Kształtowanie struktury i właściwości materiałów metalowych metodami technologicznymi. 1. Odlewanie 2. Obróbka plastyczna 3.

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Kształtowanie struktury i właściwości materiałów metalowych metodami technologicznymi. 1. Odlewanie 2. Obróbka plastyczna 3."

Transkrypt

1 Kształtowanie struktury i właściwości materiałów metalowych metodami technologicznymi 1. Odlewanie 2. Obróbka plastyczna 3. Obróbka cieplna

2 1. ODLEWANIE METALI Odlewanie polega na wlaniu ciekłego metalu lub stopu do formy, która ma kształt gotowego wyrobu lub półwyrobu. W ten sposób otrzymuje się gotowe wyroby odlewy lub półwyroby wlewki. Wlewki są następnie obrabiane plastycznie. Klasyczne metody odlewania: W formach piaskowych (ceramicznych) W formach metalowych Przedmioty wykonane wyłącznie na drodze odlewania są najtańsze, lecz mają więcej wad i gorsze właściwości mechaniczne niż przedmioty wytworzone innymi metodami. Przykłady elementów odlewanych: klocki hamulcowe, pierścienie tłokowe, cylindry silników, korpusy maszyn, duże panewki, pomniki.

3 Przykład odlewu

4 Krystalizacja Podstawą techniki odlewania jest krystalizacja. Jest to proces przejścia ciekłej substancji w stan stały o budowie krystalicznej. W trakcie krystalizacji wydziela się ciepło. Zmiany temperatury w funkcji czasu chłodzenia od stanu ciekłego: 1-3 materiały krystaliczne, 4 materiał amorficzny

5 Krystalizacja przebiega przez zarodkowanie i wzrost zarodków krystalizacji Zarodki krystalizacji zespoły bliskiego uporządkowania w fazie ciekłej o wielkości większej od krytycznej, do których przyłączają się kolejno następne atomy Szybkość krystalizacji zależy od: szybkości zarodkowania, tj. liczby zarodków krystalizacji tworzących się w ciągu jednostki czasu w jednostce objętości cieczy liniowej szybkości krystalizacji, tj. szybkości przesuwania się frontu krystalizacji, mierzonej w jednostkach długości na jednostkę czasu

6

7 Przy nieznacznym przechłodzeniu (małej szybkości chłodzenia) metal ma strukturę gruboziarnistą Ze zwiększeniem szybkości przechłodzenia liniowa szybkość krystalizacji wzrasta wolniej od szybkości zarodkowania, metal ma strukturę drobnoziarnistą Maksimum szybkości zarodkowania odpowiada większemu przechłodzeniu niż maksimum liniowej szybkości krystalizacji, a więc metal osiąga w tym zakresie najmniejszą wielkość ziarna Przy bardzo dużych szybkościach chłodzenia szybkość zarodkowania i liniowa szybkość krystalizacji są równe zeru i metal posiada amorficzną strukturę szkła.

8 Jama usadowa Wpływ szybkości chłodzenia na budowę wlewka. Ziarna metalu o różnym kształcie i wielkości: 1- kryształy zamrożone, 2 kryształy słupkowe, 3 kryształy wolne

9 Krystalizacja czystych metali - wzrost dendrytyczny

10 Schemat dendrytu Dendrytyczna budowa czystego metalu

11 Kierunek wzrostu dendrytów i ich rozgałęzień jest zwykle zgodny z kierunkami najgęściej obsadzonymi atomami w tworzących się kryształach, np. w sieci RPC A2 jest to kierunek <111>

12 Krystalizacja stopów metali o strukturze roztworów stałych W porównaniu z czystymi metalami warunki krystalizacji stopów różnią się, głównie stężeniami faz ciekłej i stałej w strefie frontu krystalizacji Może mieć miejsce wzrost komórkowy i dendrytyczny Szybkość wzrostu dendrytycznego w przypadku stopów jest mniejsza niż w czystych metalach, gdyż wzrastające stężenie składnika rozpuszczonego w cieczy powoduje obniżenie temperatury równowagi, co zmniejsza przechłodzenie decydujące o wzroście kryształów

13 Wzrost komórkowy

14 2. OBRÓBKA PLASTYCZNA METALI Obróbka plastyczna rodzaj obróbki, w czasie której ukształtowanie materiału, zmianę jego struktury i właściwości osiąga się przez odkształcenie plastyczne, tj. odkształcenie trwałe, nie zanikające po usunięciu sił zewnętrznych, które go wywołały.

15 Materiał plastyczny poddany wzrastającemu obciążeniu na zimno przechodzi przez następujące stadia: odkształcenie sprężyste (odwracalne) odkształcenie plastyczne (nieodwracalne) zerwanie (dekohezja)

16 a) γ θ 1 τ τ τ θ τ 2 τ b) τ τ Odkształcenie może realizować się poprzez wydłużenie (a) lub ścięcie (b).

17 Odkształcenie sprężyste jest to takie odkształcenie materiału spowodowane przez działanie naprężeń wywołanych przez siłę zewnętrzną lub naprężeń własnych, które zanika po zdjęciu naprężeń. Odkształcenie sprężyste metali zachodzi poprzez przemieszczanie się atomów na odległości nie większe niż odległości sieciowe, dzięki czemu nie następują zasadnicze zmiany w ułożeniu atomów w sieci, zachodzi tylko zwiększenie energii ciała odkształcanego, np. ściskanego lub rozciąganego pręta lub sprężyny.

18 τ τ Schemat położenia atomów w odkształconym sprężyście monokrysztale

19 W metalach odkształcenie sprężyste względne poprzez wydłużenie ε = DL/L 0 zwykle nie przekracza 1,5%, dalszy wzrost naprężeń wprowadza składową plastyczną odkształcenia. Schemat odkształcenia sprężystego (wydłużenia) pod wpływem siły P pręta swobodnego, po odjęciu siły pręt wraca do wyjściowych wymiarów; B - schemat odkształcenia sprężystoplastycznego pręta pod wpływem siły P1 - odkształcenie pręta ma dwie składowe sprężystą i plastyczną, po odjęciu siły odkształcenie sprężyste zanika, pręt zachowuje odkształcenie plastyczne (trwałe) wydłużenie L trwałe. L 0 ε = L / L 0 = (L 1 -L 0 ) / L 0 P P P 1 P 1 L 1 L trwałe = L 1 -L 0 A B

20 Odkształcenie plastyczne jest to takie odkształcenie materiału spowodowane przez działanie naprężeń, które pozostaje po zdjęciu naprężeń. Odkształcenie plastyczne na zimno w monokryształach może się realizować przez poślizg lub bliźniakowanie. Podstawowym mechanizmem odkształcenia plastycznego na zimno jest poślizg. Poślizg polega na równoległym przesunięciu jednej części kryształu względem drugiej.

21 Schemat odkształcenia plastycznego monokryształu przez poślizg

22 Poślizg nie zachodzi jednocześnie na całym obszarze płaszczyzny poślizgowej, bo wymagało by to zbyt dużej siły potrzebnej do jednoczesnego przezwyciężenia wiązań atomów w całej płaszczyźnie. Zamiast tego poślizg realizuje się krok po kroku przez przesuwanie się w płaszczyźnie poślizgu dyslokacji Przesuwanie się dyslokacji nazywamy poślizgiem dyslokacji. Dzięki temu w każdym kroku następuje zerwanie sił atomowych i przemieszczenie atomów tylko lokalnie w strefie dyslokacji i tylko o odległości rzędu odległości atomowych. W każdym kroku dyslokacja przesuwa się o jedną odległość atomową o parametr sieci. Odkształcenie plastyczne na zimno realizuje poprzez poślizg dyslokacji.

23

24 W każdej sieci krystalicznej istnieją wyróżnione płaszczyzny, a na nich kierunki, wzdłuż których może zachodzićłatwiejszy poślizg niż w innych płaszczyznach. Są to tzw. płaszczyzny łatwego poślizgu, najgęściej obsadzone atomami. W takich płaszczyznach poślizg dyslokacji jest najłatwiejszy, gdyż droga przeskoku dyslokacji jest najkrótsza i do zrealizowania przeskoku wystarczy mniejsze naprężenie niż w płaszczyźnie o rzadszym ułożeniu atomów. Po przesunięciu się o określony wektor poślizg dyslokacji jest blokowany przez zwiększającą się gęstość dyslokacji. Wtedy dalsze poślizgi w krysztale mogą zachodzić w płaszczyznach o mniej gęstym ułożeniu atomów. Płaszczyzna poślizgu oraz kierunek poślizgu tworzą razem system poślizgu. Komórka sieci A1 z zaznaczonymi płaszczyznami {111} i kierunkami <110> łatwego poślizgu.

25

26 Po wyczerpaniu możliwości poślizgu odkształcenie monokryształu realizuje się poprzez bliźniakowanie. Bliźniakowanie wymaga znacznie większych naprężeń niż poślizg, dlatego zachodzi w drugiej kolejności. Bliźniakowanie występuje przede wszystkim w kryształach o sieci HZ (Mg, Ti, Zn), które mają mniejszą liczbę systemów poślizgu od sieci RSC i w kryształach o sieci RPC (Fe a, Mo, W), w których naprężenia krytyczne poślizgu są większe ze względu na brak płaszczyzn tak gęsto upakownych atomami, jak w RSC (Cu, Al, Ni).

