WIROWANIE. 1. Wprowadzenie

Wielkość: px
Rozpocząć pokaz od strony:

Download "WIROWANIE. 1. Wprowadzenie"

Transkrypt

1 WIROWANIE 1. Wprowadzenie Rozdzielanie układów heterogonicznych w polu sił grawitacyjnych może być procesem długotrwałym i mało wydajnym. Sedymentacja może zostać znacznie przyspieszona, kiedy pole sił grawitacyjnych zostanie zastąpione polem sił odśrodkowych. Stosowane przyspieszenia odśrodkowe są znacznie większe niż wartości przyspieszenia ziemskiego. Poniżej przedstawiono teoretyczne rozważania dotyczące sił działających na cząstki w polu sił odśrodkowych oraz podstawowe informacje o działaniu wirówek sedymentacyjnych. Znaczenie poszczególnych symboli wykorzystywanych w poniższych równaniach oraz wartości niektórych z nich zestawiono w tabeli 1. W trakcie wirowania na każdą cząstkę zawieszoną w roztworze działają siły: odśrodkowa F a, wyporu F w i oporu F o. Przyjmuje się, że wartość siły grawitacji w stosunku do siły odśrodkowej jest na tyle niska, że można ją pominąć. Początkowy brak równowagi pomiędzy tymi siłami powoduje, że cząsteczki przyspieszają. Po pewnym, krótkim z reguły czasie, wymienione siły się równoważą a zawieszone w medium cząstki zaczynają poruszać się ruchem jednostajnym. W obszarze Stokesa Re d <1, wartości współczynnika oporu kropli (np. wody, oleju) poruszającej się w pewnym ciekłym medium są zbliżone do wartości sztywnej kulistej cząstki i równania te można uprości do: w d = d d 2 ρg 18η c (1) Czas sedymentacji w obszarze Stokesa można opisać równaniem: τ = 18η c (2πn) 2 d d 2 ρ ln R r i (2) natomiast czas przebywania w wirówce musi być co najmniej równy czasowi sedymentacji więc: τ w = V w V 0 = πh(r2 r i 2 ) V 0 (3) gdzie V w to objętość układu znajdującego się w wirówce. Równania te można przekształcić i przedstawić w następującej formie opisującej strumień zawiesiny V 0: V 0 = d d 2 ρ (2πn) 2 πh(r 2 2 r i ) 18η c lub w uproszczeniu ln R r i (4) V 0 = w d (2πn) 2 πh(r 2 r i 2 ) g ln R r i = w d Σ (5) Strona 1 z 6

2 gdzie Σ to ekwiwalentna powierzchnia klarowania. Odpowiada ona powierzchni przekroju osadnika zapewniającego rozdzielenie danego strumienia zawiesiny i zależy jedynie od parametrów operacyjnych wirówki. Ekwiwalentną powietrznię klarowania można obliczyć również z równania: Σ = 2πr m Hf(Z) (6) gdzie: f(z) = Z(r m ) dla Re < 0,2 (7) f(z) = Z(r m ) 2/3 dla 0,2 < Re < 500 (8) f(z) = Z(r m ) 1/2 dla Re > 500 (9) Z = F c (10); r F m = R+r i g 2 (11); Z(r m ) = (2πn)2 r m g (12); Re d = w dd d ρ c η c (13) W przemyśle stosuje się zmodyfikowaną wartość prędkości swobodnego opadania: w dr = k 1 Ψw d (14) gdzie k 1 to współczynnik uwzgledniający stężenie zawiesiny: k 1 = (1 ε d ) 2 exp ( 4,1ε d 1,64 ε d ) (15) W praktyce często wykorzystuje się tak zwane wirówki sedymentacyjne. Posiadają one lity bęben, a produkty separacji odprowadzane są z niego przelewami odpowiedniej konstrukcji (rys. 1.). Dobór odpowiedniej średnicy, tych wylotów jest niezwykle ważny. Zbyt mała lub zbyt duża średnica może być przyczyną niepełnej separacji składników mieszaniny. Z reguły konstrukcja wirówki pozwala na manipulowanie wielkością promienia r 1 (wartość r i jest stała). Strona 2 z 6

3 Rys. 1. Wirówka sedymentacyjna - przekrój W przypadku gdy olej jest bardzo ciężki, prawie tak ciężki jak woda (ρ 1 ρ 2 ), dostarczenie jego pewnej ilości wraz ze strumieniem V 0 spowoduje przemieszczenie prawie takiej samej ilości wody w obszar wypływu strumienia V 1. Może spowodować to zwiększenie promienia r 2. Po przekroczeniu wartości krytycznej olej może zacząć przedostawać się w obszar wypływu strumienia V 1. Strumień V 1 będzie zanieczyszczony olejem. Separacja nie będzie przebiegać w pełni efektywnie. Można temu zaradzić manipulując wielkością przegrody przy wypływie strumienia V 1 należy ją wydłużyć w kierunku osi obrotu a więc zmniejszyć promień r 1. Dla olejów o bardzo małej gęstości (ρ 1 < ρ 2 ) warstwa r 2 -r i może się znacząco zmniejszyć. Może to powodować przedostawanie się fazy ciężkiej wraz ze strumieniem V 2. Aby temu zapobiec należy zwiększyć grubość warstwy r 2 -r i skracając długość przegrody przy wypływie strumienia V 1 - a więc zwiększyć promień r 1. Ponadto aby zapobiec wypływaniu nierozdzielonej mieszaniny wraz ze strumieniem V 1 przed rozpoczęciem procesu rozdzielania wirówkę wstępnie napełnia się fazą ciężką np. wodą. Aby opisać zależności pomiędzy wielkościami wartość rozdzielanych cieczy należy założyć, że na każdą różniczkową masę dm działa różnicowa siła odśrodkowa przez co powstaje gradient ciśnienia dp, który po scałkowaniu można wyrazić jako: p = (2πn) 2 ρ m (r 2 r i 2 ) (16) To równanie można wykorzystać do opisu dwóch faz o różnych gęstościach znajdujących się w bębnie wirówki: (2πn) 2 ρ 1 (R 2 r 1 2 ) = (2πn) 2 ρ 1 (R 2 r 2 2 )+(2πn) 2 ρ 2 (r 2 2 r i 2 ) (17) skąd wynika, że : Strona 3 z 6

4 r 2 2 r i 2 r 2 2 r 1 2 = ρ 1 ρ 2 (18) W wirówkach z reguły ustalona jest wartość r i a regulowana jest wartość r 1. Należy ją odpowiednio dobrać dla danego układu. Ponadto, przyjmując brak poślizgu w bębnie można przyjąć, że: V 2 V 1 = r 2 2 r i 2 R 2 r 2 2 = ε 0 1 ε 0 (19) UWAGA! Do kartkówki obowiązuje materiał z książki; R. Koch, A. Noworyta, Procesy mechaniczne w inżynierii chemicznej, Wydawnictwo Naukowo- Techniczne, Warszawa 1998 Rozdziały: Ruch fazy rozproszonej w płynie Układ ciecz-ciecz Układ ciało stałe- ciecz Wirowanie Strona 4 z 6

