Ćwiczenie nr 3 Statyczna próba jednoosiowego rozciągania. Umocnienie odkształceniowe, roztworowe i przez rozdrobnienie ziarna

Wielkość: px
Rozpocząć pokaz od strony:

Download "Ćwiczenie nr 3 Statyczna próba jednoosiowego rozciągania. Umocnienie odkształceniowe, roztworowe i przez rozdrobnienie ziarna"

Transkrypt

1 Przedmiot: Badanie własności mechanicznych materiałów Wykładowca: dr inż. Łukasz Cieniek Autor opracowania: dr inż. Łukasz Cieniek Ćwiczenie nr 3 Statyczna próba jednoosiowego rozciągania. Czas przewidywany na wykonanie ćwiczenia: 2 15 godz. zegarowe Cel ćwiczenia Zapoznanie się ze sposobem przeprowadzania statycznej próby rozciągania Praktyczne przeprowadzenie próby rozciągania na próbkach wskazanych przez prowadzącego Wyznaczenie na podstawie statycznej próby rozciągania parametrów wytrzymałościowych (granica plastyczności R e, wytrzymałość na rozciąganie R m ) i plastycznych (wydłużenie procentowe po zerwaniu A i przewężenie Z) materiału Zapoznanie się z metodami umocnienia metali Wiadomości wymagane do zaliczenia Przed przystąpieniem do wykonania ćwiczenia należy znać i rozumieć pojęcia: naprężenie, odkształcenie, umieć narysować i omówić wykres zależności naprężenia od odkształcenia dla podstawowych rodzajów materiałów (metale. Polimery, ceramiki), wiedzieć jakie parametry określane są w statycznej próbie rozciągania, wiedzieć jakie rodzaje próbek stosowane są w próbie rozciągania, umieć omówić rodzaje umocnienia i wiedzieć dlaczego umocnienie przez rozdrobnienie ziarna jest korzystne w przypadku stali na konstrukcje. Wykonanie ćwiczenia 1. Korzystając z norm oraz instrukcji obsługi należy zapoznać się z obsługą i zasadą działania maszyny wytrzymałościowej. 2. Zaplanowanie eksperymentu. Przeprowadzenie próby rozciągania próbek z miedzi i mosiądzu. 3. Wyznaczenie granicy plastyczności, wytrzymałości na rozciąganie, wydłużenia i przewężenia badanych materiałów. Literatura: [1] M. Blicharski: Wstęp do inżynierii materiałowej. WNT Warszawa 23 [2] M. Blicharski: Odkształcanie i pękanie. UWN-D Kraków 22 [3] M. Blicharski: Inżynieria materiałowa. Stal. WNT 24 [4] M. Blicharski: Inżynieria materiałowa. WNT Warszawa 214 [5] PN-EN ISO :21 Metale. Próba rozciągania. Część 1: Metoda badania w temperaturze otoczenia.

2 Ogólna charakterystyka statycznej próby rozciągania (PN-EN ISO :21) Podstawową metodą badań własności mechanicznych metali jest statyczna próba rozciągania, która umożliwia określenie własności wytrzymałościowych i plastycznych badanych materiałów. Próba polega na powolnym rozciąganiu odpowiednio przygotowanej próbki zamocowanej w szczękach maszyny wytrzymałościowej. Sprzęt służący do przeprowadzenia próby rozciągania jest standardowy we wszystkich laboratoriach wytrzymałościowych. Każda maszyna wytrzymałościowa jest wyposażona w dynamometr pozwalający na odczyt siły działającej na próbkę, oraz rejestrator, zapisujący zmiany długości l części pomiarowej próbki l i wartości statycznie przykładanego obciążenia F. Taki wykres dla materiału plastycznego (np. aluminium) przedstawiono schematycznie na rysunku 1. Obciążenie, F Wydłużenie, l Rys. 1. Zależność obciążenia od wydłużenia dla metali plastycznych, np. aluminium Aby możliwe było porównanie wykresów rozciągania uzyskanych dla próbek o różnych wymiarach wykresy normalizuje się. Normalizacja polega na tym, że obciążenie F zastępuje się naprężeniem nominalnym σ n σ = n F S gdzie S pole przekroju poprzecznego próbki w stanie wyjściowym w obszarze pomiarowym. Wydłużenie l zastępuje się natomiast odkształceniem nominalnym (ε n ) ε = n l l gdzie l długość pomiarowa próbki w stanie wyjściowym. 2

3 Wielkości S i l są dla konkretnej próbki stałymi, wobec tego kształt krzywej zależności σ n od ε n jest zbliżony do kształtu krzywej zależności obciążenia od wydłużenia. Wykresy zależności σ n = f(ε n ) umożliwiają jednak porównywanie danych dla próbek mających różne (chociaż znormalizowane) S i l, a zatem na określenie własności materiału. Pole przekroju poprzecznego próbki maleje ze wzrostem odkształcenia, zatem naprężenie rzeczywiste σ r działające w próbce odkształcającej się jest większe niż naprężenie nominalne σ n, a różnica między tymi naprężeniami rośnie ze wzrostem odkształcenia próbki. Zależność pomiędzy wartościami naprężeń nominalnego σ n i rzeczywistego σ r do chwili rozpoczęcia tworzenia się przewężenia (szyjki) jest następująca: = + W przypadku naprężeń rzeczywistych naprężenia rosną do momentu zerwania próbki (rysunek 2). Naprężenie (ε r, σ r ) (εn, σn) rzeczywiste Rozciąganie: σ > σ ε r r < ε n n nominalne Odkształcenie Rys. 2. Zależność naprężeń od odkształceń nominalnych i rzeczywistych w próbie rozciągania Wzrost naprężeń w zakresie odkształcenia plastycznego jest rezultatem wzrostu gęstości dyslokacji i nazywany jest umocnieniem odkształceniowym. Jest on istotnym czynnikiem podczas kształtowania odkształceniowego na zimno (tj. poniżej ok. ½ temperatury topnienia w skali bezwzględnej). Początkowo obciążana próbka odkształca się sprężyście i zwykle po niewielkim przyroście długości zaczyna się odkształcać plastycznie (trwale). Oznacza to, że jeżeli obciążenie zostanie 3