27 Bliźniak jest segmentem kryształu składającym się z przesuniętych po sobie warstw. Dwie skrajne płaszczyzny ograniczające bliźniak nazywane są płaszczyznami bliźniakowania. Bliźniak ma strukturę sieci (ułożenie atomów) będącą lustrzanym odbiciem względem płaszczyzny bliźniakowania struktury nieodkształconej części kryształu. Schemat odkształcenia plastycznego monokryształu przez bliźniakowanie

28 Odkształcenie plastyczne w materiale polikrystalicznym realizuje się przez poślizg w wielu różnych ziarnach jednocześnie. Ziarna są pojedynczymi kryształami różnie zorientowanymi w przestrzeni, nawzajem ograniczają się i odkształceniu jednego ziarna musi towarzyszyć jednoczesne odkształcenie ziaren sąsiednich. Z tego powodu poślizgom w jednym ziarnie w określonym systemie poślizgu towarzyszą poślizgi w ziarnach sąsiednich, w tym samym lub innym systemie.

29 σ = P/S P - siła S - przekrój pręta σ B σspr ε trwałe = L 1 /L 0 ε = L/L 0 A C Zależność między odkształceniem względnym ε, a naprężeniem s w czasie rozciągania pręta polikrystalicznego. Odcinek prostoliniowy - od współrzędnych (0,0) do (ε spr, σ spr ) reprezentuje sprężyste odkształcenie pręta, zgodne z zależnością -prawem Hooke a: ε = σ / E gdzie: σ - naprężenia, σ = P/S = siła rozciągająca / przekrój pręta, ε = L / L 0, DL, E moduł sprężystości podłużnej (moduł Younga) ε spr ε

30 Początkowy odcinek na wykresie rozciągania jest dokładnie prostoliniowy tylko dla monokryształów. W materiałach polikrystalicznych odcinek ten ma pewną krzywiznę wynikającą z obecności wielu ziaren o różnej orientacji oraz obecności dyslokacji. Górna granica plastyczności σ g (R eg )wywołana odrywaniem dyslokacji od atmosfer atomów obcych Dolna granica plastyczności σ d (R ed ) zależna od wielkości ziarna, zgodnie z równaniem Halla-Petcha R ed = σ 0 +kd (-1/2) d wielkość ziarna, k stała, σ 0 - naprężenie tarcia sieci

31 Odkształcenie plastyczne metalu powoduje zmiany: kształtu i wymiarów elementu, mikrostruktury, stanu naprężeń, właściwości. Całokształt zmian określa się mianem zgniotu. Struktura włóknista - wydłużone ziarna, ułożone w jednym kierunku Tekstura zgniotu uprzywilejowana orientacja krystalograficzna ziaren względem kierunku i płaszczyzny obróbki plastycznej, decydująca o anizotropii właściwości mechanicznych i fizycznych metali obrobionych plastycznie na zimno (różnicy właściwości w zależności od kierunku)

32 a) b) 50 µm Równoosiowe ziarna w stopie jednofazowym przed odkształceniem plastycznym (a), wydłużone ziarna i pasma poślizgu w ziarnach jednofazowego stopu po odkształceniu plastycznym na zimno, struktura włóknista (b)

33 Gniot na zimno powoduje powstanie naprężeń: I rodzaju - submikroskopowych, występujących wewnątrz ziaren, spowodowanych odkształceniami wewnątrz ziaren II rodzaju - mikroskopowych, występujących między ziarnami, w wyniku wzajemnych komplementarnych odkształceń ziaren III rodzaju - makroskopowych, spowodowanych nierównomiernym odkształceniem na przekroju wyrobu Naprężenia własne są niekorzystne, ponieważ mogą powodować niepożądane odkształcenia wyrobu, a nawet pękanie oraz przyczyniają się do obniżenia odporności na korozję wyrobu.

34 Gniot (stopień gniotu) = (A 0 A)/A 0 x 100% A 0 początkowe pole przekroju poprzecznego materiału, A pole przekroju po odkształceniu Przykład zmian właściwości mechanicznych (umocnienia) materiału metalowego w wyniku odkształcenia plastycznego na zimno

35 Zmiany właściwości fizycznych i chemicznych metali wywołanych odkształceniem plastycznym: spadek przewodności elektrycznej, przenikalności i podatności magnetycznej wzrost histerezy magnetycznej spadek odporności na korozję

36 Gniot na zimno powoduje powstanie naprężeń: I rodzaju - submikroskopowych, występujących wewnątrz ziaren, spowodowanych odkształceniami wewnątrz ziaren II rodzaju - mikroskopowych, występujących między ziarnami, w wyniku wzajemnych komplementarnych odkształceń ziaren III rodzaju - makroskopowych, spowodowanych nierównomiernym odkształceniem na przekroju wyrobu Naprężenia własne są niekorzystne, ponieważ mogą powodować niepożądane odkształcenia wyrobu, a nawet pękanie oraz przyczyniają się do obniżenia odporności na korozję wyrobu.

37 Odkształcenie plastyczne na zimno powoduje wzrost energii wewnętrznej materiału wskutek zwiększenia ilości defektów sieci krystalicznej - defektów punktowych, dyslokacji, oraz wskutek fragmentacji ziaren. W zależności od rodzaju materiału i gniotu, 2 10 % pracy mechanicznej włożonej w odkształcenie pozostaje w materiale, reszta zamienia się w ciepło i jest rozproszona na zewnątrz. Materiał odkształcony na zimno jest w stanie metastabilnym dąży do wydzielenia nadmiaru energii. Proces ten jest aktywowany cieplnie, tzn. zachodzi tym szybciej, im wyższa jest temperatura materiału, a dla większości materiałów w temperaturze pokojowej przebiega na tyle wolno, ze nie daje żadnych skutków praktycznie zmieniających właściwości materiału przez dowolnie długi czas. Proces powrotu materiału odkształconego na zimno do stanu stabilnego dzieli się na dwa podstawowe stadia zdrowienie i rekrystalizację.

38 Zdrowienie procesy wydzielania się z odkształconego metalu energii zmagazynowanej, dzięki wzajemnemu oddziaływaniu, przegrupowaniu przez wspinanie i anihilacji dyslokacji bez udziału migracji szerokokątowych granic ziaren. Przebieg zdrowienia: 1. Aktywowana cieplnie migracja atomów międzywęzłowych i równoczesna migracja wakansów skutkująca zmniejszeniem stężenia wakansów 2. Przegrupowania dyslokacji 3. Rozrastanie się podziaren w uprzywilejowanych kierunkach

39 Rekrystalizacja procesy zachodzące w uprzednio odkształconym metalu, związane z migracją szerokokątowych granic ziaren Rodzaje rekrystalizacji: pierwotna równomierna wtórna

40 Przegrupowania dyslokacji: a) tworzenie ścianek poligonalnych, b) łączenie się ścianek, c) zanik ścianek przez wspinanie dyslokacji (1-3 kolejne stadia)

41 a) Układ dyslokacji utworzony przez poślizgi w jednym systemie, przy małym stopniu zgniotu, nie skutkuje powstaniem zarodków rekrystalizacji w ostatnim etapie zdrowienia, a następnie rekrystalizacją metalu. (b) Układ dyslokacji utworzony przez poślizgi w wielu systemach prowadzi do powstania subziaren o dużym stopniu dezorientacji, stanowiących zarodki rekrystalizacji. Zdrowienie powoduje wyzwolenie całości (a) lub części (b) energii zmagazynowanej, zanik całkowity lub częściowy naprężeń i zmiany właściwości materiału przeciwne wywołanym odkształceniem całkowite przy braku rekrystalizacji lub małe przy dalszej rekrystalizacji.

42 Rekrystalizacja procesy zachodzące w uprzednio odkształconym metalu, związane z migracją szerokokątowych granic ziaren. Szybkość rekrystalizacji jest tym większa, im wyższa jest temperatura i stopień gniotu. Rodzaje rekrystalizacji: pierwotna równomierna wtórna

43 Rekrystalizacja równomierna Zmiany właściwości metalu w funkcji temperatury wyżarzania po odkształceniu plastycznym: 1 naprężenia, 2 wielkość ziarna, 3 wytrzymałość na rozciąganie, 4 wydłużenie

44 Rekrystalizacja pierwotna aktywowany cieplnie proces całkowitego przekrystalizowania odkształconego plastycznie metalu. Udział ziaren zrekrystalizowanych i niezrekrystalizowanych zmienia się z upływem czasu.