5 2. Przebieg ćwiczenia. Celem ćwiczenia jest zapoznanie się z konstrukcja i sposobem działania wirówki sedymentacyjnej. Ćwiczenie przebiega w następujących etapach. a) Obliczenie przepustowości wirówki (strumień zawiesiny V 0) dla danych podanych przez prowadzącego. b) Wyznaczenie gęstości składników mieszaniny wody i oleju. c) Przygotowanie odpowiedniej mieszaniny oleju i wody w proporcjach i objętości podanej przez prowadzącego. d) Przygotowanie pompy perystaltycznej. Należy ustawić odpowiedni przepływ przez pompę, dostosowany do przepustowości wirówki. W tym celu należy wykonywać pomiary objętości wody pompowanej do cylindra miarowego w czasie. e) Wprowadzenie fazy ciężkiej do bębna wirówki. Do zbiornika roboczego należy wprowadzić podaną przez prowadzącego objętość wody. Wodę należy pompować do bębna wirówki do momentu pojawienia się pierwszych kropel w odpływie z wirówki (V 1). Należy zmierzyć objętość pozostałej w zbiorniku wody. Na tej podstawie można obliczyć objętość wody znajdującej się w bębnie wirówki, oraz początkową wartość promienia r 2 (ze wzoru na objętość walca), która w tym wypadku powinna być równa promieniowi r 1. f) Wprowadzenie mieszaniny wody i oleju do bębna wirówki. Do wirówki należy wprowadzić uprzednio przygotowaną mieszaninę wykorzystując do tego celu odpowiednio przygotowaną pompę perystaltyczną. Należy zmierzyć czas od momentu uruchomienia pompy to momentu pojawienia się pierwszej kropli oleju odseparowanego od wody (V 2). g) Wyznaczanie wartości strumieni V 1 i V 2. W trakcie ćwiczenia należy wyznaczyć objętościowe strumienie powstałych rozdzielonych składników mieszaniny (oleju i wody). W tym celu należy wykonywać pomiary objętości cieczy wypływających z wirówki w czasie jej pracy. Na podstawie przeprowadzonych pomiarów należy wyznaczyć: - szybkość sedymentacji - w d ; - czas sedymentacji w obszarze Stokesa (porównać z czasem przebywania) - τ i τ w ; - wartość promienia r 2 podczas wirowania (w stanie ustalonym); - ekwiwalentną powietrznię klarowania Σ osobno ze wzorów 5 i 6, uzyskane wartości porównać. W sprawozdaniu należy dokonać oceny dobranej przepustowości wirówki do przygotowanej mieszaniny, oraz dobranego promienia r 1. Strona 5 z 6

6 Tab. 1. Znaczenie wykorzystanych symboli. Właściwości fizyczne mieszaniny Jednostka/wartość ρ Różnica gęstości składników mieszaniny kg/m 3 ρ c Gęstość ośrodka ciekłego (medium dla innej fazy) kg/m 3 ρ 1 ; ρ 2 Gęstość składników mieszaniny heterogenicznej kg/m 3 d d Średnica kropli fazy zawieszonej m ζ Współczynnik oporu ruchu fazy zawieszonej 1 A Pow. Rzutu największego przekroju elementu fazy rozproszonej m 2 η c Lepkość ośrodka ciekłego (medium) 1*10-3 kg/(m*s) Proces sedymentacji τ Czas sedymentacji s τ w Czas przebywania układu w wirowce s w d Szybkość sedymentacji m/s F 0 Siła oporu N V 0 Objętościowy strumień mieszaniny m 3 /s V w Objętość bębna wirówki m 3 /s V 1 ; V 2 Strumienie objętościowe rozdzielonych składników mieszaniny m 3 /s Σ Ekwiwalentna powierzchnia klarowania m 2 Ψ Sferyczność cząstki 0,85 k 1 Wsp. uwzględniający stężenie zawiesiny 1 r m Średni promień m f(z) Funkcja empiryczna zależna od Z (dla określonej liczby Reynoldsa) 1 Z(r m ) Stosunek siły odśrodkowej do siły grawitacji 1 F c Siła odśrodkowa N F g Siła grawitacji N dm Różniczkowa masa elementu zawieszonego w medium kg df c Różniczkowa siła odśrodkowa działająca na różniczkową masę N elementu zawieszonego dr Różniczkowa długość promienia m dp; p Różniczkowa zmiana ciśnienia; różnica ciśnień N/m 2 n Częstość obrotów 1/s ε 0 Udział objętościowy składników mieszaniny układu 1 g Przyspieszenie ziemskie m/s 2 Re d Liczba Reynoldsa 1 Budowa wirówki R Średnica bębna 0,1025 m r i Promień do ujścia fazy lekkiej 0,0135 m r 1 Promień do ujścia fazy ciężkiej 0,0206 m r 2 Promień do granicy między fazami lekką i ciężką m H Wysokość bębna 0,455 m Opracował: Konrad Matyja Strona 6 z 6

WIROWANIE. 1. Wprowadzenie

WIROWANIE. 1. Wprowadzenie WIROWANIE 1. Wprowadzenie Rozdzielanie układów heterogonicznych w polu sił grawitacyjnych może być procesem długotrwałym i mało wydajnym. Sedymentacja może zostać znacznie przyspieszona, kiedy pole sił

Bardziej szczegółowo

Nieustalony wypływ cieczy ze zbiornika przewodami o różnej średnicy i długości

Nieustalony wypływ cieczy ze zbiornika przewodami o różnej średnicy i długości LABORATORIUM MECHANIKI PŁYNÓW Nieustalony wypływ cieczy ze zbiornika przewodami o różnej średnicy i długości dr inż. Jerzy Wiejacha ZAKŁAD APARATURY PRZEMYSŁOWEJ POLITECHNIKA WARSZAWSKA, WYDZ. BMiP, PŁOCK

Bardziej szczegółowo

OPADANIE CZĄSTEK CIAŁ STAŁYCH W PŁYNACH

OPADANIE CZĄSTEK CIAŁ STAŁYCH W PŁYNACH OPADANIE CZĄSTEK CIAŁ STAŁYCH W PŁYNACH OPADANIE CZĄSTEK CIAŁ STAŁYCH W PŁYNACH UKŁAD NIEJEDNORODNY złożony jest z fazy rozpraszającej (gazowej lub ciekłej) i fazy rozproszonej stałej. Rozdzielanie układów

Bardziej szczegółowo

Przepływy laminarne - zadania

Przepływy laminarne - zadania Zadanie 1 Warstwa cieczy o wysokości = 3mm i lepkości v = 1,5 10 m /s płynie równomiernie pod działaniem siły ciężkości po płaszczyźnie nachylonej do poziomu pod kątem α = 15. Wyznaczyć: a) Rozkład prędkości.

Bardziej szczegółowo

Materiały pomocnicze z Aparatury Przemysłu Chemicznego

Materiały pomocnicze z Aparatury Przemysłu Chemicznego Materiały pomocnicze z Aparatury Przemysłu Chemicznego Odstojnik dr inż. Szymon Woziwodzki Materiały dydaktyczne v.1. Wszelkie prawa zastrzeżone. Szymon.Woziwodzki@put.poznan.pl Strona 1 POLITECHNIKA POZNAŃSKA

Bardziej szczegółowo

POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA

POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA ĆWICZENIE LABORATORYJNE NR 1 Temat: Wyznaczanie współczynnika

Bardziej szczegółowo

W zaleŝności od charakteru i ilości cząstek wyróŝniamy: a. opadanie cząstek ziarnistych, b. opadanie cząstek kłaczkowatych.

