakres Poziom podstawowy - Uczeń opanował pewien zakres WIADOMOŚCI Poziom ponadpodstawowy
r. akad. 2012/2013 Wykład IX-X Podstawy Procesów i Konstrukcji Inżynierskich Fizyka jądrowa Zakład Biofizyki 1
r. akad. 2012/2013 Wykład IX-X Podstawy Procesów i Konstrukcji Inżynierskich Fizyka jądrowa Zakład Biofizyki 1 Budowa jądra atomowego każde jądro atomowe składa się z dwóch rodzajów nukleonów: protonów
Wykład Budowa atomu 1
Wykład 30. 11. 2016 Budowa atomu 1 O atomach Trochę historii i wprowadzenie w temat Promieniowanie i widma Doświadczenie Rutherforda i odkrycie jądra atomowego Model atomu wodoru Bohra sukcesy i ograniczenia
zadania zamknięte W zadaniach od 1. do 10. wybierz i zaznacz jedną poprawną odpowiedź.
zadania zamknięte W zadaniach od 1. do 10. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (1 p.) Wybierz ten zestaw wielkości fizycznych, który zawiera wyłącznie wielkości skalarne. a. ciśnienie,
fizyka w zakresie podstawowym
Plan wynikowy z wymaganiami edukacyjnymi przedmiotu fizyka w zakresie podstawowym dla klasy pierwszej szkoły ponadgimnazjalnej W trakcie nauczania fizyki w szkole realizujemy założone na początku cele
rok szkolny 2017/2018
NiezbĘdne wymagania edukacyjne Z fizyki w XXI LO w Krakowie rok szkolny 2017/2018 1 Wymagania edukacyjne z fizyki dla klasy I I. Wiadomości i umiejętności konieczne do uzyskania oceny dopuszczającej. Uczeń
Następnie powstały trwały izotop - azot-14 - reaguje z trzecim protonem, przekształcając się w nietrwały tlen-15:
Reakcje syntezy lekkich jąder są podstawowym źródłem energii wszechświata. Słońce - gwiazda, która dostarcza energii niezbędnej do życia na naszej planecie Ziemi, i w której 94% masy stanowi wodór i hel
Powtórka 1 - grawitacja, atomowa, jądrowa
owtórka 1 - grawitacja, atomowa, jądrowa 1. Zaznacz wszystkie opisy sytuacji, w których występuje stan nieważkości. A. asażer stoi w windzie, która rusza w dół z przyspieszeniem 9,81. B. Astronauta dokonuje
Oblicz częstotliwość z jaką obracają się koła samochodu jadącego z prędkością 72 ich promień 0,3 m.
Grawitacja Zad.1. Uzupełnij zdania: Metoda...wykorzystuje fakt przesuwania się gwiazd bliższych na tle dalszych....to odległość do gwizdy, której paralaksa półroczna wynosi 1 sekundę łuku. unkt na eliptycznej
PROMIENIOTWÓRCZOŚĆ. A) równa B) mniejsza C) większa D) nie mniejsza (sumie) od sumy mas protonów i neutronów wchodzących w jego skład.
1. Promień atomu jest większy od promienia jądra atomu PROMIENIOTWÓRCZOŚĆ A) 5 razy. B) 100 razy. C) 10 5 razy. D) terminy promień atomu i promień jądra są synonimami. 2. Jeśliby, zachowując skalę, powiększyć
Szkolny konkurs chemiczny Grupa B. Czas pracy 80 minut
Szkolny konkurs chemiczny Grupa B Czas pracy 80 minut Piła 1 czerwca 2017 1 Zadanie 1. (0 3) Z konfiguracji elektronowej atomu (w stanie podstawowym) pierwiastka X wynika, że w tym atomie: elektrony rozmieszczone
ODKRYCIE PROMIENIOTWÓRCZOŚCI PROMIENIOWANIE JĄDROWE I JEGO WŁAŚCIWOŚCI
ODKRYCIE PROMIENIOTWÓRCZOŚCI PROMIENIOWANIE JĄDROWE I JEGO WŁAŚCIWOŚCI Wilhelm Roentgen 1896 Stan wiedzy na rok 1911 1. Elektron masa i ładunek znikomy ułamek masy atomu 2. Niektóre atomy samorzutnie emitują
Energetyka konwencjonalna odnawialna i jądrowa
Energetyka konwencjonalna odnawialna i jądrowa Wykład 8-27.XI.2018 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Wykład 8 Energia atomowa i jądrowa
Odkrycie jądra atomowego - doświadczenie Rutherforda 1909 r.