45 Rekrystalizacja równomierna po zakończeniu rekrystalizacji pierwotnej, polega na wzroście wielkości ziaren. Rekrystalizacja wtórna po zakończeniu rekrystalizacji pierwotnej w wysokich temperaturach, polega na szczególnie silnym wzroście niektórych ziaren, co prowadzi do bardzo dużego zróżnicowania wielkości ziaren

46 Temperatura rekrystalizacji właściwość materiału mająca charakter umowny, która zależy od takich czynników jak: stopień gniotu, szybkość nagrzewania, czystość materiału, wielkość ziarna. Umownie przyjmuje się, że jest to temperatura, w której dany metal poddany określonemu odkształceniu zrekrystalizuje się całkowicie w ciągu 1 godziny. Temperatura rekrystalizacji T R zależy w pewnym stopniu od temperatury topnienia T T, co wyraża empiryczna zależność Boczwara: T R = (0,35 0,60)T T [K]

47 Wpływ stopnia odkształcenia na temperaturę rekrystalizacji i wielkość ziarna po rekrystalizacji Al 99,99% (wygrzewanie 1 godzina). 1 temperatura rekrystalizacji, 2 wielkość ziarna

48 Gniot krytyczny przeważnie w przedziale 2-12%, powoduje po rekrystalizacji szczególnie gruboziarnistą strukturę. Z tego powodu projektując obróbkę plastyczną wyrobów,które będą podlegać rekrystalizacji, należy unikać odkształcenia krytycznego. Przyczyną silnego rozrostu ziarna jest mała ilość zarodków rekrystalizacji. Po gniocie mniejszym od krytycznego rekrystalizacja nie zachodzi, ponieważ odkształcenie było zbyt małe do wytworzenia zarodków rekrystalizacji, tj. podziaren o szerokokątowych granicach.

49 Techniczne aspekty odkształcenia plastycznego Temperatura rekrystalizacji stanowi kryterium zabiegów: Obróbki plastycznej na zimno poniżej temperatury rekrystalizacji. Ma miejsce zgniot. Obróbki plastycznej na gorąco powyżej temperatury rekrystalizacji. Równolegle ze zgniotem zachodzi rekrystalizacja. Po odkształceniu plastycznym na zimno można stosować: Wyżarzanie odprężające, w przedziale temperatur w których zachodzi proces zdrowienia, w celu usunięcia naprężeń Wyżarzanie rekrystalizujące temperatury wyższe od temperatury rekrystalizacji, w celu usunięcia umocnienia materiału. Górna granica temperatury rekrystalizowania temperatura powodująca rekrystalizację wtórną.

50 Obróbka plastyczna na gorąco Temperatura procesu jest wyższa od temperatury rekrystalizacji, zwykle o 100ºC Brak umocnienia Metody: walcowanie, kucie, wyciąganie, spęczanie Wyroby: blachy, pręty, kształtowniki (np. szyny kolejowe) Kąt chwytu walców Schemat walcowania

51 Kształtowanie zaworu silnika samochodowego: A - surowy pręt, B trzonek (wyciąganie na gorąco), C głowa (spęczanie na gorąco), D obróbka końcowa (skrawanie)

52 Obróbka plastyczna na zimno Temperatura procesu jest niższa od temperatury rekrystalizacji Umocnienie materiału. Przykład blachy stalowej walcowanej na zimno: Stan R m Półtwardy (Z = 25 %) 500 N/mm 2 Twardy (Z = 50 %) 650 N/mm 2 Wyżarzony 300 N/mm 2 Metody: walcowanie, kucie, wyciąganie, spęczanie, gięcie Wyroby: taśmy, blachy i pręty o dokładnym wykończeniu powierzchni i podwyższonej wytrzymałości

53 Zapory wypychacza stempel Kształtowanie śruby spęczanie na zimno końca pręta

54 3. OBRÓBKA CIEPLNA METALI Dziedzina technologii obejmująca zespół operacji i zabiegów, których celem jest zmiana właściwości mechanicznych i fizykochemicznych metali w stanie stałym, głównie przez wywołanie zmian strukturalnych będących funkcją temperatury, czasu i środowiska Rodzaje obróbki Obróbka cieplna zwykła Obróbka cieplno-chemiczna Obróbka cieplno-mechaniczna Obróbka cieplno-magnetyczna

55 Obróbka cieplna zwykła: zmiany właściwości metali osiąga się głównie przez zmiany temperatury w czasie procesu. Obejmuje ona operacje wyżarzania, hartowania, odpuszczania, przesycania, starzenia.

56

57

58 Rodzaje ośrodków grzejnych: Powietrze Ośrodki gazowe Złoża fluidalne Kąpiele solne: hartownicze sole chlorkowe (chlorki baru, sodu, wapnia oraz krzemionka lub tlenek aluminium) lub saletrzankowe (azotany sodu, potasu, azotyn sodu, chromiany) Ciekłe kąpiele metalowe: bizmut, antymon, cyna i ołów

59 Rodzaje ośrodków chłodzących: Woda, roztwory wodne soli, zasad, polimerów Oleje hartownicze Kąpiele solne i metalowe Ośrodki sfluidyzowane Powietrze i inne gazy

60

61 Obróbka cieplno-chemiczna: zabieg cieplny lub zespół zabiegów prowadzonych dla uzyskania zmiany składu chemicznego i struktury, a przez to właściwości warstwy wierzchniej stopu w wyniku oddziaływania chemicznego środowiska i temperatury. Oprócz przekazywania ciepła, ma miejsce transport masy Cel obróbki: wytworzenie warstw wierzchnich o zwiększonej odporności na ścieranie, zmęczenie, korozyjne działanie środowiska Najczęściej stosowane zabiegi obróbki cieplno-chemicznej: nawęglanie, azotowanie, węgloazotowanie i azotonawęglanie, krzemowanie, metalizowanie dyfuzyjne (aluminiowanie, chromowanie, cynkowanie itp.)

62 Procesy składowe transportu masy w obróbce cieplnochemicznej 1. Reakcje w ośrodku nasycającym, związane z utworzeniem aktywnych wolnych atomów składnika nasycającego, np. CH4 2H 2 + C 2. Dyfuzja w ośrodku nasycającym, m.in. dopływ atomów składnika nasycającego do powierzchni metalu 3. Adsorpcja, czyli osadzanie wolnych atomów składnika nasycającego na granicy fazy stałej w postaci warstewki o grubości jednego atomu 4. Dyfuzja aktywowany cieplnie proces zachodzący wskutek ruchu atomów w sieci przestrzennej metalu w kierunku wyrównania stężenia składników. Warunkiem przebiegu dyfuzji jest rozpuszczalność w stanie stałym pierwiastka nasycającego w osnowie metalicznej obrabianego materiału. Dyfuzję opisują prawa Ficka.

63 Adsorpcja: a) schemat sił powierzchniowych powodujących adsorpcję atomów, b) warstwa atomów zaadsorbowanych

64 Mechanizmy dyfuzji: W roztworach różnowęzłowych mechanizm wakansowy W roztworach międzywęzłowych mechanizm międzywęzłowy, charakterystyczny dla C i N w stopach żelaza

65 Prawa Ficka opisujące dyfuzję x Pierwsze prawo Ficka opisuje szybkość dyfuzji J (strumień atomów, tj. ilość atomów składnika nasycającego na jednostkę powierzchni i czasu [1/cm 2 s]) J = - D dc/dx; D = D 0 exp(-q/rt) D współczynnik dyfuzji [cm 2 /s], c- stężenie [1/cm 3], x odległość [cm], dc/dx gradient stężenia pierwiastka dyfundującego, Q energia aktywacji dyfuzji, R - stała gazowa 8,314 J/mol K (stała fizyczna równa pracy wykonanej przez 1 mol gazu doskonałego podgrzewanego o 1 kelwin (stopień Celsjusza) podczas przemiany izobarycznej), D 0 stała zależna od struktury krystalicznej metalu, T temperatura w skali bezwzględnej c x c

66 Drugie prawo Ficka opisuje przebieg dyfuzji w czasie dc/dτ = d/dx (D dc/dx) τ - czas procesu

67 Drogi dyfuzji: 1. Wzdłuż powierzchni najłatwiej 2. Wzdłuż granic ziaren trudniej 3. Wewnątrz ziaren najtrudniej Pierwiastek dyfundujący Metal 3 2 1

68 Obróbka cieplno-mechaniczna: zmiany właściwości metali osiąga się przez połączone działanie odkształceń plastycznych oraz zmianę temperatury w czasie procesu Obróbka cieplno-magnetyczna: zmiany właściwości fizycznych metali osiąga się przez zmiany temperatury w czasie procesu w silnym polu magnetycznym

69 Rysunki slajdy 6, 9, 13, 23, 25, 30,55-57, 60: L. Dobrzański, Podstawy nauki o materiałach i metaloznawstwo, WNT Gliwice- Warszawa 2002

Technologie wytwarzania. Opracował Dr inż. Stanisław Rymkiewicz KIM WM PG

Technologie wytwarzania. Opracował Dr inż. Stanisław Rymkiewicz KIM WM PG Technologie wytwarzania Opracował Dr inż. Stanisław Rymkiewicz KIM WM PG Technologie wytwarzania Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki

Bardziej szczegółowo

ODKSZTAŁCENIE I REKRYSTALIZACJA METALI. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

ODKSZTAŁCENIE I REKRYSTALIZACJA METALI. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego ODKSZTAŁCENIE I REKRYSTALIZACJA METALI Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego ODKSZTAŁCENIE I REKRYSTALIZACJA METALI 1. ODKSZTAŁCENIE METALI