4 usunięte, to próbka jest dłuższa, niż była przed rozpoczęciem próby, tzn. zaszło w niej odkształcenie plastyczne (rysunek 3). Rys. 3. W próbce, w której zaszło odkształcenie plastyczne po zdjęciu obciążenia następuje jedynie zanik odkształcenia sprężystego Dalsze zwiększanie obciążenia powoduje stopniowe wydłużanie się próbki. Jednocześnie próbka staje się cieńsza, gdyż zmiany objętości podczas odkształcania plastycznego materiałów litych są bardzo małe. Do wystąpienia obciążenia maksymalnego próbka odkształca się równomiernie na całej długości pomiarowej, natomiast przy obciążeniu maksymalnym na próbce zaczyna się tworzyć przewężenie nazywane zwykle szyjką (rysunek 4). Następnie próbka odkształca się tylko w obszarze szyjki, dlatego szybko maleje przekrój próbki w miejscu przewężenia i maleje siła konieczna do odkształcenia próbki aż do jej zerwania. Rys. 4. Typowa krzywa rozciągania dla metali. Do punktu M próbka odkształca się równomiernie. Od punktu M do punktu P, w którym następuje zerwanie próbki, próbka odkształca się jedynie w szyjce 4

5 Parametry określane w próbie rozciągania Parametry określane w próbie rozciągania przedstawiono na rysunku 5. σ n R m R p,2 zerwanie,2% A ε n Rys. 5. Wielkości określane z próby rozciągania: R p,2 ; R m ; A Należą do nich: umowna granica plastyczności - R p,2 Granica plastyczności R e - największe naprężenie nominalne w próbie rozciągania, do osiągnięcia którego materiał jedynie nieznacznie odkształca się trwale (plastycznie). Wyróżnia się umowną granicę plastyczności, która jest równa naprężeniu nominalnemu odpowiadającemu działaniu siły rozciągającej wywołującej w próbce odkształcenie trwałe wynoszące,2% (R p,2 ): F R p,2 = S gdzie: F,2 siła powodująca wydłużenie trwałe,2%;,2 W przypadku materiałów charakteryzujących się zmniejszaniem naprężeń po rozpoczęciu odkształcenia trwałego mówi się o występowaniu wyraźnej granicy plastyczności i wyróżnia się górną i dolną granicę plastyczności (rysunek 6). Górna granica plastyczności (R eh ) jest wyrażona przez maksymalne naprężenie nominalne poprzedzające zmniejszenie naprężeń, natomiast dolna granica plastyczności (R el ) przez naprężenie nominalne w zakresie zmniejszenia naprężeń. 5

6 wytrzymałość na rozciąganie - R m gdzie: F m siła maksymalna; S przekrój początkowy próbki; F R m = S m wydłużenie procentowe po rozerwaniu - A l A = u l l 1% gdzie: l u długość pomiarowa po rozerwaniu. Z próby można również określić przewężenie procentowe - Z S Z = S S u 1% gdzie: S u pole najmniejszego przekroju próbki po rozerwaniu. Umowna granica plastyczności i wytrzymałość na rozciąganie są miarami wytrzymałości materiału, natomiast wydłużenie i przewężenie są miarami ciągliwości (plastyczności). Wyraźna granica plastyczności W przypadku niektórych stali niskowęglowych na wykresie zależności naprężenia od odkształcenia występuje wyraźna granica plastyczności (rysunek 6). Taki kształt krzywej dla stali jest spowodowany obecnością w strukturze atomów międzywęzłowych węgla i azotu, które tworząc skupiska wokół dyslokacji (atmosfery) utrudniają ich poślizg. Do wystąpienia znaczącego poślizgu dyslokacji są konieczne naprężenia R eh.. Dalsze odkształcenie zachodzi już przy mniejszych naprężeniach R el, pochodzących od przyłożonej siły, ponieważ uruchomione przy R eh dyslokacje tworzą na napotkanych przeszkodach spiętrzenia, co prowadzi do wytworzenia dodatkowych naprężeń, ułatwiających pokonywanie przeszkód. W ocenie własności materiałów korzysta się z wartości dolnej granicy plastyczności, gdyż wartość R eh jest bardzo czuła, między innymi na sposób przeprowadzania próby. 6

7 Rys. 6. Zależność naprężenia od odkształcenia dla materiału wykazującego wyraźną granicę plastyczności Krzywe rozciągania różnią się znacznie zależnie od rodzaju materiału (rysunek 7), stanu w jakim znajduje się materiał (rysunek 8) oraz temperatury (rysunek 9). W przypadku materiałów kruchych, takich jak szkło i ceramika, zniszczenie próbki następuje przed rozpoczęciem odkształcenia plastycznego, wobec czego wartości R e i R m są dla tych materiałów bardzo zbliżone. (a) (b) Naprężenie, MPa 5 4 Naprężenie, MPa ,1,2,3 Odkształcenie (c) Naprężenie, MPa polimer kruchy T << T g polimer o ograniczonej plastyczności T =,8 T g,2,4 Odkształcenie T g - temperatura zeszklenia (witryfikacji) polimer termoplastyczny T = T g T >> T g 1% Odkształcenie 7

8 Rys. 7. Zależność naprężenia od odkształcenia dla: a) mosiądzu (metal ciągliwy); b) żeliwa szarego (metal kruchy); c) polimerów (w zależności od temperatury) Rys. 8. Wpływ mikrostruktury (obróbki cieplnej) stali niestopowej zawierającej,4% C na zależność naprężenia od odkształcenia Rys. 9. Wpływ temperatury na zależność naprężenia od odkształcenia dla żelaza (struktura krystaliczna RPC) Tworzenie się szyjki Jeżeli naprężenie w próbce rozciąganej osiągnie wartość krytyczną, to rozpoczyna się odkształcenie plastyczne w najsłabszym przekroju próbki. Odkształcenie powoduje zmniejszenie lokalne przekroju poprzecznego próbki, zatem naprężenie rzeczywiste jest w tym przekroju większe niż w innych przekrojach próbki. Należałoby oczekiwać, że próbka będzie się odkształcała w obszarze o największym naprężeniu. Jednak tak zachowuje się tylko materiał (nie umacniający się odkształceniowo). W przypadku innych materiałów odkształcenie plastyczne powoduje umocnienie 8