Odkrycie jądra atomowego - doświadczenie Rutherforda 1909 r. 1 Budowa jądra atomowego Liczba atomowa =Z+N Liczba masowa Liczba neutronów Izotopy Jądra o jednakowej liczbie protonów, różniące się liczbą
WYMAGANIA NA POSZCZEGÓLNE OCENY Z FIZYKI DO KLASY PIERWSZEJ SZKOŁY PONADGIMNAZJALNEJ DO CYKLU ŚWIAT FIZYKI
WYMAGANIA NA POSZCZEGÓLNE OCENY Z FIZYKI DO KLASY PIERWSZEJ SZKOŁY PONADGIMNAZJALNEJ DO CYKLU ŚWIAT FIZYKI Lp. 1 Trochę historii, czyli o odkryciach Kopernika, Keplera i o geniuszu Newtona. O Newtonie
Spis treści. Trwałość jądra atomowego. Okres połowicznego rozpadu
Spis treści 1 Trwałość jądra atomowego 2 Okres połowicznego rozpadu 3 Typy przemian jądrowych 4 Reguła przesunięć Fajansa-Soddy ego 5 Szeregi promieniotwórcze 6 Typy reakcji jądrowych 7 Przykłady prostych
W2. Struktura jądra atomowego
W2. Struktura jądra atomowego Doświadczenie Rutherforda - badanie odchylania wiązki cząstek alfa w cienkiej folii metalicznej Hans Geiger, Ernest Marsden, Ernest Rutherford ( 1911r.) detektor pierwiastek
Wykłady z Chemii Ogólnej i Biochemii. Dr Sławomir Lis
Wykłady z Chemii Ogólnej i Biochemii Dr Sławomir Lis Chemia, jako nauka zajmuje się otrzymywaniem i wszechstronnym badaniem własności, struktury oraz reakcji chemicznych pierwiastków i ich połączeń. Chemia
VI. CELE OPERACYJNE, CZYLI PLAN WYNIKOWY
12 1. Grawitacja 1 O odkryciach Kopernika, Keplera i o geniuszu Newtona. Prawo powszechnej grawitacji VI. CELE OPERACYJNE, CZYLI PLAN WYNIKOWY opowiedzieć o odkryciach Kopernika, Keplera i Newtona, opisać
Promieniowanie jonizujące
Promieniowanie jonizujące Wykład IV Krzysztof Golec-Biernat Promieniotwórczość naturalna Uniwersytet Rzeszowski, 22 listopada 2017 Wykład IV Krzysztof Golec-Biernat Promieniowanie jonizujące 1 / 21 Reakcja
Budowa atomu Poziom: podstawowy Zadanie 1. (1 pkt.)