Bardziej szczegółowo

OBRÓBKA PLASTYCZNA METALI

OBRÓBKA PLASTYCZNA METALI OBRÓBKA PLASTYCZNA METALI ODKSZTAŁCENIE I REKRYSTALIZACJA METALI 1. ODKSZTAŁCENIE METALI 2. ZDROWIENIE I REKRYSTALIZACJA 3. TECHNICZNE ASPEKTY ODKSZTAŁCENIA PLASTYCZNEGO ODKSZTAŁCENIE METALI Ciało stałe

Bardziej szczegółowo

Technologie wytwarzania metali. Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki próżniowe

Technologie wytwarzania metali. Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki próżniowe Technologie wytwarzania metali Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki próżniowe KRYSTALIZACJA METALI I STOPÓW Krzepnięcie - przemiana fazy

Bardziej szczegółowo

Technologie wytwarzania metali. Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki próżniowe

Technologie wytwarzania metali. Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki próżniowe Technologie wytwarzania metali Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki próżniowe KRYSTALIZACJA METALI I STOPÓW Krzepnięcie - przemiana fazy

Bardziej szczegółowo

KRYSTALIZACJA METALI I STOPÓW. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

KRYSTALIZACJA METALI I STOPÓW. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego KRYSTALIZACJA METALI I STOPÓW Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Krzepnięcie przemiana fazy ciekłej w fazę stałą Krystalizacja przemiana

Bardziej szczegółowo

OBRÓBKA PLASTYCZNA METALI

OBRÓBKA PLASTYCZNA METALI OBRÓBKA PLASTYCZNA METALI Plastyczność: zdolność metali i stopów do trwałego odkształcania się bez naruszenia spójności Obróbka plastyczna: walcowanie, kucie, prasowanie, ciągnienie Produkty i półprodukty

Bardziej szczegółowo

Zjawisko to umożliwia kształtowanie metali na drodze przeróbki plastycznej.

Zjawisko to umożliwia kształtowanie metali na drodze przeróbki plastycznej. ODKSZTAŁCENIE PLASTYCZNE, ZGNIOT I REKRYSTALIZACJA Zakres tematyczny 1 Odkształcenie materiałów metalicznych Materiały metaliczne są ciałami plastycznymi pod wpływem obciążenia, którego wartość przekracza

Bardziej szczegółowo

Technologia obróbki cieplnej. Grzanie i ośrodki grzejne

Technologia obróbki cieplnej. Grzanie i ośrodki grzejne Technologia obróbki cieplnej Grzanie i ośrodki grzejne Grzanie: nagrzewanie i wygrzewanie Dobór czasu grzania Rodzaje ośrodków grzejnych Powietrze Ośrodki gazowe Złoża fluidalne Kąpiele solne: sole chlorkowe

Bardziej szczegółowo

Kształtowanie cieplno-plastyczne. Opracował Dr inż. Stanisław Rymkiewicz KIM WM PG

Kształtowanie cieplno-plastyczne. Opracował Dr inż. Stanisław Rymkiewicz KIM WM PG Kształtowanie cieplno-plastyczne Opracował Dr inż. Stanisław Rymkiewicz KIM WM PG OBRÓBKA CIEPLNA METALI Grzanie: nagrzewanie i wygrzewanie Rodzaje ośrodków grzejnych Powietrze Ośrodki gazowe Złoża fluidalne

Bardziej szczegółowo

Definicja OC

Definicja OC OBRÓBKA CIEPLNA Podstawy teoretyczne Zakres tematyczny 1 Definicja OC Obróbka cieplna jest to zespół zabiegów wywołujących polepszenie właściwości mechanicznych oraz fizyko-chemicznych metali i stopów,

Bardziej szczegółowo

OBRÓBKA CIEPLNA STOPÓW ŻELAZA. Cz. III. Hartowanie i odpuszczanie, obróbka cieplno-chemiczna

OBRÓBKA CIEPLNA STOPÓW ŻELAZA. Cz. III. Hartowanie i odpuszczanie, obróbka cieplno-chemiczna OBRÓBKA CIEPLNA STOPÓW ŻELAZA Cz. III. Hartowanie i odpuszczanie, obróbka cieplno-chemiczna HARTOWANIE, SPOSOBY HARTOWANIA Hartowanie jest obróbką cieplną polegającą na nagrzaniu stali do temperatur występowania

Bardziej szczegółowo

Wykład 8. Przemiany zachodzące w stopach żelaza z węglem. Przemiany zachodzące podczas nagrzewania

Wykład 8. Przemiany zachodzące w stopach żelaza z węglem. Przemiany zachodzące podczas nagrzewania Wykład 8 Przemiany zachodzące w stopach żelaza z węglem Przemiany zachodzące podczas nagrzewania Nagrzewanie stopów żelaza powyżej temperatury 723 O C powoduje rozpoczęcie przemiany perlitu w austenit

Bardziej szczegółowo

Nauka o Materiałach. Wykład IX. Odkształcenie materiałów właściwości plastyczne. Jerzy Lis

Nauka o Materiałach. Wykład IX. Odkształcenie materiałów właściwości plastyczne. Jerzy Lis Nauka o Materiałach Wykład IX Odkształcenie materiałów właściwości plastyczne Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Odkształcenie plastyczne 2. Parametry makroskopowe 3. Granica plastyczności

Bardziej szczegółowo

Kształtowanie struktury i własności użytkowych umacnianej wydzieleniowo miedzi tytanowej. 7. Podsumowanie

Kształtowanie struktury i własności użytkowych umacnianej wydzieleniowo miedzi tytanowej. 7. Podsumowanie Kształtowanie struktury i własności użytkowych umacnianej wydzieleniowo miedzi tytanowej 7. Podsumowanie Praca wykazała, że mechanizm i kinetyka wydzielania w miedzi tytanowej typu CuTi4, jest bardzo złożona

Bardziej szczegółowo

PODSTAWY OBRÓBKI CIEPLNEJ

PODSTAWY OBRÓBKI CIEPLNEJ PODSTAWY OBRÓBKI CIEPLNEJ STOPÓW ŻELAZA WYŻARZANIE Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego 1. POJĘCIA PODSTAWOWE 2. PRZEMIANY PRZY NAGRZEWANIU

Bardziej szczegółowo

Termodynamiczne warunki krystalizacji

Termodynamiczne warunki krystalizacji KRYSTALIZACJA METALI ISTOPÓW Zakres tematyczny y 1 Termodynamiczne warunki krystalizacji hiq.linde-gas.fr Krystalizacja szczególny rodzaj krzepnięcia, w którym ciecz ulega przemianie w stan stały o budowie

Bardziej szczegółowo

Wykład IX: Odkształcenie materiałów - właściwości plastyczne

Wykład IX: Odkształcenie materiałów - właściwości plastyczne Wykład IX: Odkształcenie materiałów - właściwości plastyczne JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych Treść wykładu: 1. Odkształcenie

Bardziej szczegółowo

PODSTAWY OBRÓBKI CIEPLNEJ STOPÓW ŻELAZA WYŻARZANIE 1. POJĘCIA PODSTAWOWE 2. PRZEMIANY PRZY NAGRZEWANIU I POWOLNYM CHŁODZENIU STALI 3.

PODSTAWY OBRÓBKI CIEPLNEJ STOPÓW ŻELAZA WYŻARZANIE 1. POJĘCIA PODSTAWOWE 2. PRZEMIANY PRZY NAGRZEWANIU I POWOLNYM CHŁODZENIU STALI 3. PODSTAWY OBRÓBKI CIEPLNEJ STOPÓW ŻELAZA WYŻARZANIE 1. POJĘCIA PODSTAWOWE 2. PRZEMIANY PRZY NAGRZEWANIU I POWOLNYM CHŁODZENIU STALI 3. WYŻARZANIE 1. POJĘCIA PODSTAWOWE Definicja obróbki cieplnej Dziedzina

Bardziej szczegółowo

Technologie Materiałowe II Wykład 2 Technologia wyżarzania stali

Technologie Materiałowe II Wykład 2 Technologia wyżarzania stali KATEDRA INŻYNIERII MATERIAŁOWEJ I SPAJANIA ZAKŁAD INŻYNIERII SPAJANIA Technologie Materiałowe II Wykład 2 Technologia wyżarzania stali dr hab. inż. Jerzy Łabanowski, prof.nadzw. PG Kierunek studiów: Inżynieria

Bardziej szczegółowo

BUDOWA STOPÓW METALI

BUDOWA STOPÓW METALI BUDOWA STOPÓW METALI Stopy metali Substancje wieloskładnikowe, w których co najmniej jeden składnik jest metalem, wykazujące charakter metaliczny. Składnikami stopów mogą być pierwiastki lub substancje

Bardziej szczegółowo

2. WPŁYW ODKSZTAŁCENIA PLASTYCZNEGO NA ZIMNO NA ZMIANĘ WŁASNOŚCI MECHANICZNYCH METALI

2. WPŁYW ODKSZTAŁCENIA PLASTYCZNEGO NA ZIMNO NA ZMIANĘ WŁASNOŚCI MECHANICZNYCH METALI 2. WPŁYW ODKSZTAŁCENIA PLASTYCZNEGO NA ZIMNO NA ZMIANĘ WŁASNOŚCI MECHANICZNYCH METALI 2.1. Cel ćwiczenia Zapoznanie się z możliwością trwałego odkształcenia metalu na zimno oraz z wpływem tego odkształcenia

Bardziej szczegółowo

DEFEKTY STRUKTURY KRYSTALICZNEJ. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

DEFEKTY STRUKTURY KRYSTALICZNEJ. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego DEFEKTY STRUKTURY KRYSTALICZNEJ Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Defekty struktury krystalicznej są to każdego rodzaju odchylenia od

Bardziej szczegółowo

Nauka o Materiałach. Wykład VI. Odkształcenie materiałów właściwości sprężyste i plastyczne. Jerzy Lis

Nauka o Materiałach. Wykład VI. Odkształcenie materiałów właściwości sprężyste i plastyczne. Jerzy Lis Nauka o Materiałach Wykład VI Odkształcenie materiałów właściwości sprężyste i plastyczne Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Właściwości materiałów -wprowadzenie 2. Statyczna próba rozciągania.