W zaleŝności od charakteru i ilości cząstek wyróŝniamy: a. opadanie cząstek ziarnistych, b. opadanie cząstek kłaczkowatych. BADANIE PROCESU SEDYMENTACJI Wstęp teoretyczny. Sedymentacja, to proces opadania cząstek ciała stałego w cieczy, w wyniku działania siły grawitacji lub sił bezwładności. Zaistnienie róŝnicy gęstości ciała

Bardziej szczegółowo

1. SEDYMENTACJA OKRESOWA

1. SEDYMENTACJA OKRESOWA SEPARACJE i OCZYSZCZANIE BIOPRODUKTÓW SEDYMENTACJA i FILTRACJA 1. SEDYMENTACJA OKRESOWA CEL ĆWICZENIA Wyznaczenie krzywej sedymentacji oraz krzywej narastania osadu dla procesu sedymentacji okresowej.

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 13: Współczynnik lepkości

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 13: Współczynnik lepkości Nazwisko i imię: Zespół: Data: Ćwiczenie nr 13: Współczynnik lepkości Cel ćwiczenia: Wyznaczenie współczynnika lepkości gliceryny metodą Stokesa, zapoznanie się z własnościami cieczy lepkiej. Literatura

Bardziej szczegółowo

1. Część teoretyczna. Przepływ jednofazowy przez złoże nieruchome i ruchome

1. Część teoretyczna. Przepływ jednofazowy przez złoże nieruchome i ruchome 1. Część teoretyczna Przepływ jednofazowy przez złoże nieruchome i ruchome Przepływ płynu przez warstwę luźno usypanego złoża występuje w wielu aparatach, np. w kolumnie absorpcyjnej, rektyfikacyjnej,

Bardziej szczegółowo

Modele matematyczne procesów, podobieństwo i zmiana skali

Modele matematyczne procesów, podobieństwo i zmiana skali Modele matematyczne procesów, podobieństwo i zmiana skali 20 kwietnia 2015 Zadanie 1 konstrukcji balonu o zadanej sile oporu w ruchu. Obiekt do konstrukcji (Rysunek 1) opisany jest następującą F = Φ(d,

Bardziej szczegółowo

Zastosowania Równania Bernoullego - zadania

Zastosowania Równania Bernoullego - zadania Zadanie 1 Przez zwężkę o średnicy D = 0,2 m, d = 0,05 m przepływa woda o temperaturze t = 50 C. Obliczyć jakie ciśnienie musi panować w przekroju 1-1, aby w przekroju 2-2 nie wystąpiło zjawisko kawitacji,

Bardziej szczegółowo

KOMPUTEROWE WSPOMAGANIE PROCESU PROJEKTOWANIA ODSTOJNIKA

KOMPUTEROWE WSPOMAGANIE PROCESU PROJEKTOWANIA ODSTOJNIKA Piotr KOWALIK Uniwersytet Przyrodniczy w Lublinie Studenckie Koło Naukowe Informatyków KOMPUTEROWE WSPOMAGANIE PROCESU PROJEKTOWANIA ODSTOJNIKA 1. Ciekłe układy niejednorodne Ciekły układ niejednorodny

Bardziej szczegółowo

POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI. Ćwiczenie 5 POMIAR WZGLĘDNEJ LEPKOŚCI CIECZY PRZY UŻYCIU

POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI. Ćwiczenie 5 POMIAR WZGLĘDNEJ LEPKOŚCI CIECZY PRZY UŻYCIU POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI Ćwiczenie 5 POMIAR WZGLĘDNEJ LEPKOŚCI CIECZY PRZY UŻYCIU WISKOZYMETRU KAPILARNEGO I. WSTĘP TEORETYCZNY Ciecze pod względem struktury

Bardziej szczegółowo

Prędkości cieczy w rurce są odwrotnie proporcjonalne do powierzchni przekrojów rurki.

Prędkości cieczy w rurce są odwrotnie proporcjonalne do powierzchni przekrojów rurki. Spis treści 1 Podstawowe definicje 11 Równanie ciągłości 12 Równanie Bernoulliego 13 Lepkość 131 Definicje 2 Roztwory wodne makrocząsteczek biologicznych 3 Rodzaje przepływów 4 Wyznaczania lepkości i oznaczanie

Bardziej szczegółowo

Henryk Bieszk. Odstojnik. Dane wyjściowe i materiały pomocnicze do wykonania zadania projektowego. Gdańsk H. Bieszk, Odstojnik; projekt 1

Henryk Bieszk. Odstojnik. Dane wyjściowe i materiały pomocnicze do wykonania zadania projektowego. Gdańsk H. Bieszk, Odstojnik; projekt 1 Henryk Bieszk Odstojnik Dane wyjściowe i materiały pomocnicze do wykonania zadania projektowego Gdańsk 2007 H. Bieszk, Odstojnik; projekt 1 PRZEDMIOT: APARATURA CHEMICZNA TEMAT ZADANIA PROJEKTOWEGO ODSTOJNIK

Bardziej szczegółowo

MECHANIKA PŁYNÓW Płyn

MECHANIKA PŁYNÓW Płyn MECHANIKA PŁYNÓW Płyn - Każda substancja, która może płynąć, tj. pod wpływem znikomo małych sił dowolnie zmieniać swój kształt w zależności od naczynia, w którym się znajduje, oraz może swobodnie się przemieszczać

Bardziej szczegółowo

Ćw. M 12 Pomiar współczynnika lepkości cieczy metodą Stokesa i za pomocą wiskozymetru Ostwalda.

Ćw. M 12 Pomiar współczynnika lepkości cieczy metodą Stokesa i za pomocą wiskozymetru Ostwalda. Ćw. M 12 Pomiar współczynnika lepkości cieczy metodą Stokesa i za pomocą wiskozymetru Ostwalda. Zagadnienia: Oddziaływania międzycząsteczkowe. Ciecze idealne i rzeczywiste. Zjawisko lepkości. Równanie

Bardziej szczegółowo

Destylacja z parą wodną

Destylacja z parą wodną Destylacja z parą wodną 1. prowadzenie iele związków chemicznych podczas destylacji przy ciśnieniu normalnym ulega rozkładowi lub polimeryzacji. by możliwe było ich oddestylowanie należy wykonywać ten

Bardziej szczegółowo

LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych

LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR Drgania układów mechanicznych Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z właściwościami układów drgających oraz metodami pomiaru i analizy drgań. W ramach

Bardziej szczegółowo

Ćwiczenie 3: Wyznaczanie gęstości pozornej i porowatości złoża, przepływ gazu przez złoże suche, opory przepływu.