9 odkształceniowe, czyniąc materiał mniej skłonny do odkształcania. Dlatego, aby było możliwe dalsze odkształcanie materiału w innym najsłabszym miejscu próbki, konieczny jest wzrost naprężeń. Ponieważ również w tym miejscu materiał się umacnia odkształceniowo, to aby odkształcenie mogło być kontynuowane konieczny jest ciągły wzrost naprężenia. Takie zachowanie powoduje, że zmniejszanie się przekroju poprzecznego próbki na całej długości jest makroskopowo jednorodne. Przy pewnej wartości odkształcenia zostaje jednak osiągnięty stan, w którym umocnienie odkształceniowe jest mniejsze, niż osłabienie spowodowane zmniejszaniem przekroju poprzecznego i wówczas rozpoczyna się tworzenie na próbce przewężenia nazywanego zwykle szyjką oraz następuje zmniejszanie się obciążenia. Próbka rozciągana po przekroczeniu obciążenia maksymalnego umacnia się dalej jednak, to umocnienie nie kompensuje osłabienia spowodowanego zmniejszeniem przekroju poprzecznego. Umocnienie Kryształy czystych metali mają pewną wytrzymałoś wewnętrzną spowodowaną tym, że podczas poślizgowego ruchu dyslokacji następuje zrywanie i ponowne tworzenie wiązań międzyatomowych. Bardzo duże opory własne struktury krystalicznej na jednostkę długości linii dyslokacji występują w przypadku wiązań kowalencyjnych. Z tej przyczyny, oraz ze względu na strukturę krystaliczną, materiały ceramiczne charakteryzują się bardzo dużą wytrzymałością, natomiast metale są miękkie, gdyż opory własne struktury krystalicznej dla ruchu dyslokacji są w nich niewielkie. Wytrzymałość materiału krystalicznego można zwiększyć (spowodować umocnienie) przez wytworzenie w nim przeszkód dla ruchu dyslokacji. Wytworzenie takich przeszkód jest szczególnie ważne w przypadku metali, gdyż w metalach dyslokacje mogą się łatwo przemieszczać. Ze względy na wymiary wyróżnia się cztery rodzaje przeszkód dla ruchu dyslokacji: zerowymiarowe atomy domieszki w roztworze, jednowymiarowe dyslokacje, dwuwymiarowe granice ziarn, trójwymiarowe cząstki innej fazy. Opierając się na istniejących przeszkodach w ruchu dyslokacji wyróżnia się następujące rodzaje (mechanizmy) umocnienia: roztworowe (przez tworzenie roztworu), dyslokacyjne (odkształceniowe), 9

10 wydzieleniowe lub cząstkami fazy dyspersyjnej, przez rozdrobnienie ziarna. 1

11 Umocnienie roztworowe Dyslokacje oddziałują z atomami rozpuszczonymi, gdyż wokół obu defektów występują pola odkształceń sprężystych. Jeżeli pola odkształceń są tego samego znaku, to defekty odpychają się, natomiast jeżeli mają znaki przeciwne, to przyciągają się. Oba typy oddziaływań zmniejszają ruchliwość dyslokacji. Jeżeli ruchliwość dyslokacji w ciele stałym jest ograniczona przez atomy domieszki w roztworze, to uzyskane umocnienie jest nazywane umocnieniem roztworowym (przez tworzenie roztworu) a stop roztworem. Dobrym przykładem umocnienia roztworowego jest dodatek cynku do miedzi. W tym przypadku większe atomy cynku wytwarzają naprężenia w strukturze krystalicznej miedzi. Naprężenia te oddziałują z polem naprężeń dyslokacji, dlatego ich poślizg jest trudniejszy. Efekt oddziaływania rośnie ze wzrostem różnicy w średnicach atomów osnowy i domieszki. W roztworze stałym o stężeniu c odległość między atomami domieszki w płaszczyźnie poślizgu jest proporcjonalna do c -1/2. Przyrost granicy plastyczności σ r spowodowany domieszką w roztworze można zapisać w postaci: σ r ~ c 1/2 Wpływ zawartości Zn na własności mosiądzu (stopu miedzi z cynkiem) przedstawiono na rysunku 1. Zwykle ze wzrostem wytrzymałości wydłużenie maleje. Wpływ cynku na własności mosiądzu jest pod tym względem wyjątkowy, gdyż ze wzrostem jego zawartości rośnie wytrzymałość i wydłużenie mosiądzu. Rys.1. Wpływ zawartości cynku w stopach miedzi z cynkiem na: a) wytrzymałość na rozciąganie; b) wydłużenie Umocnienie dyslokacyjne (odkształceniowe) Odkształcenie plastyczne materiałów krystalicznych jest zwykle realizowane dzięki przemieszczaniu się dyslokacji. W strukturach krystalicznych metali jest wiele systemów poślizgu. 11

12 Dyslokacje z przecinających się płaszczyzn poślizgu przeszkadzają sobie wzajemnie w ruchu poślizgowym, co prowadzi do ich spiętrzenia i gromadzenia się. Rezultatem jest umocnienie odkształceniowe. W procesie walcowania cienkich blach jest ono niewygodne, gdyż prowadzi do szybkiej utraty plastyczności przez blachę oraz do znacznego wzrostu energii wymaganej do walcowania. W celu przywrócenia plastyczności należy zatrzymać proces walcowania i blachę wyżarzyć (nagrzać w celu usunięcia zmagazynowanych podczas walcowania dyslokacji). Umocnienie dyslokacyjne jest bardzo często pożądane, gdyż stanowi ważną metodę umocnienia metali. Zależność między umocnieniem odkształceniowym i odkształceniem przedstawiono na rysunku 11. Przyrost granicy plastyczności spowodowany odkształceniem σ d jest proporcjonalny do pierwiastka kwadratowego z gęstości dyslokacji ρ. σ d = βgb ρ gdzie: β stała G moduł sprężystości postaciowej Wpływ gęstości dyslokacji na granicę plastyczności żelaza przedstawiono na rysunku 12. Zależność między umocnieniem odkształceniowym i odkształceniem w temperaturze otoczenia dla stali niestopowej zawierającej,4% C, miedzi i mosiądzu przedstawiono na rysunku 13. Rys. 11. Zależność naprężeń płynięcia plastycznego σ od wielkości odkształcenia ε 12