Bardziej szczegółowo

PEŁZANIE WYBRANYCH ELEMENTÓW KONSTRUKCYJNYCH

PEŁZANIE WYBRANYCH ELEMENTÓW KONSTRUKCYJNYCH Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: Wprowadzenie PEŁZANIE WYBRANYCH ELEMENTÓW KONSTRUKCYJNYCH Opracowała: mgr inż. Magdalena Bartkowiak-Jowsa Reologia jest nauką,

Bardziej szczegółowo

Obróbka cieplna stali

Obróbka cieplna stali Obróbka cieplna stali Obróbka cieplna stopów: zabiegi cieplne, które mają na celu nadanie im pożądanych cech mechanicznych, fizycznych lub chemicznych przez zmianę struktury stopu. Podstawowe etapy obróbki

Bardziej szczegółowo

OBRÓBKA CIEPLNA STOPÓW ŻELAZA. Cz. I. Wyżarzanie

OBRÓBKA CIEPLNA STOPÓW ŻELAZA. Cz. I. Wyżarzanie OBRÓBKA CIEPLNA STOPÓW ŻELAZA Cz. I. Wyżarzanie Przemiany przy nagrzewaniu i powolnym chłodzeniu stali A 3 A cm A 1 Przykład nagrzewania stali eutektoidalnej (~0,8 % C) Po przekroczeniu temperatury A 1

Bardziej szczegółowo

STRUKTURA STOPÓW CHARAKTERYSTYKA FAZ. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

STRUKTURA STOPÓW CHARAKTERYSTYKA FAZ. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego STRUKTURA STOPÓW CHARAKTERYSTYKA FAZ Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Stop tworzywo składające się z metalu stanowiącego osnowę, do którego

Bardziej szczegółowo

OBRÓBKA CIEPLNA STOPÓW ŻELAZA. Cz. II. Przemiany austenitu przechłodzonego

OBRÓBKA CIEPLNA STOPÓW ŻELAZA. Cz. II. Przemiany austenitu przechłodzonego OBRÓBKA CIEPLNA STOPÓW ŻELAZA Cz. II. Przemiany austenitu przechłodzonego WPŁYW CHŁODZENIA NA PRZEMIANY AUSTENITU Ar 3, Ar cm, Ar 1 temperatury przy chłodzeniu, niższe od równowagowych A 3, A cm, A 1 A

Bardziej szczegółowo

ODKSZTAŁCANIE NA ZIMNO I WYŻARZANIE MATERIAŁÓW

ODKSZTAŁCANIE NA ZIMNO I WYŻARZANIE MATERIAŁÓW 8 Ćwiczenie 1 ODKSZTAŁCANIE NA ZIMNO I WYŻARZANIE MATERIAŁÓW Celem ćwiczenia jest: - poznanie zjawisk wywołujących umocnienie materiałów, - poznanie wpływu wyżarzania odkształconego na zimno materiału

Bardziej szczegółowo

Materiały Reaktorowe. Właściwości mechaniczne

Materiały Reaktorowe. Właściwości mechaniczne Materiały Reaktorowe Właściwości mechaniczne Naprężenie i odkształcenie F A 0 l i l 0 l 0 l l 0 a. naprężenie rozciągające b. naprężenie ściskające c. naprężenie ścinające d. Naprężenie torsyjne Naprężenie

Bardziej szczegółowo

Nauka o Materiałach. Wykład XI. Właściwości cieplne. Jerzy Lis

Nauka o Materiałach. Wykład XI. Właściwości cieplne. Jerzy Lis Nauka o Materiałach Wykład XI Właściwości cieplne Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Stabilność termiczna materiałów 2. Pełzanie wysokotemperaturowe 3. Przewodnictwo cieplne 4. Rozszerzalność

Bardziej szczegółowo

Obróbka cieplna stali

Obróbka cieplna stali OBRÓBKA CIEPLNA Obróbka cieplna stali Powstawanie austenitu podczas nagrzewania Ujednorodnianie austenitu Zmiany wielkości ziarna Przemiany w stali podczas chłodzenia Martenzytyczna Bainityczna Perlityczna

Bardziej szczegółowo

Podstawy Nauki o Materiałach II Wydział Inżynierii Materiałowej Politechniki Warszawskiej

Podstawy Nauki o Materiałach II Wydział Inżynierii Materiałowej Politechniki Warszawskiej Podstawy Nauki o Materiałach II Wydział Inżynierii Materiałowej Politechniki Warszawskiej Zbigniew Pakieła Klasyfikacja defektów struktury krystalicznej wg wymiarów elementów 0 - wymiarowe (defekty punktowe)

Bardziej szczegółowo

Podstawy technologii monokryształów

Podstawy technologii monokryształów 1 Wiadomości ogólne Monokryształy - Pojedyncze kryształy o jednolitej sieci krystalicznej. Powstają w procesie krystalizacji z substancji ciekłych, gazowych i stałych, w określonych temperaturach oraz

Bardziej szczegółowo

ZAMRAŻANIE PODSTAWY CZ.2

ZAMRAŻANIE PODSTAWY CZ.2 METODY PRZECHOWYWANIA I UTRWALANIA BIOPRODUKTÓW ZAMRAŻANIE PODSTAWY CZ.2 Opracował: dr S. Wierzba Katedra Biotechnologii i Biologii Molekularnej Uniwersytetu Opolskiego Odmienność procesów zamrażania produktów

Bardziej szczegółowo

6. OBRÓBKA CIEPLNO - PLASTYCZNA

6. OBRÓBKA CIEPLNO - PLASTYCZNA 6. OBRÓBKA CIEPLNO - PLASTYCZNA 6.1. Cel ćwiczenia Zapoznanie się z rodzajami obróbki cieplno plastycznej i ich wpływem na własności metali. 6.2. Wprowadzenie Obróbką cieplno-plastyczną, zwaną potocznie

Bardziej szczegółowo

INŻYNIERIA MATERIAŁOWA w elektronice

INŻYNIERIA MATERIAŁOWA w elektronice Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej... INŻYNIERIA MATERIAŁOWA w elektronice... Dr hab. inż. JAN FELBA Profesor nadzwyczajny PWr 1 PROGRAM WYKŁADU Struktura materiałów

Bardziej szczegółowo

KONSTRUKCJE METALOWE - LABORATORIUM. Produkcja i budowa stali

KONSTRUKCJE METALOWE - LABORATORIUM. Produkcja i budowa stali KONSTRUKCJE METALOWE - LABORATORIUM Produkcja i budowa stali Produkcja stali ŻELAZO (Fe) - pierwiastek chemiczny, w stanie czystym miękki i plastyczny metal o niezbyt dużej wytrzymałości STAL - stop żelaza

Bardziej szczegółowo

Nauka o Materiałach. Wykład VIII. Odkształcenie materiałów właściwości sprężyste. Jerzy Lis

Nauka o Materiałach. Wykład VIII. Odkształcenie materiałów właściwości sprężyste. Jerzy Lis Nauka o Materiałach Wykład VIII Odkształcenie materiałów właściwości sprężyste Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Właściwości materiałów -wprowadzenie 2. Klasyfikacja reologiczna odkształcenia

Bardziej szczegółowo

Dyslokacje w kryształach. ach. Keshra Sangwal Zakład Fizyki Stosowanej, Instytut Fizyki Politechnika Lubelska

Dyslokacje w kryształach. ach. Keshra Sangwal Zakład Fizyki Stosowanej, Instytut Fizyki Politechnika Lubelska Dyslokacje w kryształach ach Keshra Sangwal Zakład Fizyki Stosowanej, Instytut Fizyki Politechnika Lubelska I. Wprowadzenie do defektów II. Dyslokacje: Podstawowe pojęcie III. Własności mechaniczne kryształów

Bardziej szczegółowo

Integralność konstrukcji

Integralność konstrukcji 1 Integralność konstrukcji Wykład Nr 1 Mechanizm pękania Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji Konspekty wykładów dostępne na stronie: http://zwmik.imir.agh.edu.pl/dydaktyka/imir/index.htm

Bardziej szczegółowo

MATERIAŁY SPIEKANE (SPIEKI)

MATERIAŁY SPIEKANE (SPIEKI) MATERIAŁY SPIEKANE (SPIEKI) Metalurgia proszków jest dziedziną techniki, obejmującą metody wytwarzania proszków metali lub ich mieszanin z proszkami niemetali oraz otrzymywania wyrobów z tych proszków