Ćwiczenie 3: Wyznaczanie gęstości pozornej i porowatości złoża, przepływ gazu przez złoże suche, opory przepływu. 1. Część teoretyczna Przepływ jednofazowy przez złoże nieruchome i ruchome Przepływ płynu przez warstwę luźno usypanego złoża występuje w wielu aparatach, np. w kolumnie absorpcyjnej, rektyfikacyjnej,

Bardziej szczegółowo

Hydrodynamika warstwy fluidalnej trójczynnikowej

Hydrodynamika warstwy fluidalnej trójczynnikowej Politechnika Śląska Gliwice Wydział Inżynierii Środowiska i Energetyki Katedra Technologii i Urządzeń Zagospodarowania Odpadów Ćwiczenia laboratoryjne Hydrodynamika warstwy fluidalnej trójczynnikowej PROWADZĄCY

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY NA PODSTAWIE PRAWA STOKESA

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY NA PODSTAWIE PRAWA STOKESA ĆWICZENIE 8 WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY NA PODSTAWIE PRAWA STOKESA Cel ćwiczenia: Badanie ruchu ciał spadających w ośrodku ciekłym, wyznaczenie współczynnika lepkości cieczy metodą Stokesa

Bardziej szczegółowo

III r. EiP (Technologia Chemiczna)

III r. EiP (Technologia Chemiczna) AKADEMIA GÓRNICZO HUTNICZA WYDZIAŁ ENERGETYKI I PALIW III r. EiP (Technologia Chemiczna) INŻYNIERIA CHEMICZNA I PROCESOWA (przenoszenie pędu) Prof. dr hab. Leszek CZEPIRSKI Kontakt: A4, p. 424 Tel. 12

Bardziej szczegółowo

INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 4 OKREŚLENIE WSPÓŁCZYNNIKA STRAT LOEKALNYCH

INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 4 OKREŚLENIE WSPÓŁCZYNNIKA STRAT LOEKALNYCH INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI Laboratorium z mechaniki płynów ĆWICZENIE NR 4 OKREŚLENIE WSPÓŁCZYNNIKA STRAT LOEKALNYCH . Cel ćwiczenia Celem ćwiczenia jest doświadczalne

Bardziej szczegółowo

LABORATORIUM MECHANIKI PŁYNÓW

LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie numer 2 Pomiar współczynnika oporu liniowego 1. Wprowadzenie Stanowisko służy do analizy zjawiska liniowych strat energii podczas przepływu laminarnego i turbulentnego przez rurociąg mosiężny

Bardziej szczegółowo

LABORATORIUM MECHANIKI PŁYNÓW

LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie numer Pomiar współczynnika oporu liniowego 1. Wprowadzenie Stanowisko służy do analizy zjawiska liniowych strat energii podczas przepływu laminarnego i turbulentnego przez rurociąg mosiężny o

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika Podstawy Procesów i Konstrukcji Inżynierskich Dynamika Prowadzący: Kierunek Wyróżniony przez PKA Mechanika klasyczna Mechanika klasyczna to dział mechaniki w fizyce opisujący : - ruch ciał - kinematyka,

Bardziej szczegółowo

SPRĘŻ WENTYLATORA stosunek ciśnienia statycznego bezwzględnego w płaszczyźnie

SPRĘŻ WENTYLATORA stosunek ciśnienia statycznego bezwzględnego w płaszczyźnie DEFINICJE OGÓLNE I WIELKOŚCI CHARAKTERYSTYCZNE WENTYLATORA WENTYLATOR maszyna wirnikowa, która otrzymuje energię mechaniczną za pomocą jednego wirnika lub kilku wirników zaopatrzonych w łopatki, użytkuje

Bardziej szczegółowo

K02 Instrukcja wykonania ćwiczenia

K02 Instrukcja wykonania ćwiczenia Katedra Chemii Fizycznej Uniwersytetu Łódzkiego K2 Instrukcja wykonania ćwiczenia Wyznaczanie krytycznego stężenia micelizacji (CMC) z pomiarów napięcia powierzchniowego Zakres zagadnień obowiązujących

Bardziej szczegółowo

MECHANIKA PŁYNÓW LABORATORIUM

MECHANIKA PŁYNÓW LABORATORIUM MECANIKA PŁYNÓW LABORATORIUM Ćwiczenie nr 4 Współpraca pompy z układem przewodów. Celem ćwiczenia jest sporządzenie charakterystyki pojedynczej pompy wirowej współpracującej z układem przewodów, przy różnych

Bardziej szczegółowo

LABORATORIUM PODSTAW BUDOWY URZĄDZEŃ DLA PROCESÓW MECHANICZNYCH

LABORATORIUM PODSTAW BUDOWY URZĄDZEŃ DLA PROCESÓW MECHANICZNYCH LABORATORIUM PODSTAW BUDOWY URZĄDZEŃ DLA PROCESÓW MECHANICZNYCH Temat: Badanie cyklonu ZAKŁAD APARATURY PRZEMYSŁOWEJ POLITECHNIKA WARSZAWSKA WYDZIAŁ BMiP 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie

Bardziej szczegółowo

WYDZIAŁ LABORATORIUM FIZYCZNE

WYDZIAŁ LABORATORIUM FIZYCZNE 1 W S E i Z W WARSZAWIE WYDZIAŁ LABORATORIUM FIZYCZNE Ćwiczenie Nr 3 Temat: WYZNACZNIE WSPÓŁCZYNNIKA LEPKOŚCI METODĄ STOKESA Warszawa 2009 2 1. Podstawy fizyczne Zarówno przy przepływach płynów (ciecze

Bardziej szczegółowo

Ćwiczenie laboratoryjne Parcie wody na stopę fundamentu

Ćwiczenie laboratoryjne Parcie wody na stopę fundamentu Ćwiczenie laboratoryjne Parcie na stopę fundamentu. Cel ćwiczenia i wprowadzenie Celem ćwiczenia jest wyznaczenie parcia na stopę fundamentu. Natężenie przepływu w ośrodku porowatym zależy od współczynnika

Bardziej szczegółowo

Laboratorium. Hydrostatyczne Układy Napędowe

Laboratorium. Hydrostatyczne Układy Napędowe Laboratorium Hydrostatyczne Układy Napędowe Instrukcja do ćwiczenia nr Eksperymentalne wyznaczenie charakteru oporów w przewodach hydraulicznych opory liniowe Opracowanie: Z.Kudżma, P. Osiński J. Rutański,

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY NA PODSTAWIE PRAWA STOKESA

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY NA PODSTAWIE PRAWA STOKESA Ćwiczenie 8 WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY NA PODSTAWIE PRAWA STOKESA Cel ćwiczenia: Badanie ruchu ciał spadających w ośrodku ciekłym, wyznaczenie współczynnika lepkości cieczy metodą Stokesa,

Bardziej szczegółowo

Człowiek najlepsza inwestycja FENIKS

Człowiek najlepsza inwestycja FENIKS Człowiek najlepsza inwestycja ENIKS - długofalowy program odbudowy, popularyzacji i wspomagania fizyki w szkołach w celu rozwijania podstawowych kompetencji naukowo-technicznych, matematycznych i informatycznych

Bardziej szczegółowo

Fizyka dla Informatyków Wykład 8 Mechanika cieczy i gazów

Fizyka dla Informatyków Wykład 8 Mechanika cieczy i gazów Fizyka dla Informatyków Wykład 8 Katedra Informatyki Stosowanej PJWSTK 2008 Spis treści Spis treści 1 Podstawowe równania hydrodynamiki 2 3 Równanie Bernoulliego 4 Spis treści Spis treści 1 Podstawowe