13 Rys. 12. Wpływ gęstości dyslokacji ρ na granicę plastyczności żelaza α Rys. 13. Wpływ wartości odkształcenia stali, mosiądzu i miedzi na: a) granice plastyczności, b) wydłużenie Umocnienie przez rozdrobnienie ziarna Granice ziaren są mocną przeszkodą dla ruchu dyslokacji. Przemieszczające się ruchem poślizgowym dyslokacje spiętrzają się na granicach ziaren, co prowadzi do koncentracji naprężeń. Rozdrobnienie ziarna, powoduje wzrost powierzchni granic ziaren, a to bezpośrednio wpływa na umocnienie materiału. Granica plastyczności R e jest odwrotnie proporcjonalna do pierwiastka kwadratowego z wielkości ziarna materiału d (zależność Halla-Petcha): 13

14 R e = σ p + k p d -1/2 gdzie: σ p naprężenie, przy którym materiał z bardzo dużym ziarnem zaczyna się odkształcać plastycznie; k p współczynnik zależny od oporności granic ziarn przy ruchu dyslokacji. Umocnienie przez rozdrobnienie ziarna jest wyjątkowe, ponieważ z rozdrobnieniem ziarna maleje temperatura przejścia stali o osnowie ferrytycznej w stan kruchy. Umocnienie takie nie wpływa natomiast na wartość wydłużenia równomiernego. W stalach, w których nie zachodzą przemiany alotropowe ziarno można rozdrobnić jedynie przez odkształcenie plastyczne i rekrystalizację (na etapie wytwarzania wyrobu), natomiast w stalach, w których występują przemiany fazowe do rozdrobnienia ziarna można wykorzystać zarówno odkształcenie plastyczne i rekrystalizację jak i przemiany fazowe (stosowane w przypadku wyrobów o gotowych kształtach). Najdrobniejsze ziarno ferrytu uzyskuje się wówczas, gdy austenit, z którego tworzy się ferryt, jest drobnoziarnisty, bardzo mocno odkształcony i przechłodzony do najniższej temperatury tworzenia się ferrytu. Stale konstrukcyjne stosowane m. in. na mosty, konstrukcje wysokich budynków, kadłuby statków, rurociągi i pręty zbrojeniowe są zwykle tanie i wytwarzane w dużych ilościach. Mają zazwyczaj mikrostrukturę ferrytyczno-perlityczną. Zwiększenie wytrzymałości tych stali i jednoczesne obniżenie ich temperatury przejścia w stan kruchy można osiągnąć tylko poprzez rozdrobnienie ziarna ferrytu. Metodą przemysłową najczęściej stosowaną do rozdrobnienia ziarna ferrytu jest regulowane walcowanie oraz regulowane chłodzenie po walcowaniu stali z mikrododatkami. Obróbką cieplną stosowaną w celu rozdrobnienia ziarna jest wyżarzanie normalizujące. 14

Temat 1 (2 godziny): Próba statyczna rozciągania metali

Temat 1 (2 godziny): Próba statyczna rozciągania metali Temat 1 (2 godziny): Próba statyczna rozciągania metali 1.1. Wstęp Próba statyczna rozciągania jest podstawowym rodzajem badania metali, mających zastosowanie w technice i pozwala na określenie własności

Bardziej szczegółowo

STATYCZNA PRÓBA ROZCIĄGANIA

STATYCZNA PRÓBA ROZCIĄGANIA Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: STATYCZNA PRÓBA ROZCIĄGANIA oprac. dr inż. Jarosław Filipiak Cel ćwiczenia 1. Zapoznanie się ze sposobem przeprowadzania statycznej

Bardziej szczegółowo

Wykład IX: Odkształcenie materiałów - właściwości plastyczne

Wykład IX: Odkształcenie materiałów - właściwości plastyczne Wykład IX: Odkształcenie materiałów - właściwości plastyczne JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych Treść wykładu: 1. Odkształcenie

Bardziej szczegółowo

Nauka o Materiałach. Wykład IX. Odkształcenie materiałów właściwości plastyczne. Jerzy Lis

Nauka o Materiałach. Wykład IX. Odkształcenie materiałów właściwości plastyczne. Jerzy Lis Nauka o Materiałach Wykład IX Odkształcenie materiałów właściwości plastyczne Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Odkształcenie plastyczne 2. Parametry makroskopowe 3. Granica plastyczności

Bardziej szczegółowo

INSTRUKCJA DO CWICZENIA NR 4

INSTRUKCJA DO CWICZENIA NR 4 INSTRUKCJA DO CWICZENIA NR 4 Temat ćwiczenia: Statyczna próba rozciągania metali Celem ćwiczenia jest wykonanie próby statycznego rozciągania metali, na podstawie której można określić następujące własności

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Zwykła próba rozciągania stali Numer ćwiczenia: 1 Laboratorium z przedmiotu:

Bardziej szczegółowo

PEŁZANIE WYBRANYCH ELEMENTÓW KONSTRUKCYJNYCH

PEŁZANIE WYBRANYCH ELEMENTÓW KONSTRUKCYJNYCH Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: Wprowadzenie PEŁZANIE WYBRANYCH ELEMENTÓW KONSTRUKCYJNYCH Opracowała: mgr inż. Magdalena Bartkowiak-Jowsa Reologia jest nauką,

Bardziej szczegółowo

Ćwiczenie 6 STATYCZNA PRÓBA ROZCIĄGANIA *

Ćwiczenie 6 STATYCZNA PRÓBA ROZCIĄGANIA * Ćwiczenie 6 1. CEL ĆWICZENIA TATYCZNA PRÓBA ROZCIĄGANIA * Celem ćwiczenia jest zapoznanie się z przebiegiem próby rozciągania i wielkościami wyznaczanymi podczas tej próby. 2. WIADOMOŚCI PODTAWOWE Próba

Bardziej szczegółowo

Nauka o Materiałach. Wykład VI. Odkształcenie materiałów właściwości sprężyste i plastyczne. Jerzy Lis

Nauka o Materiałach. Wykład VI. Odkształcenie materiałów właściwości sprężyste i plastyczne. Jerzy Lis Nauka o Materiałach Wykład VI Odkształcenie materiałów właściwości sprężyste i plastyczne Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Właściwości materiałów -wprowadzenie 2. Statyczna próba rozciągania.