Bardziej szczegółowo

STRUKTURA IDEALNYCH KRYSZTAŁÓW

STRUKTURA IDEALNYCH KRYSZTAŁÓW BUDOWA WEWNĘTRZNA MATERIAŁÓW METALICZNYCH Zakres tematyczny y 1 STRUKTURA IDEALNYCH KRYSZTAŁÓW 2 1 Sieć przestrzenna kryształu TRANSLACJA WĘZŁA TRANSLACJA PROSTEJ SIECIOWEJ TRANSLACJA PŁASZCZYZNY SIECIOWEJ

Bardziej szczegółowo

Dyslokacje w kryształach. ach. Keshra Sangwal, Politechnika Lubelska. Literatura

Dyslokacje w kryształach. ach. Keshra Sangwal, Politechnika Lubelska. Literatura Dyslokacje w kryształach ach Keshra Sangwal, Politechnika Lubelska I. Wprowadzenie do defektów II. Dyslokacje: podstawowe pojęcie III. Własności mechaniczne kryształów IV. Źródła i rozmnażanie się dyslokacji

Bardziej szczegółowo

PIERWIASTKI STOPOWE W STALACH. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

PIERWIASTKI STOPOWE W STALACH. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego PIERWIASTKI STOPOWE W STALACH Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Stal stopowa stop żelaza z węglem, zawierający do ok. 2% węgla i pierwiastki

Bardziej szczegółowo

Szkła specjalne Przejście szkliste i jego termodynamika Wykład 5. Ryszard J. Barczyński, 2017 Materiały edukacyjne do użytku wewnętrznego

Szkła specjalne Przejście szkliste i jego termodynamika Wykład 5. Ryszard J. Barczyński, 2017 Materiały edukacyjne do użytku wewnętrznego Szkła specjalne Przejście szkliste i jego termodynamika Wykład 5 Ryszard J. Barczyński, 2017 Materiały edukacyjne do użytku wewnętrznego Czy przejście szkliste jest termodynamicznym przejściem fazowym?

Bardziej szczegółowo

Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia

Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia Wytrzymałość materiałów dział mechaniki obejmujący badania teoretyczne i doświadczalne procesów odkształceń i niszczenia ciał pod wpływem różnego rodzaju oddziaływań (obciążeń) Podstawowe pojęcia wytrzymałości

Bardziej szczegółowo

TEMAT PRACY DOKTORSKIEJ

TEMAT PRACY DOKTORSKIEJ Krynica, 12.04.2013 Wpływ cyrkonu i skandu na zmiany mikrostruktury i tekstury w silnie odkształconych stopach aluminium ---------------------------------------------------------------------------- TEMAT

Bardziej szczegółowo

OBRÓBKA CIEPLNA. opracował dr inż. Stanisław Rymkiewicz

OBRÓBKA CIEPLNA. opracował dr inż. Stanisław Rymkiewicz OBRÓBKA CIEPLNA opracował dr inż. Stanisław Rymkiewicz Schemat wykresu układu równowagi fazowej żelazo-węgiel i żelazo-cementyt t, ºC Fe 6,67 Fe 3 C stężenie masowe, C [%] C żelazo cementyt (Fe - Fe 3

Bardziej szczegółowo

Pytania do egzaminu inżynierskiego, PWSZ Głogów, Przeróbka Plastyczna

Pytania do egzaminu inżynierskiego, PWSZ Głogów, Przeróbka Plastyczna Pytania do egzaminu inżynierskiego, PWSZ Głogów, Przeróbka Plastyczna 1. Badania własności materiałów i próby technologiczne 2. Stany naprężenia, kierunki, składowe stanu naprężenia 3. Porównywanie stanów

Bardziej szczegółowo

ZAGADNIENIA EGZAMINACYJNE

ZAGADNIENIA EGZAMINACYJNE ZAGADNIENIA EGZAMINACYJNE - zagadnienia, na które należy zwrócić szczególną uwagę 1. Omówić budowę atomu. 2. Co to jest masa atomowa? 3. Omówić budowę układu okresowego pierwiastków. 4. Wyjaśnić strukturę

Bardziej szczegółowo

INSTRUKCJA DO CWICZENIA NR 5

INSTRUKCJA DO CWICZENIA NR 5 INTRUKCJA DO CWICZENIA NR 5 Temat ćwiczenia: tatyczna próba ściskania materiałów kruchych Celem ćwiczenia jest wykonanie próby statycznego ściskania materiałów kruchych, na podstawie której można określić

Bardziej szczegółowo

SPRAWOZDANIE Z MATERIAŁOZNAWSTWA - LABORATORIUM OBRÓBKA CIEPLNA STALI

SPRAWOZDANIE Z MATERIAŁOZNAWSTWA - LABORATORIUM OBRÓBKA CIEPLNA STALI SPRAWOZDANIE Z MATERIAŁOZNAWSTWA - LABORATORIUM OBRÓBKA CIEPLNA STALI Obróbką cieplną nazywa sie zabiegi technologiczne umożliwiające dzięki grzaniu i chłodzeniu zmianę mikrostruktury, a przez to własności

Bardziej szczegółowo

1. POJĘCIA PODSTAWOWE Definicja obróbki cieplnej

1. POJĘCIA PODSTAWOWE Definicja obróbki cieplnej OBRÓBKA CIEPLNA 1. POJĘCIA PODSTAWOWE Definicja obróbki cieplnej Dziedzina technologii obejmująca zespół zabiegów cieplnych powodujących zmiany struktury w stanie stałym, skutkujące poprawą właściwości

Bardziej szczegółowo

OBRÓBKA CIEPLNO-CHEMICZNA 1. DYFUZJA I PRAWA DYFUZJI 2. NAWĘGLANIE 3. AZOTOWANIE

OBRÓBKA CIEPLNO-CHEMICZNA 1. DYFUZJA I PRAWA DYFUZJI 2. NAWĘGLANIE 3. AZOTOWANIE OBRÓBKA CIEPLNO-CHEMICZNA 1. DYFUZJA I PRAWA DYFUZJI 2. NAWĘGLANIE 3. AZOTOWANIE Obróbka cieplno-chemiczna jest zabiegiem cieplnym (lub połączeniem kilku zabiegów), mającym na celu uzyskanie w warstwie

Bardziej szczegółowo

STABILNOŚĆ STRUKTURALNA STALI P92 W KSZTAŁTOWANYCH PLASTYCZNIE ELEMENTACH RUROCIĄGÓW KOTŁÓW ENERGETYCZNYCH ANDRZEJ TOKARZ, WŁADYSŁAW ZALECKI

STABILNOŚĆ STRUKTURALNA STALI P92 W KSZTAŁTOWANYCH PLASTYCZNIE ELEMENTACH RUROCIĄGÓW KOTŁÓW ENERGETYCZNYCH ANDRZEJ TOKARZ, WŁADYSŁAW ZALECKI PL0400058 STABILNOŚĆ STRUKTURALNA STALI P92 W KSZTAŁTOWANYCH PLASTYCZNIE ELEMENTACH RUROCIĄGÓW KOTŁÓW ENERGETYCZNYCH ANDRZEJ TOKARZ, WŁADYSŁAW ZALECKI Instytut Metalurgii Żelaza im. S. Staszica, Gliwice

Bardziej szczegółowo

Materiałoznawstwo optyczne CERAMIKA OPTYCZNA

Materiałoznawstwo optyczne CERAMIKA OPTYCZNA Materiałoznawstwo optyczne CERAMIKA OPTYCZNA Szkło optyczne i fotoniczne, A. Szwedowski, R. Romaniuk, WNT, 2009 POLIKRYSZTAŁY - ciała stałe o drobnoziarnistej strukturze, które są złożone z wielkiej liczby

Bardziej szczegółowo

PODSTAWY OBRÓBKI CIEPLNEJ

PODSTAWY OBRÓBKI CIEPLNEJ PODSTAWY OBRÓBKI CIEPLNEJ STOPÓW ŻELAZA HARTOWANIE I ODPUSZCZANIE Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego 1. WPŁYW CHŁODZENIA NA PRZEMIANY AUSTENITU

Bardziej szczegółowo

Wytrzymałość Materiałów

Wytrzymałość Materiałów Wytrzymałość Materiałów Rozciąganie/ ściskanie prętów prostych Naprężenia i odkształcenia, statyczna próba rozciągania i ściskania, właściwości mechaniczne, projektowanie elementów obciążonych osiowo.