Bardziej szczegółowo

WYKŁAD 10 METODY POMIARU PRĘDKOŚCI, STRUMIENIA OBJĘTOŚCI I STRUMIENIA MASY W PŁYNACH

WYKŁAD 10 METODY POMIARU PRĘDKOŚCI, STRUMIENIA OBJĘTOŚCI I STRUMIENIA MASY W PŁYNACH WYKŁAD 10 METODY POMIARU PRĘDKOŚCI, STRUMIENIA OBJĘTOŚCI I STRUMIENIA MASY W PŁYNACH Pomiar strumienia masy i strumienia objętości metoda objętościowa, (1) q v V metoda masowa. (2) Obiekt badań Pomiar

Bardziej szczegółowo

WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ

WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ Instrukcja do ćwiczenia T-06 Temat: Wyznaczanie zmiany entropii ciała

Bardziej szczegółowo

dn dt C= d ( pv ) = d dt dt (nrt )= kt Przepływ gazu Pompowanie przez przewód o przewodności G zbiornik przewód pompa C A , p 1 , S , p 2 , S E C B

dn dt C= d ( pv ) = d dt dt (nrt )= kt Przepływ gazu Pompowanie przez przewód o przewodności G zbiornik przewód pompa C A , p 1 , S , p 2 , S E C B Pompowanie przez przewód o przewodności G zbiornik przewód pompa C A, p 2, S E C B, p 1, S C [W] wydajność pompowania C= d ( pv ) = d dt dt (nrt )= kt dn dt dn / dt - ilość cząstek przepływających w ciągu

Bardziej szczegółowo

5. WYZNACZENIE KRZYWEJ VAN DEEMTER a I WSPÓŁCZYNNIKA ROZDZIELENIA DLA KOLUMNY CHROMATOGRAFICZNEJ

5. WYZNACZENIE KRZYWEJ VAN DEEMTER a I WSPÓŁCZYNNIKA ROZDZIELENIA DLA KOLUMNY CHROMATOGRAFICZNEJ 5. WYZNACZENIE KRZYWEJ VAN DEEMTER a I WSPÓŁCZYNNIKA ROZDZIELENIA DLA KOLUMNY CHROMATOGRAFICZNEJ Opracował: Krzysztof Kaczmarski I. WPROWADZENIE Sprawność kolumn chromatograficznych określa się liczbą

Bardziej szczegółowo

1.10 Pomiar współczynnika lepkości cieczy metodą Poiseuille a(m15)

1.10 Pomiar współczynnika lepkości cieczy metodą Poiseuille a(m15) 66 Mechanika 1.10 Pomiar współczynnika lepkości cieczy metodą Poiseuille a(m15) Celem ćwiczenia jest wyznaczenie współczynnika lepkości wody. Współczynnik ten wyznaczany jest z prawa Poiseuille a na podstawie

Bardziej szczegółowo

Zadanie 1. Zadanie 2.

Zadanie 1. Zadanie 2. Zadanie 1. Określić nadciśnienie powietrza panujące w rurociągu R za pomocą U-rurki, w której znajduje się woda. Różnica poziomów wody w U-rurce wynosi h = 100 cm. Zadanie 2. Określić podciśnienie i ciśnienie

Bardziej szczegółowo

LABORATORIUM MECHANIKI PŁYNÓW. Ćwiczenie N 2 RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ

LABORATORIUM MECHANIKI PŁYNÓW. Ćwiczenie N 2 RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ . Cel ćwiczenia Pomiar współrzędnych powierzchni swobodnej w naczyniu cylindrycznym wirującym wokół

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ OZNACZANIE ŚREDNIEJ MASY CZĄSTECZKOWEJ POLIMERU WSTĘP Lepkość roztworu polimeru jest z reguły większa od lepkości rozpuszczalnika. Dla polimeru lepkość graniczna [η ] określa zmianę lepkości roztworu przypadającą

Bardziej szczegółowo

Gęstość i ciśnienie. Gęstość płynu jest równa. Gęstość jest wielkością skalarną; jej jednostką w układzie SI jest [kg/m 3 ]

Gęstość i ciśnienie. Gęstość płynu jest równa. Gęstość jest wielkością skalarną; jej jednostką w układzie SI jest [kg/m 3 ] Mechanika płynów Płyn każda substancja, która może płynąć, tj. dowolnie zmieniać swój kształt w zależności od naczynia, w którym się znajduje oraz może swobodnie się przemieszczać (przepływać), np. przepompowywana

Bardziej szczegółowo

Wybrane aparaty do rozdzielania zawiesin. Odstojniki

Wybrane aparaty do rozdzielania zawiesin. Odstojniki Wybrane aparaty do rozdzielania zawiesin Odstojniki Dr inż. Henryk Bieszk Katedra Aparatury i Maszynoznawstwa Chemicznego PG 1 Określenie zawiesina odnosi się do układu złożonego z cieczy, stanowiącej

Bardziej szczegółowo

Wyznaczanie gęstości i lepkości cieczy

Wyznaczanie gęstości i lepkości cieczy Wyznaczanie gęstości i lepkości cieczy A. Wyznaczanie gęstości cieczy Obowiązkowa znajomość zagadnień Definicje gęstości bezwzględnej (od czego zależy), względnej, objętości właściwej, ciężaru objętościowego.

Bardziej szczegółowo

Egzaminy, styczeń/luty 2004

Egzaminy, styczeń/luty 2004 Egzaminy, styczeń/luty 2004 Trzeci termin Trzeci termin egzaminu poniedziałek 8/03/04 godz. 11.30-13.30 (4-5 osób) i 15.00-16.30 (4-5 osób). Zainteresowane osoby proszę o wysłanie mail a z określeniem,

Bardziej szczegółowo

Materiały pomocnicze do laboratorium z przedmiotu Metody i Narzędzia Symulacji Komputerowej

Materiały pomocnicze do laboratorium z przedmiotu Metody i Narzędzia Symulacji Komputerowej Materiały pomocnicze do laboratorium z przedmiotu Metody i Narzędzia Symulacji Komputerowej w Systemach Technicznych Symulacja prosta dyszy pomiarowej Bendemanna Opracował: dr inż. Andrzej J. Zmysłowski

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY ĆWICZENIE 10 WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY Wprowadzenie W strudze przepływającej cieczy każdemu jej punktowi można przypisać prędkość będącą funkcją położenia r i r czasu V = V ( x y z t ).