Bardziej szczegółowo

Temat 2 (2 godziny) : Próba statyczna ściskania metali

Temat 2 (2 godziny) : Próba statyczna ściskania metali Temat 2 (2 godziny) : Próba statyczna ściskania metali 2.1. Wstęp Próba statyczna ściskania jest podstawowym sposobem badania materiałów kruchych takich jak żeliwo czy beton, które mają znacznie lepsze

Bardziej szczegółowo

Materiały Reaktorowe. Właściwości mechaniczne

Materiały Reaktorowe. Właściwości mechaniczne Materiały Reaktorowe Właściwości mechaniczne Naprężenie i odkształcenie F A 0 l i l 0 l 0 l l 0 a. naprężenie rozciągające b. naprężenie ściskające c. naprężenie ścinające d. Naprężenie torsyjne Naprężenie

Bardziej szczegółowo

6. OBRÓBKA CIEPLNO - PLASTYCZNA

6. OBRÓBKA CIEPLNO - PLASTYCZNA 6. OBRÓBKA CIEPLNO - PLASTYCZNA 6.1. Cel ćwiczenia Zapoznanie się z rodzajami obróbki cieplno plastycznej i ich wpływem na własności metali. 6.2. Wprowadzenie Obróbką cieplno-plastyczną, zwaną potocznie

Bardziej szczegółowo

INSTRUKCJA DO CWICZENIA NR 5

INSTRUKCJA DO CWICZENIA NR 5 INTRUKCJA DO CWICZENIA NR 5 Temat ćwiczenia: tatyczna próba ściskania materiałów kruchych Celem ćwiczenia jest wykonanie próby statycznego ściskania materiałów kruchych, na podstawie której można określić

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Ścisła próba rozciągania stali Numer ćwiczenia: 2 Laboratorium z przedmiotu:

Bardziej szczegółowo

POLITECHNIKA WARSZAWSKA WYDZIAŁ ELEKTRYCZNY INSTYTUT ELEKTROTECHNIKI TEORETYCZNEJ I SYSTEMÓW INFORMACYJNO-POMIAROWYCH

POLITECHNIKA WARSZAWSKA WYDZIAŁ ELEKTRYCZNY INSTYTUT ELEKTROTECHNIKI TEORETYCZNEJ I SYSTEMÓW INFORMACYJNO-POMIAROWYCH POLITECHNIKA WASZAWSKA WYDZIAŁ ELEKTYCZNY INSTYTUT ELEKTOTECHNIKI TEOETYCZNEJ I SYSTEMÓW INOMACYJNO-POMIAOWYCH ZAKŁAD WYSOKICH NAPIĘĆ I KOMPATYBILNOŚCI ELEKTOMAGNETYCZNEJ PACOWNIA MATEIAŁOZNAWSTWA ELEKTOTECHNICZNEGO

Bardziej szczegółowo

Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia

Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia Wytrzymałość materiałów dział mechaniki obejmujący badania teoretyczne i doświadczalne procesów odkształceń i niszczenia ciał pod wpływem różnego rodzaju oddziaływań (obciążeń) Podstawowe pojęcia wytrzymałości

Bardziej szczegółowo

Laboratorium wytrzymałości materiałów

Laboratorium wytrzymałości materiałów Politechnika Lubelska MECHANIKA Laboratorium wytrzymałości materiałów Ćwiczenie 1 - Statyczna próba rozciągania Przygotował: Andrzej Teter (do użytku wewnętrznego) Statyczna próba rozciągania Statyczną

Bardziej szczegółowo

OBRÓBKA CIEPLNA STOPÓW ŻELAZA. Cz. II. Przemiany austenitu przechłodzonego

OBRÓBKA CIEPLNA STOPÓW ŻELAZA. Cz. II. Przemiany austenitu przechłodzonego OBRÓBKA CIEPLNA STOPÓW ŻELAZA Cz. II. Przemiany austenitu przechłodzonego WPŁYW CHŁODZENIA NA PRZEMIANY AUSTENITU Ar 3, Ar cm, Ar 1 temperatury przy chłodzeniu, niższe od równowagowych A 3, A cm, A 1 A

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Zwykła statyczna próba ściskania metali Numer ćwiczenia: 3 Laboratorium z przedmiotu:

Bardziej szczegółowo

Inżynieria materiałowa : stal / Marek Blicharski. wyd. 2 zm. i rozsz. - 1 dodr. (PWN). Warszawa, Spis treści. Wstęp 11

Inżynieria materiałowa : stal / Marek Blicharski. wyd. 2 zm. i rozsz. - 1 dodr. (PWN). Warszawa, Spis treści. Wstęp 11 Inżynieria materiałowa : stal / Marek Blicharski. wyd. 2 zm. i rozsz. - 1 dodr. (PWN). Warszawa, 2017 Spis treści Wstęp 11 1. Wytwarzanie stali 13 1.1. Wstęp 13 1.2. Wsad do wielkiego pieca 15 1.3. Wytwarzanie

Bardziej szczegółowo

Ćw. 3. Wyznaczanie modułu Younga metodą jednostronnego rozciągania

Ćw. 3. Wyznaczanie modułu Younga metodą jednostronnego rozciągania KATEDRA FIZYKI STOSOWANEJ P R A C O W N I A F I Z Y K I Ćw.. Wyznaczanie modułu Younga metodą jednostronnego rozciągania Wprowadzenie Ze względu na budowę struktury cząsteczkowej, ciała stałe możemy podzielić

Bardziej szczegółowo

Laboratorium Metod Badania Materiałów Statyczna próba rozciągania

Laboratorium Metod Badania Materiałów Statyczna próba rozciągania Robert Gabor Laboratorim Metod Badania Materiałów Statyczna próba rozciągania Więcej na: www.tremolo.prv.pl, www.tremolo.pl dział laboratoria 1 CZĘŚĆ TEORETYCZNA Statyczna próba rozciągania ocenia właściwości