Budowa atomu Poziom: podstawowy Zadanie 1. (1 pkt.) Zadanie 1 2 3 4 5 6 7 8 9 10 Punkty Atomy pewnego pierwiastka w stanie podstawowym mają następującą konfigurację elektronów walencyjnych: 2s 2 2p 3 (
Modele atomu wodoru. Modele atomu wodoru Thomson'a Rutherford'a Bohr'a
Modele atomu wodoru Modele atomu wodoru Thomson'a Rutherford'a Bohr'a Demokryt: V w. p.n.e najmniejszy, niepodzielny metodami chemicznymi składnik materii. atomos - niepodzielny Co to jest atom? trochę
Energetyka Jądrowa. Wykład 28 lutego Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów
Energetyka Jądrowa Wykład 8 lutego 07 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Model atomu. Promieniowanie atomów 8.II.07 EJ - Wykład / r
Synteza jądrowa (fuzja) FIZYKA 3 MICHAŁ MARZANTOWICZ
Synteza jądrowa (fuzja) Cykl życia gwiazd Narodziny gwiazd: obłok molekularny Rozmiary obłoków (Giant Molecular Cloud) są rzędu setek lat świetlnych. Masa na ogół pomiędzy 10 5 a 10 7 mas Słońca. W obłoku
ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA POZIOM PODSTAWOWY LISTOPAD 2013 Instrukcja dla zdającego Czas pracy: 120 minut 1. Sprawdź, czy arkusz egzaminacyjny
Jądro atomowe Wielkości charakteryzujące jądro atomowe
Fizyka jądrowa Jądro atomowe Wielkości charakteryzujące jądro atomowe A - liczba masowa Z - liczba porządkowa pierwiastka w układzie okresowym N - liczba neutronów Oznaczenie jądra atomowego : A X lub
Spełnienie wymagań poziomu oznacza, że uczeń ponadto:
Fizyka LO - 1, zakres podstawowy R - treści nadobowiązkowe. Wymagania podstawowe odpowiadają ocenom dopuszczającej i dostatecznej, ponadpodstawowe dobrej i bardzo dobrej Wymagania podstawowe Spełnienie
Fizyka promieniowania jonizującego. Zygmunt Szefliński
Fizyka promieniowania jonizującego Zygmunt Szefliński 1 Wykład 3 Ogólne własności jąder atomowych (masy ładunki, izotopy, izobary, izotony izomery). 2 Liczba atomowa i masowa Liczba nukleonów (protonów
Oddziaływanie cząstek z materią
Oddziaływanie cząstek z materią Trzy główne typy mechanizmów reprezentowane przez Ciężkie cząstki naładowane (cięższe od elektronów) Elektrony Kwanty gamma Ciężkie cząstki naładowane (miony, p, cząstki
Fizyka zakres podstawow y
12 Fizyka zakres podstawow y (dopuszczający) (dostateczny) (dobry) (bardzo dobry) 1 O odkryciach Kopernika, Keplera i o geniuszu Newtona. Prawo powszechnej grawitacji opowiedzieć o odkryciach Kopernika,
Fizyka kwantowa (4 pkt) Korzystając z wykresu oblicz (w dżulach) pracę wyjścia elektronów z katody fotokomórki.
Fizyka kwantowa Matura 2005 Zadanie 32. Fotokomórka (10 pkt) Katoda fotokomórki oświetlana jest wiązką światła laserowego o długości fali 330 nm. Charakterystykę prądowo-napięciową tej fotokomórki przedstawiono
41R6 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - VI POZIOM ROZSZERZONY
41R6 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - VI POZIOM ROZSZERZONY Optyka fizyczna Dualizm korpuskularno-falowy Atom wodoru. Widma Fizyka jądrowa Teoria względności Rozwiązanie zadań
FIZYKA KLASA I LICEUM OGÓLNOKSZTAŁCĄCEGO
2016-09-01 FIZYKA KLASA I LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY SZKOŁY BENEDYKTA 1. Cele kształcenia i wychowania Ogólne cele kształcenia zapisane w podstawie programowej dla zakresu podstawowego
Budowa atomu Poziom: rozszerzony Zadanie 1. (2 pkt.)
Budowa atomu Poziom: rozszerzony Zadanie 1. (2 pkt.) Zadanie 1 2 3 4 5 6 7 8 9 10 Punkty Okres połowiczego rozpadu pewnego radionuklidu wynosi 16 godzin. a) Określ, ile procent atomów tego izotopu rozpadnie
Podstawy Fizyki Jądrowej
Podstawy Fizyki Jądrowej III rok Fizyki Kurs WFAIS.IF-D008.0 Składnik egzaminu licencjackiego (sesja letnia)! OPCJA (zalecana): Po uzyskaniu zaliczenia z ćwiczeń możliwość zorganizowania ustnego egzaminu
Wymagania programowe z fizyki na poszczególne oceny
1. Grawitacja Lp. Temat lekcji 1. O odkryciach Kopernika, Keplera i o geniuszu Newtona. Prawo powszechnej grawitacji Wymagania programowe z fizyki na poszczególne oceny opowiedzieć o odkryciach Kopernika,
Anna Grych Test z budowy atomu i wiązań chemicznych
Anna Grych Test z budowy atomu i wiązań chemicznych 1. Uzupełnij tabelkę wpisując odpowiednie dane: Nazwa atomu Liczba nukleonów protonów neutronów elektronów X -... 4 2 Y -... 88 138 Z -... 238 92 W -...