Bardziej szczegółowo

Odpylacz pianowy. Dane wyjściowe i materiały pomocnicze do wykonania zadania projektowego. Henryk Bieszk. Gdańsk 2009

Odpylacz pianowy. Dane wyjściowe i materiały pomocnicze do wykonania zadania projektowego. Henryk Bieszk. Gdańsk 2009 Henryk Bieszk Odpylacz pianowy Dane wyjściowe i materiały pomocnicze do wykonania zadania projektowego Gdańsk 2009 Henryk. Bieszk, Skruber pianowy; projekt 1 PRZEDMIOT: SOZOTECHNIKA TEMAT ZADANIA PROJEKTOWEGO:

Bardziej szczegółowo

LABORATORIUM PODSTAW BUDOWY URZĄDZEŃ DLA PROCESÓW MECHANICZNYCH

LABORATORIUM PODSTAW BUDOWY URZĄDZEŃ DLA PROCESÓW MECHANICZNYCH LABORATORIUM PODSTAW BUDOWY URZĄDZEŃ DLA PROCESÓW MECHANICZNYCH Temat: Pomiar mocy mieszania cieczy ZAKŁAD APARATURY PRZEMYSŁOWEJ POLITECHNIKA WARSZAWSKA WYDZIAŁ BMiP 1. Cel ćwiczenia Celem ćwiczenia jest

Bardziej szczegółowo

PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ

PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N 7 PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ . Cel ćwiczenia Doświadczalne i teoretyczne wyznaczenie profilu prędkości w rurze prostoosiowej 2. Podstawy teoretyczne:

Bardziej szczegółowo

WYZNACZANIE ROZMIARÓW

WYZNACZANIE ROZMIARÓW POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI Ćwiczenie 6 WYZNACZANIE ROZMIARÓW MAKROCZĄSTECZEK I. WSTĘP TEORETYCZNY Procesy zachodzące między atomami lub cząsteczkami w skali molekularnej

Bardziej szczegółowo

Ćwiczenie 2: Wyznaczanie gęstości i lepkości płynów. Rodzaje przepływów.

Ćwiczenie 2: Wyznaczanie gęstości i lepkości płynów. Rodzaje przepływów. Ćwiczenie : Wyznaczanie gęstości i lepkości płynów. Rodzaje przepływów. Gęstość 1. Część teoretyczna Gęstość () cieczy w danej temperaturze definiowana jest jako iloraz jej masy (m) do objętości (V) jaką

Bardziej szczegółowo

HYDRAULIKA KOLUMNY WYPEŁNIONEJ

HYDRAULIKA KOLUMNY WYPEŁNIONEJ Ćwiczenie 5: HYDRAULIKA KOLUMNY WYPEŁNIONEJ 1. CEL ĆWICZENIA Celem ćwiczenia jest wyznaczenie oporów przepływu gazu przez wypełnienie zraszane cieczą oraz określenie granicy zachłystywania aparatu wypełnionego.

Bardziej szczegółowo

J. Szantyr Wykład nr 27 Przepływy w kanałach otwartych I

J. Szantyr Wykład nr 27 Przepływy w kanałach otwartych I J. Szantyr Wykład nr 7 Przepływy w kanałach otwartych Przepływy w kanałach otwartych najczęściej wymuszane są działaniem siły grawitacji. Jako wstępny uproszczony przypadek przeanalizujemy spływ warstwy

Bardziej szczegółowo

Ćwiczenie 2: Wyznaczanie gęstości i lepkości płynów nieniutonowskich

Ćwiczenie 2: Wyznaczanie gęstości i lepkości płynów nieniutonowskich Gęstość 1. Część teoretyczna Gęstość () cieczy w danej temperaturze definiowana jest jako iloraz jej masy (m) do objętości (V) jaką zajmuje: Gęstość wyrażana jest w jednostkach układu SI. Gęstość cieczy

Bardziej szczegółowo

Odp.: F e /F g = 1 2,

Odp.: F e /F g = 1 2, Segment B.IX Pole elektrostatyczne Przygotował: mgr Adam Urbanowicz Zad. 1 W atomie wodoru odległość między elektronem i protonem wynosi około r = 5,3 10 11 m. Obliczyć siłę przyciągania elektrostatycznego

Bardziej szczegółowo

Równania różniczkowe opisujące ruch fotela z pilotem:

Równania różniczkowe opisujące ruch fotela z pilotem: . Katapultowanie pilota z samolotu Równania różniczkowe opisujące ruch fotela z pilotem: gdzie D - siłą ciągu, Cd współczynnik aerodynamiczny ciągu, m - masa pilota i fotela, g przys. ziemskie, ρ - gęstość

Bardziej szczegółowo

Statyka płynów - zadania

Statyka płynów - zadania Zadanie 1 Wyznaczyć rozkład ciśnień w cieczy znajdującej się w stanie spoczynku w polu sił ciężkości. Ponieważ na cząsteczki cieczy działa wyłącznie siła ciężkości, więc składowe wektora jednostkowej siły

Bardziej szczegółowo

Pomiar współczynnika lepkości wody. Badanie funkcji wykładniczej.

Pomiar współczynnika lepkości wody. Badanie funkcji wykładniczej. Ćwiczenie C- Pomiar współczynnika lepkości wody. Badanie funkcji wykładniczej. I. Cel ćwiczenia: wyznaczenie współczynnika lepkości wody η w oparciu o wykres zależności wysokości słupa wody w cylindrze

Bardziej szczegółowo

DOŚWIADCZENIE MILLIKANA

DOŚWIADCZENIE MILLIKANA DOŚWIADCZENIE MILLIKANA Wyznaczenie wartości ładunku elementarnego metodą Millikana Cel ćwiczenia: Celem ćwiczenia jest wyznaczenie ładunku elementarnego ( ładunku elektronu) metodą zastosowaną przez R.A

Bardziej szczegółowo

09 - Dobór siłownika i zaworu. - Opór przepływu w przewodzie - Dobór rozmiaru zaworu - Dobór rozmiaru siłownika

09 - Dobór siłownika i zaworu. - Opór przepływu w przewodzie - Dobór rozmiaru zaworu - Dobór rozmiaru siłownika - Dobór siłownika i zaworu - Opór przepływu w przewodzie - Dobór rozmiaru zaworu - Dobór rozmiaru siłownika OPÓR PRZEPŁYWU W ZAWORZE Objętościowy współczynnik przepływu Qn Przepływ oblicza się jako stosunek

Bardziej szczegółowo

INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 5

INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 5 INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKUTYWACJI aboratorium z mechaniki płynów ĆWICZENIE NR 5 POMIAR WSPÓŁCZYNNIKA STRAT PRZEPŁYWU NA DŁUGOŚCI. ZASTOSOWANIE PRAWA HAGENA POISEU A 1. Cel

Bardziej szczegółowo

MECHANIKA PŁYNÓW - LABORATORIUM

MECHANIKA PŁYNÓW - LABORATORIUM MECHANIKA PŁYNÓW - LABORATORIUM Ćwiczenie nr 1 Wypływ cieczy przez przystawki Celem ćwiczenia jest eksperymentalne wyznaczenie współczynnika wydatku przystawki przy wypływie ustalonym, nieustalonym oraz

Bardziej szczegółowo

J. Szantyr - Wykład 3 Równowaga płynu

J. Szantyr - Wykład 3 Równowaga płynu J. Szantyr - Wykład 3 Równowaga płynu Siły wewnętrzne wzajemne oddziaływania elementów mas wydzielonego obszaru płynu, siły o charakterze powierzchniowym, znoszące się parami. Siły zewnętrzne wynik oddziaływania

Bardziej szczegółowo

Mieszadła z łamanymi łopatkami. Wpływ liczby łopatek na wytwarzanie zawiesin

Mieszadła z łamanymi łopatkami. Wpływ liczby łopatek na wytwarzanie zawiesin TOMÁŠ JIROUT FRANTIŠEK RIEGER Wydział Mechaniczny. Czeski Uniwersytet Techniczny. Praha EDWARD RZYSKI Wydział Inżynierii Procesowej i Ochrony Środowiska. Politechnika Łódzka. Łódź Mieszadła z łamanymi