Bardziej szczegółowo

Dobór materiałów konstrukcyjnych cz. 7

Dobór materiałów konstrukcyjnych cz. 7 Dobór materiałów konstrukcyjnych cz. 7 dr inż. Hanna Smoleńska Katedra Inżynierii Materiałowej i Spajania Wydział Mechaniczny, Politechnika Gdańska Materiały edukacyjne Sprężystość i wytrzymałość Naprężenie

Bardziej szczegółowo

Temat 3 (2 godziny) : Wyznaczanie umownej granicy sprężystości R 0,05, umownej granicy plastyczności R 0,2 oraz modułu sprężystości podłużnej E

Temat 3 (2 godziny) : Wyznaczanie umownej granicy sprężystości R 0,05, umownej granicy plastyczności R 0,2 oraz modułu sprężystości podłużnej E Temat 3 (2 godziny) : Wyznaczanie umownej granicy sprężystości R,5, umownej granicy plastyczności R,2 oraz modułu sprężystości podłużnej E 3.1. Wstęp Nie wszystkie materiały posiadają wyraźną granicę plastyczności

Bardziej szczegółowo

Metody badań materiałów konstrukcyjnych

Metody badań materiałów konstrukcyjnych Wyznaczanie stałych materiałowych Nr ćwiczenia: 1 Wyznaczyć stałe materiałowe dla zadanych materiałów. Maszyna wytrzymałościowa INSTRON 3367. Stanowisko do badania wytrzymałości na skręcanie. Skalibrować

Bardziej szczegółowo

BADANIA WŁASNOŚCI MECHANICZNYCH MATERIAŁÓW KONSTRUKCYJNYCH 1. Próba rozciągania metali w temperaturze otoczenia (zg. z PN-EN :2002)

BADANIA WŁASNOŚCI MECHANICZNYCH MATERIAŁÓW KONSTRUKCYJNYCH 1. Próba rozciągania metali w temperaturze otoczenia (zg. z PN-EN :2002) Nazwisko i imię... Akademia Górniczo-Hutnicza Nazwisko i imię... Laboratorium z Wytrzymałości Materiałów Wydział... Katedra Wytrzymałości Materiałów Rok... Grupa... i Konstrukcji Data ćwiczenia... Ocena...

Bardziej szczegółowo

INŻYNIERIA MATERIAŁOWA

INŻYNIERIA MATERIAŁOWA POLITECHNIKA GDAŃSKA WYDZIAŁ CHEMICZNY KATEDRA TECHNOLOGII POLIMERÓW INŻYNIERIA MATERIAŁOWA INŻYNIERIA POLIMERÓW Właściwości tworzyw polimerowych przy rozciąganiu. Streszczenie: Celem ćwiczenia jest przeprowadzenie

Bardziej szczegółowo

Integralność konstrukcji

Integralność konstrukcji 1 Integraność konstrukcji Wykład Nr 2 Inżynierska i rzeczywista krzywa rozciągania Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji http://zwmik.imir.agh.edu.p/dydaktyka/imir/index.htm

Bardziej szczegółowo

POLITECHNIKA RZESZOWSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA

POLITECHNIKA RZESZOWSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA POLITECHNIK RZEZOWK im. IGNCEGO ŁUKIEWICZ WYDZIŁ BUDOWNICTW I INŻYNIERII ŚRODOWIK LBORTORIUM WYTRZYMŁOŚCI MTERIŁÓW Ćwiczenie nr 1 PRÓB TTYCZN ROZCIĄGNI METLI Rzeszów 4-1 - PRz, Katedra Mechaniki Konstrkcji

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH BADANIE TWORZYW SZTUCZNYCH OZNACZENIE WŁASNOŚCI MECHANICZNYCH PRZY STATYCZNYM ROZCIĄGANIU

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Badanie udarności metali Numer ćwiczenia: 7 Laboratorium z przedmiotu: wytrzymałość

Bardziej szczegółowo

POLITECHNIKA BIAŁOSTOCKA

POLITECHNIKA BIAŁOSTOCKA POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: Podstawy techniki i technologii Kod przedmiotu: IS01123; IN01123 Ćwiczenie 5 BADANIE WŁASNOŚCI MECHANICZNYCH

Bardziej szczegółowo

ĆWICZENIE 1 STATYCZNA PRÓBA ROZCIĄGANIA METALI - UPROSZCZONA. 1. Protokół próby rozciągania Rodzaj badanego materiału. 1.2.

ĆWICZENIE 1 STATYCZNA PRÓBA ROZCIĄGANIA METALI - UPROSZCZONA. 1. Protokół próby rozciągania Rodzaj badanego materiału. 1.2. Ocena Laboratorium Dydaktyczne Zakład Wytrzymałości Materiałów, W2/Z7 Dzień i godzina ćw. Imię i Nazwisko ĆWICZENIE 1 STATYCZNA PRÓBA ROZCIĄGANIA METALI - UPROSZCZONA 1. Protokół próby rozciągania 1.1.

Bardziej szczegółowo

Wykład 8. Przemiany zachodzące w stopach żelaza z węglem. Przemiany zachodzące podczas nagrzewania

Wykład 8. Przemiany zachodzące w stopach żelaza z węglem. Przemiany zachodzące podczas nagrzewania Wykład 8 Przemiany zachodzące w stopach żelaza z węglem Przemiany zachodzące podczas nagrzewania Nagrzewanie stopów żelaza powyżej temperatury 723 O C powoduje rozpoczęcie przemiany perlitu w austenit

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW PRÓBA UDARNOŚCI METALI Opracował: Dr inż. Grzegorz Nowak Gliwice

Bardziej szczegółowo

Statyczna próba rozciągania metali

Statyczna próba rozciągania metali Statyczna próba rozciągania metali Szczecin 2015 r *) za podstawę niniejszego opracowania przyjęto skrypt [1] Opracował : dr inż. Konrad Konowalski 1. Cel ćwiczenia Statyczna próba rozciągania dzięki posiadanym