Bardziej szczegółowo

Ćwiczenie nr 4 Anizotropia i tekstura krystalograficzna. Starzenie po odkształceniu

Ćwiczenie nr 4 Anizotropia i tekstura krystalograficzna. Starzenie po odkształceniu Przedmiot: Badanie własności mechanicznych materiałów Wykładowca: dr inż. Łukasz Cieniek Autor opracowania: dr inż. Łukasz Cieniek Ćwiczenie nr 4 Anizotropia i tekstura krystalograficzna. Czas przewidywany

Bardziej szczegółowo

Materiałoznawstwo Materials science. Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Materiałoznawstwo Materials science. Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny) Załącznik nr 7 do Zarządzenia Rektora nr../12 z dnia.... 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014 Materiałoznawstwo

Bardziej szczegółowo

MATERIAŁOZNAWSTWO. dr hab. inż. Joanna Hucińska Katedra Inżynierii Materiałowej Pok. 128 (budynek Żelbetu )

MATERIAŁOZNAWSTWO. dr hab. inż. Joanna Hucińska Katedra Inżynierii Materiałowej Pok. 128 (budynek Żelbetu ) MATERIAŁOZNAWSTWO dr hab. inż. Joanna Hucińska Katedra Inżynierii Materiałowej Pok. 128 (budynek Żelbetu ) jhucinsk@pg.gda.pl MATERIAŁOZNAWSTWO dziedzina nauki stosowanej obejmująca badania zależności

Bardziej szczegółowo

WŁASNOŚCI CIAŁ STAŁYCH I CIECZY

WŁASNOŚCI CIAŁ STAŁYCH I CIECZY WŁASNOŚCI CIAŁ STAŁYCH I CIECZY Polimery Sieć krystaliczna Napięcie powierzchniowe Dyfuzja 2 BUDOWA CIAŁ STAŁYCH Ciała krystaliczne (kryształy): monokryształy, polikryształy Ciała amorficzne (bezpostaciowe)

Bardziej szczegółowo

Zakres tematyczny. Podział stali specjalnych, ze względu na warunki pracy:

Zakres tematyczny. Podział stali specjalnych, ze względu na warunki pracy: STAL O SPECJALNYCH WŁAŚCIWOŚCIACH FIZYCZNYCH I CHEMICZNYCH Zakres tematyczny 1 Podział stali specjalnych, ze względu na warunki pracy: - odporne na korozję, - do pracy w obniżonej temperaturze, - do pracy

Bardziej szczegółowo

Ćwiczenie nr 3 Statyczna próba jednoosiowego rozciągania. Umocnienie odkształceniowe, roztworowe i przez rozdrobnienie ziarna

Ćwiczenie nr 3 Statyczna próba jednoosiowego rozciągania. Umocnienie odkształceniowe, roztworowe i przez rozdrobnienie ziarna Przedmiot: Badanie własności mechanicznych materiałów Wykładowca: dr inż. Łukasz Cieniek Autor opracowania: dr inż. Łukasz Cieniek Ćwiczenie nr 3 Statyczna próba jednoosiowego rozciągania. Czas przewidywany

Bardziej szczegółowo

STOPY Z PAMIĘCIA KSZTAŁTU

STOPY Z PAMIĘCIA KSZTAŁTU STOPY Z PAMIĘCIA KSZTAŁTU NiTi 53-57% Ni, Ti50Ni48,5Co1,5 Przemiana martenzytyczna termosprężysta: wyniku wzajemnego dopasowania sieci macierzystej i tworzącego się martenzytu zachodzi odkształcenie sprężyste.

Bardziej szczegółowo

Akademia Morska w Szczecinie Instytut InŜynierii Transportu Zakład Techniki Transportu. Materiałoznawstwo i Nauka o materiałach

Akademia Morska w Szczecinie Instytut InŜynierii Transportu Zakład Techniki Transportu. Materiałoznawstwo i Nauka o materiałach Akademia Morska w Szczecinie Instytut InŜynierii Transportu Zakład Techniki Transportu Instrukcja do ćwiczeń laboratoryjnych z przedmiotów Materiałoznawstwo i Nauka o materiałach Wpływ róŝnych rodzajów

Bardziej szczegółowo

dr hab. inż. Józef Haponiuk Katedra Technologii Polimerów Wydział Chemiczny PG

dr hab. inż. Józef Haponiuk Katedra Technologii Polimerów Wydział Chemiczny PG 7.WŁAŚCIWOŚCI LEPKOSPRĘŻYSTE POLIMERÓW dr hab. inż. Józef Haponiuk Katedra Technologii Polimerów Wydział Chemiczny PG Politechnika Gdaoska, 2011 r. Publikacja współfinansowana ze środków Unii Europejskiej

Bardziej szczegółowo

STALE STOPOWE KONSTRUKCYJNE. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

STALE STOPOWE KONSTRUKCYJNE. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego STALE STOPOWE KONSTRUKCYJNE Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego STALE STOPOWE KONSTRUKCYJNE Ważniejsze grupy stali: stale spawalne o podwyższonej

Bardziej szczegółowo

STALE STOPOWE KONSTRUKCYJNE

STALE STOPOWE KONSTRUKCYJNE STALE STOPOWE KONSTRUKCYJNE Podział stali stopowych ze względu na zastosowanie: stale konstrukcyjne stale narzędziowe stale o szczególnych właściwościach STALE STOPOWE KONSTRUKCYJNE Ważniejsze grupy stali:

Bardziej szczegółowo

Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i Techniki Wysokich Napięć. Dr hab.

Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i Techniki Wysokich Napięć. Dr hab. Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i Techniki Wysokich Napięć Dr hab. Paweł Żukowski Materiały magnetyczne Właściwości podstawowych materiałów magnetycznych

Bardziej szczegółowo

Karta (sylabus) modułu/przedmiotu Inżynieria Materiałowa Studia I stopnia

Karta (sylabus) modułu/przedmiotu Inżynieria Materiałowa Studia I stopnia Karta (sylabus) modułu/przedmiotu Inżynieria Materiałowa Studia I stopnia Przedmiot: Nauka o materiałach Rodzaj przedmiotu: Obowiązkowy Kod przedmiotu: IM N 0 5-0_ Rok: I Semestr: Forma studiów: Studia

Bardziej szczegółowo

INSTRUKCJA DO CWICZENIA NR 4

INSTRUKCJA DO CWICZENIA NR 4 INSTRUKCJA DO CWICZENIA NR 4 Temat ćwiczenia: Statyczna próba rozciągania metali Celem ćwiczenia jest wykonanie próby statycznego rozciągania metali, na podstawie której można określić następujące własności

Bardziej szczegółowo

MIKROSKOPIA METALOGRAFICZNA

MIKROSKOPIA METALOGRAFICZNA MIKROSKOPIA METALOGRAFICZNA WYKŁAD 3 Stopy żelazo - węgiel dr inż. Michał Szociński Spis zagadnień Ogólna charakterystyka żelaza Alotropowe odmiany żelaza Układ równowagi fazowej Fe Fe 3 C Przemiany podczas

Bardziej szczegółowo

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał Statyka Cieczy i Gazów Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał 1. Podstawowe założenia teorii kinetyczno-molekularnej budowy ciał: Ciała zbudowane są z cząsteczek. Pomiędzy cząsteczkami

Bardziej szczegółowo

Politechnika Gdańska, Inżynieria Biomedyczna. Przedmiot: BIOMATERIAŁY. Metody pasywacji powierzchni biomateriałów. Dr inż. Agnieszka Ossowska

Politechnika Gdańska, Inżynieria Biomedyczna. Przedmiot: BIOMATERIAŁY. Metody pasywacji powierzchni biomateriałów. Dr inż. Agnieszka Ossowska BIOMATERIAŁY Metody pasywacji powierzchni biomateriałów Dr inż. Agnieszka Ossowska Gdańsk 2010 Korozja -Zagadnienia Podstawowe Korozja to proces niszczenia materiałów, wywołany poprzez czynniki środowiskowe,

Bardziej szczegółowo

Karta (sylabus) modułu/przedmiotu Inżynieria Materiałowa Studia I stopnia

Karta (sylabus) modułu/przedmiotu Inżynieria Materiałowa Studia I stopnia Karta (sylabus) modułu/przedmiotu Inżynieria Materiałowa Studia I stopnia Przedmiot: Nauka o materiałach Rodzaj przedmiotu: Obowiązkowy Kod przedmiotu: IM S 0 5-0_0 Rok: I Semestr: Forma studiów: Studia

Bardziej szczegółowo

Właściwości cieplne Stabilność termiczna materiałów. Stabilność termiczna materiałów

Właściwości cieplne Stabilność termiczna materiałów. Stabilność termiczna materiałów Właściwości cieplne Stabilność termiczna materiałów Temperatury topnienia lub mięknięcia (M) różnych materiałów Materiał T [ O K] Materiał T [ O K] Materiał T [ O K] diament, grafit 4000 żelazo 809 poliestry

Bardziej szczegółowo

Właściwości kryształów

Właściwości kryształów Właściwości kryształów Związek pomiędzy właściwościami, strukturą, defektami struktury i wiązaniami chemicznymi Skład i struktura Skład materiału wpływa na wszystko, ale głównie na: właściwości fizyczne

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Zwykła próba rozciągania stali Numer ćwiczenia: 1 Laboratorium z przedmiotu:

Bardziej szczegółowo

1) Rozmiar atomu to około? Która z odpowiedzi jest nieprawidłowa? a) 0, m b) 10-8 mm c) m d) km e) m f)

1) Rozmiar atomu to około? Która z odpowiedzi jest nieprawidłowa? a) 0, m b) 10-8 mm c) m d) km e) m f) 1) Rozmiar atomu to około? Która z odpowiedzi jest nieprawidłowa? a) 0,0000000001 m b) 10-8 mm c) 10-10 m d) 10-12 km e) 10-15 m f) 2) Z jakich cząstek składają się dodatnio naładowane jądra atomów? (e