Bardziej szczegółowo

ODWADNIANIE OSADÓW PRZY POMOCY WIRÓWKI SEDYMENTACYJNEJ

ODWADNIANIE OSADÓW PRZY POMOCY WIRÓWKI SEDYMENTACYJNEJ ODWADNIANIE OSADÓW PRZY POMOCY WIRÓWKI SEDYMENTACYJNEJ Ćwiczenie nr 3 1. CHARAKTERYSTYKA PROCESU Wirowanie jest procesem sedymentacji uwarunkowanej działaniem siły odśrodkowej przy przyspieszeniu 1500

Bardziej szczegółowo

Zachodniopomorski Uniwersytet Technologiczny INSTYTUT INŻYNIERII MATERIAŁOWEJ ZAKŁAD METALOZNAWSTWA I ODLEWNICTWA

Zachodniopomorski Uniwersytet Technologiczny INSTYTUT INŻYNIERII MATERIAŁOWEJ ZAKŁAD METALOZNAWSTWA I ODLEWNICTWA Zachodniopomorski Uniwersytet Technologiczny INSTYTUT INŻYNIERII MATERIAŁOWEJ ZAKŁAD METALOZNAWSTWA I ODLEWNICTWA PRZEDMIOT: INŻYNIERIA WARSTWY WIERZCHNIEJ Temat ćwiczenia: Badanie prędkości zużycia materiałów

Bardziej szczegółowo

WYMIANA CIEPŁA A PRZY ZMIANACH STANU SKUPIENIA

WYMIANA CIEPŁA A PRZY ZMIANACH STANU SKUPIENIA WYMIANA CIEPŁA A PRZY ZMIANACH STANU SKUPIENIA WYKŁAD 8 Dariusz Mikielewicz Politechnika Gdańska Wydział Mechaniczny Katedra Techniki Cieplnej Wymiana ciepła podczas wrzenia Przejście fazy ciekłej w parową

Bardziej szczegółowo

WYZNACZENIE WSPÓŁCZYNNIKA OPORU LINIOWEGO PRZEPŁYWU LAMINARNEGO

WYZNACZENIE WSPÓŁCZYNNIKA OPORU LINIOWEGO PRZEPŁYWU LAMINARNEGO LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N 7 WYZNACZENIE WSPÓŁCZYNNIKA OPORU LINIOWEGO PRZEPŁYWU LAMINARNEGO 1. Cel ćwiczenia Doświadczalne wyznaczenie zaleŝności współczynnika oporu linioweo przepływu

Bardziej szczegółowo

ZAKŁAD POJAZDÓW SAMOCHODOWYCH I SILNIKÓW SPALINOWYCH ZPSiSS WYDZIAŁ BUDOWY MASZYN I LOTNICTWA

ZAKŁAD POJAZDÓW SAMOCHODOWYCH I SILNIKÓW SPALINOWYCH ZPSiSS WYDZIAŁ BUDOWY MASZYN I LOTNICTWA ZAKŁAD POJAZDÓW SAMOCHODOWYCH I SILNIKÓW SPALINOWYCH ZPSiSS WYDZIAŁ BUDOWY MASZYN I LOTNICTWA POLITECHNIKA RZESZOWSKA im. IGNACEGO ŁUKASIEWICZA Al. Powstańców Warszawy 8, 35-959 Rzeszów, Tel: 854-31-1,

Bardziej szczegółowo

Grupa 1 1.1). Obliczyć średnicę zastępczą przewodu o przekroju prostokątnym o długości boków A i B=2A wypełnionego wodą w 75%. Przewód ułożony jest w

Grupa 1 1.1). Obliczyć średnicę zastępczą przewodu o przekroju prostokątnym o długości boków A i B=2A wypełnionego wodą w 75%. Przewód ułożony jest w Grupa 1 1.1). Obliczyć średnicę zastępczą przewodu o przekroju prostokątnym o długości boków A i B=2A wypełnionego wodą w 75%. Przewód ułożony jest w taki sposób, że dłuższy bok przekroju znajduje się

Bardziej szczegółowo

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał Statyka Cieczy i Gazów Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał 1. Podstawowe założenia teorii kinetyczno-molekularnej budowy ciał: Ciała zbudowane są z cząsteczek. Pomiędzy cząsteczkami

Bardziej szczegółowo

Ćwiczenie 8: 1. CEL ĆWICZENIA

Ćwiczenie 8: 1. CEL ĆWICZENIA Ćwiczenie 8: BADANIE PROCESU FILTRACJI ZAWIESINY 1. CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się z przebiegiem procesu filtracji izobarycznej oraz wyznaczenie stałych filtracji i współczynnika ściśliwości

Bardziej szczegółowo

BUDOWNICTWO LĄDOWE. Zadania z fizyki dla 4,6,7 i 8 grupy BL semestr I. 1. Zbiór zadań z fizyki ; pod redakcją I.W. Sawiejlewa

BUDOWNICTWO LĄDOWE. Zadania z fizyki dla 4,6,7 i 8 grupy BL semestr I. 1. Zbiór zadań z fizyki ; pod redakcją I.W. Sawiejlewa BUDOWNICTWO LĄDOWE Zadania z fizyki dla 4,6,7 i 8 grupy BL semestr I Zadania opracowano na podstawie:. Zbiór zadań z fizyki ; pod redakcją I.W. Sawiejlewa. Fizyka w przykładach ; pod kierunkiem prof. dr

Bardziej szczegółowo

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/

Bardziej szczegółowo

Hydrostatyczne Układy Napędowe Laboratorium

Hydrostatyczne Układy Napędowe Laboratorium Hydrostatyczne Układy Napędowe Laboratorium Temat: Eksperymentalne wyznaczenie charakteru oporów w przewodach hydraulicznych opory liniowe Opracował: Z. Kudźma, P. Osiński, J. Rutański, M. Stosiak CEL

Bardziej szczegółowo

Wykład 1. Anna Ptaszek. 5 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 1. Anna Ptaszek 1 / 36

Wykład 1. Anna Ptaszek. 5 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 1. Anna Ptaszek 1 / 36 Wykład 1 Katedra Inżynierii i Aparatury Przemysłu Spożywczego 5 października 2015 1 / 36 Podstawowe pojęcia Układ termodynamiczny To zbiór niezależnych elementów, które oddziałują ze sobą tworząc integralną

Bardziej szczegółowo

Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze.

Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze. Siły w przyrodzie Oddziaływania Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze. Występujące w przyrodzie rodzaje oddziaływań dzielimy na:

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa w Kaliszu

Państwowa Wyższa Szkoła Zawodowa w Kaliszu Państwowa Wyższa Szkoła Zawodowa w Kaliszu Ć wiczenia laboratoryjne z fizyki Ćwiczenie Wyznaczanie parametrów ruchu obrotowego bryły sztywnej Kalisz, luty 005 r. Opracował: Ryszard Maciejewski Natura jest

Bardziej szczegółowo

Własności płynów - zadania

Własności płynów - zadania Zadanie 1 Naczynie o objętości V = 0,1 m³ jest wypełnione cieczą o masie m = 85 kg. Oblicz gęstość cieczy oraz jej ciężar właściwy. Gęstość cieczy: ciężar właściwy cieczy: ρ = m V = 85 = 850 kg/m³ 0,1

Bardziej szczegółowo

LABORATORIUM MECHANIKI PŁYNÓW

LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie numer 5 Wyznaczanie rozkładu prędkości przy przepływie przez kanał 1. Wprowadzenie Stanowisko umożliwia w eksperymentalny sposób zademonstrowanie prawa Bernoulliego. Układ wyposażony jest w dyszę

Bardziej szczegółowo

POMIAR STRUMIENIA PŁYNU ZA POMOCĄ ZWĘŻEK.