Bardziej szczegółowo

Stale niestopowe jakościowe Stale niestopowe specjalne

Stale niestopowe jakościowe Stale niestopowe specjalne Ćwiczenie 5 1. Wstęp. Do stali specjalnych zaliczane są m.in. stale o szczególnych własnościach fizycznych i chemicznych. Są to stale odporne na różne typy korozji: chemiczną, elektrochemiczną, gazową

Bardziej szczegółowo

Obróbka cieplna stali

Obróbka cieplna stali Obróbka cieplna stali Obróbka cieplna stopów: zabiegi cieplne, które mają na celu nadanie im pożądanych cech mechanicznych, fizycznych lub chemicznych przez zmianę struktury stopu. Podstawowe etapy obróbki

Bardziej szczegółowo

Ćwiczenie nr 2 Temat: Umocnienie wydzieleniowe stopu Al z Cu + umocnienie stali

Ćwiczenie nr 2 Temat: Umocnienie wydzieleniowe stopu Al z Cu + umocnienie stali S t r o n a 1 Przedmiot: Badanie własności mechanicznych materiałów Autor opracowania: dr inż. Magdalena Rozmus-Górnikowska Ćwiczenie nr 2 Temat: Umocnienie wydzieleniowe stopu Al z Cu + umocnienie stali

Bardziej szczegółowo

Laboratorium Wytrzymałości Materiałów. Statyczna próba ściskania metali

Laboratorium Wytrzymałości Materiałów. Statyczna próba ściskania metali KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN Wydział Inżynierii Mechanicznej i Mechatroniki Laboratorium Wytrzymałości Materiałów Statyczna próba ściskania metali Opracował : dr inż. Leus Mariusz Szczecin

Bardziej szczegółowo

Zespół Szkół Samochodowych

Zespół Szkół Samochodowych Zespół Szkół Samochodowych Podstawy Konstrukcji Maszyn Materiały Konstrukcyjne i Eksploatacyjne Temat: OTRZYMYWANIE STOPÓW ŻELAZA Z WĘGLEM. 2016-01-24 1 1. Stopy metali. 2. Odmiany alotropowe żelaza. 3.

Bardziej szczegółowo

OBRÓBKA PLASTYCZNA METALI

OBRÓBKA PLASTYCZNA METALI OBRÓBKA PLASTYCZNA METALI Plastyczność: zdolność metali i stopów do trwałego odkształcania się bez naruszenia spójności Obróbka plastyczna: walcowanie, kucie, prasowanie, ciągnienie Produkty i półprodukty

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW STATYCZ A PRÓBA ROZCIĄGA IA METALI /Wykres rozciągania/ /Wyznaczanie

Bardziej szczegółowo

ODKSZTAŁCANIE NA ZIMNO I WYŻARZANIE MATERIAŁÓW

ODKSZTAŁCANIE NA ZIMNO I WYŻARZANIE MATERIAŁÓW 8 Ćwiczenie 1 ODKSZTAŁCANIE NA ZIMNO I WYŻARZANIE MATERIAŁÓW Celem ćwiczenia jest: - poznanie zjawisk wywołujących umocnienie materiałów, - poznanie wpływu wyżarzania odkształconego na zimno materiału

Bardziej szczegółowo

Obróbka cieplna stali

Obróbka cieplna stali OBRÓBKA CIEPLNA Obróbka cieplna stali Powstawanie austenitu podczas nagrzewania Ujednorodnianie austenitu Zmiany wielkości ziarna Przemiany w stali podczas chłodzenia Martenzytyczna Bainityczna Perlityczna

Bardziej szczegółowo

Ich właściwości zmieniające się w szerokim zakresie w zależności od składu chemicznego (rys) i technologii wytwarzania wyrobu.

Ich właściwości zmieniające się w szerokim zakresie w zależności od składu chemicznego (rys) i technologii wytwarzania wyrobu. STOPY ŻELAZA Ich właściwości zmieniające się w szerokim zakresie w zależności od składu chemicznego (rys) i technologii wytwarzania wyrobu. Ze względu na bardzo dużą ilość stopów żelaza z węglem dla ułatwienia

Bardziej szczegółowo

STATYCZNA PRÓBA ŚCISKANIA

STATYCZNA PRÓBA ŚCISKANIA STATYCZNA PRÓBA ŚCISKANIA 1. WSTĘP Statyczna próba ściskania, obok statycznej próby rozciągania jest jedną z podstawowych prób stosowanych dla określenia właściwości mechanicznych materiałów. Celem próby

Bardziej szczegółowo

Stal - definicja Stal

Stal - definicja Stal \ Stal - definicja Stal stop żelaza z węglem,plastycznie obrobiony i obrabialny cieplnie o zawartości węgla nieprzekraczającej 2,11% co odpowiada granicznej rozpuszczalności węgla w żelazie (dla stali

Bardziej szczegółowo

Logistyka I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Logistyka I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny) KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Z-LOG-1082 Podstawy nauki o materiałach Fundamentals of Material Science

Bardziej szczegółowo

MATERIAŁY KONSTRUKCYJNE

MATERIAŁY KONSTRUKCYJNE Stal jest to stop żelaza z węglem o zawartości węgla do 2% obrobiona cieplnie i przerobiona plastycznie Stale ze względu na skład chemiczny dzielimy głównie na: Stale węglowe Stalami węglowymi nazywa się

Bardziej szczegółowo

Zjawisko to umożliwia kształtowanie metali na drodze przeróbki plastycznej.

Zjawisko to umożliwia kształtowanie metali na drodze przeróbki plastycznej. ODKSZTAŁCENIE PLASTYCZNE, ZGNIOT I REKRYSTALIZACJA Zakres tematyczny 1 Odkształcenie materiałów metalicznych Materiały metaliczne są ciałami plastycznymi pod wpływem obciążenia, którego wartość przekracza

Bardziej szczegółowo

2.2 Wyznaczanie modułu Younga na podstawie ścisłej próby rozciągania

2.2 Wyznaczanie modułu Younga na podstawie ścisłej próby rozciągania UT-H Radom Instytut Mechaniki Stosowanej i Energetyki Laboratorium Wytrzymałości Materiałów instrukcja do ćwiczenia 2.2 Wyznaczanie modułu Younga na podstawie ścisłej próby rozciągania I ) C E L Ć W I

Bardziej szczegółowo

5. Wyniki badań i ich omówienie

5. Wyniki badań i ich omówienie Strukturalne i mechaniczne czynniki umocnienia i rekrystalizacji stali z mikrododatkami odkształcanych plastycznie na gorąco 5. Wyniki badań i ich omówienie 5.1. Wyniki badań procesu wysokotemperaturowego

Bardziej szczegółowo

Próby udarowe. Opracował: XXXXXXX studia inŝynierskie zaoczne wydział mechaniczny semestr V. Gdańsk 2002 r.