Bardziej szczegółowo

POLITECHNIKA WARSZAWSKA WYDZIAŁ ELEKTRYCZNY INSTYTUT ELEKTROTECHNIKI TEORETYCZNEJ I SYSTEMÓW INFORMACYJNO-POMIAROWYCH

POLITECHNIKA WARSZAWSKA WYDZIAŁ ELEKTRYCZNY INSTYTUT ELEKTROTECHNIKI TEORETYCZNEJ I SYSTEMÓW INFORMACYJNO-POMIAROWYCH POLITECHNIKA WASZAWSKA WYDZIAŁ ELEKTYCZNY INSTYTUT ELEKTOTECHNIKI TEOETYCZNEJ I SYSTEMÓW INOMACYJNO-POMIAOWYCH ZAKŁAD WYSOKICH NAPIĘĆ I KOMPATYBILNOŚCI ELEKTOMAGNETYCZNEJ PACOWNIA MATEIAŁOZNAWSTWA ELEKTOTECHNICZNEGO

Bardziej szczegółowo

σ c wytrzymałość mechaniczna, tzn. krytyczna wartość naprężenia, zapoczątkowująca pękanie

σ c wytrzymałość mechaniczna, tzn. krytyczna wartość naprężenia, zapoczątkowująca pękanie Materiały pomocnicze do ćwiczenia laboratoryjnego Właściwości mechaniczne ceramicznych kompozytów ziarnistych z przedmiotu Współczesne materiały inżynierskie dla studentów IV roku Wydziału Inżynierii Mechanicznej

Bardziej szczegółowo

LABORATORIUM NAUKI O MATERIAŁACH

LABORATORIUM NAUKI O MATERIAŁACH Politechnika Łódzka Wydział Mechaniczny Instytut Inżynierii Materiałowej LABORATORIUM NAUKI O MATERIAŁACH Ćwiczenie nr 6 Temat: Stale w stanie ulepszonym cieplnie Łódź 2010 Cel ćwiczenia Zapoznanie się

Bardziej szczegółowo

Temat 2 (2 godziny) : Próba statyczna ściskania metali

Temat 2 (2 godziny) : Próba statyczna ściskania metali Temat 2 (2 godziny) : Próba statyczna ściskania metali 2.1. Wstęp Próba statyczna ściskania jest podstawowym sposobem badania materiałów kruchych takich jak żeliwo czy beton, które mają znacznie lepsze

Bardziej szczegółowo

MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I. dr inż. Hanna Smoleńska

MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I. dr inż. Hanna Smoleńska MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I dr inż. Hanna Smoleńska UKŁADY RÓWNOWAGI FAZOWEJ Równowaga termodynamiczna pojęcie stosowane w termodynamice. Oznacza stan, w którym makroskopowe

Bardziej szczegółowo

Inżynieria materiałowa : stal / Marek Blicharski. wyd. 2 zm. i rozsz. - 1 dodr. (PWN). Warszawa, Spis treści. Wstęp 11

Inżynieria materiałowa : stal / Marek Blicharski. wyd. 2 zm. i rozsz. - 1 dodr. (PWN). Warszawa, Spis treści. Wstęp 11 Inżynieria materiałowa : stal / Marek Blicharski. wyd. 2 zm. i rozsz. - 1 dodr. (PWN). Warszawa, 2017 Spis treści Wstęp 11 1. Wytwarzanie stali 13 1.1. Wstęp 13 1.2. Wsad do wielkiego pieca 15 1.3. Wytwarzanie

Bardziej szczegółowo

ZAMRAŻANIE PODSTAWY CZ.1

ZAMRAŻANIE PODSTAWY CZ.1 METODY PRZECHOWYWANIA I UTRWALANIA BIOPRODUKTÓW ZAMRAŻANIE PODSTAWY CZ.1 Opracował: dr S. Wierzba Katedra Biotechnologii i Biologii Molekularnej Uniwersytetu Opolskiego Zamrażaniem produktów nazywamy proces

Bardziej szczegółowo

WPŁYW DODATKÓW STOPOWYCH NA WŁASNOŚCI STOPU ALUMINIUM KRZEM O NADEUTEKTYCZNYM SKŁADZIE

WPŁYW DODATKÓW STOPOWYCH NA WŁASNOŚCI STOPU ALUMINIUM KRZEM O NADEUTEKTYCZNYM SKŁADZIE WYDZIAŁ ODLEWNICTWA AGH Oddział Krakowski STOP XXXIV KONFERENCJA NAUKOWA Kraków - 19 listopada 2010 r. Marcin PIĘKOŚ 1, Stanisław RZADKOSZ 2, Janusz KOZANA 3,Witold CIEŚLAK 4 WPŁYW DODATKÓW STOPOWYCH NA

Bardziej szczegółowo

Dekohezja materiałów. Przedmiot: Degradacja i metody badań materiałów Wykład na podstawie materiałów prof. dr hab. inż. Jerzego Lisa, prof. zw.

Dekohezja materiałów. Przedmiot: Degradacja i metody badań materiałów Wykład na podstawie materiałów prof. dr hab. inż. Jerzego Lisa, prof. zw. Dekohezja materiałów Przedmiot: Degradacja i metody badań materiałów Wykład na podstawie materiałów prof. dr hab. inż. Jerzego Lisa, prof. zw. AGH Nauka o Materiałach Treść wykładu: 1. Dekohezja materiałów

Bardziej szczegółowo

POLITECHNIKA SZCZECIŃSKA INSTYTUT INŻYNIERII MATERIAŁOWEJ ZAKŁAD METALOZNAWSTWA I ODLEWNICTWA

POLITECHNIKA SZCZECIŃSKA INSTYTUT INŻYNIERII MATERIAŁOWEJ ZAKŁAD METALOZNAWSTWA I ODLEWNICTWA POLITECHNIKA SZCZECIŃSKA INSTYTUT INŻYNIERII MATERIAŁOWEJ ZAKŁAD METALOZNAWSTWA I ODLEWNICTWA PRZEDMIOT: PODSTAWY NAUKI O MATERIAŁACH II (Tworzywa Metaliczne) Temat ćwiczenia: STRUKTURY STALI OBROBIONYCH

Bardziej szczegółowo

Techniki wytwarzania - odlewnictwo

Techniki wytwarzania - odlewnictwo Techniki wytwarzania - odlewnictwo Główne elementy układu wlewowego Układy wlewowe Struga metalu Przekrój minimalny Produkcja odlewów na świecie Odbieranie ciepła od odlewów przez formę Krystalizacja Schematyczne

Bardziej szczegółowo

Technologie Materiałowe II

Technologie Materiałowe II KATEDRA INŻYNIERII MATERIAŁOWEJ I SPAJANIA ZAKŁAD INŻYNIERII SPAJANIA Technologie Materiałowe II dr inż. Dariusz Fydrych, dr hab. inż. Jerzy Łabanowski, prof.nadzw. PG Kierunek studiów: Inżynieria Materiałowa

Bardziej szczegółowo

PIERWIASTKI STOPOWE W STALACH

PIERWIASTKI STOPOWE W STALACH PIERWIASTKI STOPOWE W STALACH Stal stopowa - stop żelaza z węglem, zawierający do ok. 2 % węgla i pierwiastki (dodatki stopowe) wprowadzone celowo dla nadania stali wymaganych właściwości, otrzymany w

Bardziej szczegółowo

Stal - definicja Stal

Stal - definicja Stal \ Stal - definicja Stal stop żelaza z węglem,plastycznie obrobiony i obrabialny cieplnie o zawartości węgla nieprzekraczającej 2,11% co odpowiada granicznej rozpuszczalności węgla w żelazie (dla stali

Bardziej szczegółowo

PRACA Pracą mechaniczną nazywamy iloczyn wartości siły i wartości przemieszczenia, które nastąpiło zgodnie ze zwrotem działającej siły.

PRACA Pracą mechaniczną nazywamy iloczyn wartości siły i wartości przemieszczenia, które nastąpiło zgodnie ze zwrotem działającej siły. PRACA Pracą mechaniczną nazywamy iloczyn wartości siły i wartości przemieszczenia, które nastąpiło zgodnie ze zwrotem działającej siły. Pracę oznaczamy literą W Pracę obliczamy ze wzoru: W = F s W praca;

Bardziej szczegółowo

5. Wyniki badań i ich omówienie

5. Wyniki badań i ich omówienie Strukturalne i mechaniczne czynniki umocnienia i rekrystalizacji stali z mikrododatkami odkształcanych plastycznie na gorąco 5. Wyniki badań i ich omówienie 5.1. Wyniki badań procesu wysokotemperaturowego

Bardziej szczegółowo

Dobór materiałów konstrukcyjnych cz. 10

Dobór materiałów konstrukcyjnych cz. 10 Dobór materiałów konstrukcyjnych cz. 10 dr inż. Hanna Smoleńska Katedra Inżynierii Materiałowej i Spajania Wydział Mechaniczny, Politechnika Gdańska DO UŻYTKU WEWNĘTRZNEGO Zniszczenie materiału w wyniku

Bardziej szczegółowo

Defi f nicja n aprę r żeń

Defi f nicja n aprę r żeń Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie

Bardziej szczegółowo