41P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM PODSTAWOWY (od początku do końca)
Włodzimierz Wolczyński 41P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM PODSTAWOWY (od początku do końca) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania
Słowniczek pojęć fizyki jądrowej
Słowniczek pojęć fizyki jądrowej atom - najmniejsza ilość pierwiastka jaka może istnieć. Atomy składają się z małego, gęstego jądra, zbudowanego z protonów i neutronów (nazywanych inaczej nukleonami),
Promieniowanie jonizujące i metody radioizotopowe. dr Marcin Lipowczan
Promieniowanie jonizujące i metody radioizotopowe dr Marcin Lipowczan Budowa atomu 897 Thomson, 0 0 m, kula dodatnio naładowana ładunki ujemne 9 Rutherford, rozpraszanie cząstek alfa na folię metalową,
Nazwy pierwiastków: A +Fe 2(SO 4) 3. Wzory związków: A B D. Równania reakcji:
Zadanie 1. [0-3 pkt] Na podstawie podanych informacji ustal nazwy pierwiastków X, Y, Z i zapisz je we wskazanych miejscach. I. Suma protonów i elektronów anionu X 2- jest równa 34. II. Stosunek masowy
41R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM ROZSZERZONY (od początku do końca)
Włodzimierz Wolczyński 41R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM ROZSZERZONY (od początku do końca) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania
Tworzenie protonów neutronów oraz jąder atomowych
Tworzenie protonów neutronów oraz jąder atomowych kwarki, elektrony, neutrina oraz ich antycząstki anihilują aby stać się cząstkami 10-10 s światła fotonami energia kwarków jest już wystarczająco mała
I. Poziom: poziom rozszerzony (nowa formuła)
Analiza wyników egzaminu maturalnego wiosna 2017 + poprawki Przedmiot: FIZYKA I. Poziom: poziom rozszerzony (nowa formuła) 1. Zestawienie wyników. Liczba uczniów zdających - LO 6 Zdało egzamin 4 % zdawalności
Od Wielkiego Wybuchu do Gór Izerskich. Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słońca CBK PAN
Od Wielkiego Wybuchu do Gór Izerskich Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słońca CBK PAN Góry Izerskie Góry Izerskie Góry Izerskie Góry Izerskie Góry Izerskie Góry Izerskie Góry Izerskie
Na ocenę dostateczną uczeń potrafi:
Plan wynikowy fizyka podstawowa klasa 1 technikum 1. Grawitacja Lp. Temat lekcji Na ocenę dopuszczającą 1 O odkryciach Kopernika, Keplera i o geniuszu Newtona. Prawo powszechnej grawitacji opowiedzieć
Budowa i ewolucja gwiazd I. Skale czasowe Równania budowy wewnętrznej Modele Diagram H-R Ewolucja gwiazd
Budowa i ewolucja gwiazd I Skale czasowe Równania budowy wewnętrznej Modele Diagram H-R Ewolucja gwiazd Dynamiczna skala czasowa Dla Słońca: 3 h Twierdzenie o wiriale Temperatura wewnętrzna Cieplna skala
PROGRAM NAUCZANIA Z FIZYKI SZKOŁA PONADGIMNAZJALNA ZAKRES PODSTATOWY
PROGRAMY NAUCZANIA Z FIZYKI REALIZOWANE W RAMACH PROJEKTU INNOWACYJNEGO TESTUJĄCEGO Zainteresowanie uczniów fizyką kluczem do sukcesu PROGRAM NAUCZANIA Z FIZYKI SZKOŁA PONADGIMNAZJALNA ZAKRES PODSTATOWY