POMIAR STRUMIENIA PŁYNU ZA POMOCĄ ZWĘŻEK. POMIAR STRUMIENIA PŁYNU ZA POMOCĄ ZWĘŻEK. Strumieniem płynu nazywamy ilość płynu przepływającą przez przekrój kanału w jednostce czasu. Jeżeli ilość płynu jest wyrażona w jednostkach masy, to mówimy o

Bardziej szczegółowo

Podstawy fizyki wykład 5

Podstawy fizyki wykład 5 Podstawy fizyki wykład 5 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Grawitacja Pole grawitacyjne Prawo powszechnego ciążenia Pole sił zachowawczych Prawa Keplera Prędkości kosmiczne Czarne

Bardziej szczegółowo

Laboratorium komputerowe z wybranych zagadnień mechaniki płynów

Laboratorium komputerowe z wybranych zagadnień mechaniki płynów FORMOWANIE SIĘ PROFILU PRĘDKOŚCI W NIEŚCIŚLIWYM, LEPKIM PRZEPŁYWIE PRZEZ PRZEWÓD ZAMKNIĘTY Cel ćwiczenia Celem ćwiczenia będzie analiza formowanie się profilu prędkości w trakcie przepływu płynu przez

Bardziej szczegółowo

ODWADNIANIE OSADÓW PRZY POMOCY WIRÓWKI SEDYMENTACYJNEJ

ODWADNIANIE OSADÓW PRZY POMOCY WIRÓWKI SEDYMENTACYJNEJ PRZERÓBKA I UNIESZKODLIWIANIE OSADÓW ŚCIEKOWYCH Ćwiczenie nr 3 ODWADNIANIE OSADÓW PRZY POMOCY WIRÓWKI SEDYMENTACYJNEJ 1. CHARAKTERYSTYKA PROCESU Odwadnianie osadów za pomocą odwirowania polega na wytworzeniu

Bardziej szczegółowo

K05 Instrukcja wykonania ćwiczenia

K05 Instrukcja wykonania ćwiczenia Katedra Chemii Fizycznej Uniwersytetu Łódzkiego K05 Instrukcja wykonania ćwiczenia Wyznaczanie punktu izoelektrycznego żelatyny metodą wiskozymetryczną Zakres zagadnień obowiązujących do ćwiczenia 1. Układy

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podstawy Automatyki Przygotowanie zadania sterowania do analizy i syntezy zestawienie schematu blokowego

Bardziej szczegółowo

PIERWSZEGO. METODA CZYNNIKA CAŁKUJĄCEGO. METODA ROZDZIELONYCH ZMIENNYCH.

PIERWSZEGO. METODA CZYNNIKA CAŁKUJĄCEGO. METODA ROZDZIELONYCH ZMIENNYCH. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE RZĘDU PIERWSZEGO. METODA CZYNNIKA CAŁKUJĄCEGO. METODA ROZDZIELONYCH ZMIENNYCH. Równaniem różniczkowym zwyczajnym nazywamy równanie zawierające pochodne funkcji y(x) względem

Bardziej szczegółowo

Filtracja - zadania. Notatki w Internecie Podstawy mechaniki płynów materiały do ćwiczeń

Filtracja - zadania. Notatki w Internecie Podstawy mechaniki płynów materiały do ćwiczeń Zadanie 1 W urządzeniu do wyznaczania wartości współczynnika filtracji o powierzchni przekroju A = 0,4 m 2 umieszczono próbkę gruntu. Różnica poziomów h wody w piezometrach odległych o L = 1 m wynosi 0,1

Bardziej szczegółowo

12 K A TEDRA FIZYKI STOSOWANEJ P R A C O W N I A F I Z Y K I

12 K A TEDRA FIZYKI STOSOWANEJ P R A C O W N I A F I Z Y K I 12 K A TEDRA FIZYKI TOOWANEJ P R A C O W N I A F I Z Y K I Ćw. 12. Wyznaczanie współczynnika lepkości dynamicznej metodą tokesa Wprowadzenie Podczas ruchu płynów rzeczywistych (cieczy i gazów) istotne

Bardziej szczegółowo

Rys.1. Zwężki znormalizowane: a) kryza, b) dysza, c) dysza Venturiego [2].

Rys.1. Zwężki znormalizowane: a) kryza, b) dysza, c) dysza Venturiego [2]. WYZNACZANIE WSPÓŁCZYNNIKA PRZEPŁYWU W ZWĘŻKACH POMIAROWYCH DLA GAZÓW 1. Wprowadzenie Najbardziej rozpowszechnioną metodą pomiaru natężenia przepływu jest użycie elementów dławiących płyn. Stanowią one

Bardziej szczegółowo

Aparatura Chemiczna i Biotechnologiczna Projekt: Filtr bębnowy próżniowy

Aparatura Chemiczna i Biotechnologiczna Projekt: Filtr bębnowy próżniowy Aparatura Chemiczna i Biotechnologiczna Projekt: Filtr bębnowy próżniowy Opracowanie: mgr inż. Anna Dettlaff Obowiązkowa zawartość projektu:. Strona tytułowa 2. Tabela z punktami 3. Dane wyjściowe do zadania

Bardziej szczegółowo

Ciała spadają swobodnie w powietrzu ruchem jednostajnie przyspieszonym. W próżni po czasie prędkość jest równa:

Ciała spadają swobodnie w powietrzu ruchem jednostajnie przyspieszonym. W próżni po czasie prędkość jest równa: OPADANIE CZĄSTEK CIAŁ STAŁYCH W PŁYNACH UKŁAD NIEJEDNORODNY złożony jest z fazy rozpraszającej (gazowej lub ciekłej) i fazy rozproszonej stałej. Rozdzielanie układów niejednorodnych prowadzi się w celu

Bardziej szczegółowo

Zasady dynamiki Isaak Newton (1686 r.)

Zasady dynamiki Isaak Newton (1686 r.) Zasady dynamiki Isaak Newton (1686 r.) I (zasada bezwładności) Istnieje taki układ odniesienia, w którym ciało pozostaje w spoczynku lub porusza się ruchem jednostajnym prostoliniowym, jeśli nie działają

Bardziej szczegółowo

POLITECHNIKA CZĘSTOCHOWSKA. Poszukiwanie optymalnej średnicy rurociągu oraz grubości izolacji

POLITECHNIKA CZĘSTOCHOWSKA. Poszukiwanie optymalnej średnicy rurociągu oraz grubości izolacji POLITECHNIKA CZĘSTOCHOWSKA Instytut Maszyn Cieplnych Optymalizacja Procesów Cieplnych Ćwiczenie nr 3 Poszukiwanie optymalnej średnicy rurociągu oraz grubości izolacji Częstochowa 2002 Wstęp. Ze względu

Bardziej szczegółowo