Model Bohra budowy atomu wodoru - opis matematyczny
Model Bohra budowy atomu wodoru - opis matematyczny Uwzględniając postulaty kwantowe Bohra, można obliczyć promienie orbit dozwolonych, energie elektronu na tych orbitach, wartość prędkości elektronu na
Egzamin maturalny z fizyki i astronomii 5 Poziom podstawowy
Egzamin maturalny z fizyki i astronomii 5 Poziom podstawowy 14. Kule (3 pkt) Dwie małe jednorodne kule A i B o jednakowych masach umieszczono w odległości 10 cm od siebie. Kule te oddziaływały wówczas
Fizyka 2. Janusz Andrzejewski
Fizyka 2 wykład 15 Janusz Andrzejewski Janusz Andrzejewski 2 Egzamin z fizyki I termin 31 stycznia2014 piątek II termin 13 luty2014 czwartek Oba egzaminy odbywać się będą: sala 301 budynek D1 Janusz Andrzejewski
CELE OPERACYJNE, CZYLI PLAN WYNIKOWY klasa I
CELE OPERACYJNE, CZYLI PLAN WYNIKOWY klasa I Lp. 1. Grawitacja 1 Trochę historii, czyli o odkryciach Kopernika, Keplera i o geniuszu Newtona. O Newtonie i prawie powszechnej grawitacji opowiedzieć o odkryciach
CELE OPERACYJNE, CZYLI PLAN WYNIKOWY
1.Grawitacja Lp. Temat lekcji Treści konieczne 1 O odkryciach Kopernika, Keplera i o geniuszu Newtona. Prawo powszechnej grawitacji T1 (3,7) CELE OPERACYJNE, CZYLI PLAN WYNIKOWY opowiedzieć o odkryciach
EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII
Miejsce na naklejkę z kodem szkoły dysleksja EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII MFA-P1A1P-061 POZIOM PODSTAWOWY Czas pracy 120 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera
Szczegółowe wymagania z fizyki w klasie I L.O. Wymagania konieczne i podstawowe- ocena dopuszczająca i dostateczna
12 Szczegółowe wymagania z fizyki w klasie I L.O. Wymagania konieczne i podstawowe- ocena dopuszczająca i dostateczna Wymagania rozszerzone i dopełniające- ocena dobra, bardzo dobra i celująca 1.Grawitacja
PRÓBNY EGZAMIN MATURALNY Z ZAMKOREM FIZYKA I ASTRONOMIA. Styczeń 2014 POZIOM ROZSZERZONY
PRÓBNY EGZAMIN MATURALNY Z ZAMKOREM FIZYKA I ASTRONOMIA Styczeń 2014 POZIOM ROZSZERZONY 1. Sprawdź, czy arkusz egzaminacyjny zawiera 11 stron (zadania 1 7). Ewentualny brak zgłoś przewodniczącemu zespołu
Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków).
Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). 1925r. postulat Pauliego: Na jednej orbicie może znajdować się nie więcej
Wymagania edukacyjne z fizyki dla klasy ITI, ITE, ITM w roku szkolnym 2012/2013
Wymagania edukacyjne z fizyki dla klasy ITI, ITE, ITM w roku szkolnym 2012/2013 1. Grawitacja 1 O odkryciach Kopernika, Keplera i o geniuszu Newtona. Prawo powszechnej grawitacji opowiedzieć o odkryciach
3. Jaka jest masa atomowa pierwiastka E w następujących związkach? Który to pierwiastek? EO o masie cząsteczkowej 28 [u]
1. Masa cząsteczkowa tlenku dwuwartościowego metalu wynosi 56 [u]. Masa atomowa tlenu wynosi 16 [u]. Ustal jaki to metal i podaj jego nazwę. Napisz wzór sumaryczny tego tlenku. 2. Ile razy masa atomowa