Próby udarowe. Opracował: XXXXXXX studia inŝynierskie zaoczne wydział mechaniczny semestr V. Gdańsk 2002 r. Próby udarowe Opracował: XXXXXXX studia inŝynierskie zaoczne wydział mechaniczny semestr V Gdańsk 00 r. 1. Cel ćwiczenia. Przeprowadzenie ćwiczenia ma na celu: 1. zapoznanie się z próbą udarności;. zapoznanie

Bardziej szczegółowo

Nauka o Materiałach. Wykład VIII. Odkształcenie materiałów właściwości sprężyste. Jerzy Lis

Nauka o Materiałach. Wykład VIII. Odkształcenie materiałów właściwości sprężyste. Jerzy Lis Nauka o Materiałach Wykład VIII Odkształcenie materiałów właściwości sprężyste Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Właściwości materiałów -wprowadzenie 2. Klasyfikacja reologiczna odkształcenia

Bardziej szczegółowo

Właściwości mechaniczne

Właściwości mechaniczne Właściwości mechaniczne materiałów budowlanych Właściwości mechaniczne 1. Wytrzymałość na ściskanie 2. Wytrzymałość na rozciąganie 3. Wytrzymałość na zginanie 4. Podatność na rozmiękanie 5. Sprężystość

Bardziej szczegółowo

ĆWICZENIE Nr 5. Laboratorium Inżynierii Materiałowej. Akceptował: Kierownik Katedry prof. dr hab. B. Surowska. Opracował: dr inż.

ĆWICZENIE Nr 5. Laboratorium Inżynierii Materiałowej. Akceptował: Kierownik Katedry prof. dr hab. B. Surowska. Opracował: dr inż. POLITECHNIKA LUBELSKA WYDZIAŁ MECHANICZNY KATEDRA INŻYNIERII MATERIAŁOWEJ Akceptował: Kierownik Katedry prof. dr hab. B. Surowska Laboratorium Inżynierii Materiałowej ĆWICZENIE Nr 5 Opracował: dr inż.

Bardziej szczegółowo

ĆWICZENIE Nr 7. Laboratorium Inżynierii Materiałowej. Akceptował: Kierownik Katedry prof. dr hab. B. Surowska. Opracował: dr inż.

ĆWICZENIE Nr 7. Laboratorium Inżynierii Materiałowej. Akceptował: Kierownik Katedry prof. dr hab. B. Surowska. Opracował: dr inż. POLITECHNIKA LUBELSKA WYDZIAŁ MECHANICZNY KATEDRA INŻYNIERII MATERIAŁOWEJ Akceptował: Kierownik Katedry prof. dr hab. B. Surowska Laboratorium Inżynierii Materiałowej ĆWICZENIE Nr 7 Opracował: dr inż.

Bardziej szczegółowo

Technologia obróbki cieplnej. Grzanie i ośrodki grzejne

Technologia obróbki cieplnej. Grzanie i ośrodki grzejne Technologia obróbki cieplnej Grzanie i ośrodki grzejne Grzanie: nagrzewanie i wygrzewanie Dobór czasu grzania Rodzaje ośrodków grzejnych Powietrze Ośrodki gazowe Złoża fluidalne Kąpiele solne: sole chlorkowe

Bardziej szczegółowo

STALE STOPOWE KONSTRUKCYJNE. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

STALE STOPOWE KONSTRUKCYJNE. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego STALE STOPOWE KONSTRUKCYJNE Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego STALE STOPOWE KONSTRUKCYJNE Ważniejsze grupy stali: stale spawalne o podwyższonej

Bardziej szczegółowo

Rodzaje obciążeń, odkształceń i naprężeń

Rodzaje obciążeń, odkształceń i naprężeń Rodzaje obciążeń, odkształceń i naprężeń 1. Podział obciążeń i odkształceń Oddziaływania na konstrukcję, w zależności od sposobu działania sił, mogą być statyczne lun dynamiczne. Obciążenia statyczne występują

Bardziej szczegółowo

Wewnętrzny stan bryły

Wewnętrzny stan bryły Stany graniczne Wewnętrzny stan bryły Bryła (konstrukcja) jest w równowadze, jeżeli oddziaływania zewnętrzne i reakcje się równoważą. P α q P P Jednak drugim warunkiem równowagi jest przeniesienie przez

Bardziej szczegółowo

16. 16. Badania materiałów budowlanych

16. 16. Badania materiałów budowlanych 16. BADANIA MATERIAŁÓW BUDOWLANYCH 1 16. 16. Badania materiałów budowlanych 16.1 Statyczna próba ściskania metali W punkcie 13.2 opisano statyczną próbę rozciągania metali plastycznych i kruchych. Dla

Bardziej szczegółowo

Materiały dydaktyczne. Semestr IV. Laboratorium

Materiały dydaktyczne. Semestr IV. Laboratorium Materiały dydaktyczne Wytrzymałość materiałów Semestr IV Laboratorium 1 Temat: Statyczna zwykła próba rozciągania metali. Praktyczne przeprowadzenie statycznej próby rozciągania metali, oraz zapoznanie

Bardziej szczegółowo

17. 17. Modele materiałów

17. 17. Modele materiałów 7. MODELE MATERIAŁÓW 7. 7. Modele materiałów 7.. Wprowadzenie Podstawowym modelem w mechanice jest model ośrodka ciągłego. Przyjmuje się, że materia wypełnia przestrzeń w sposób ciągły. Możliwe jest wyznaczenie

Bardziej szczegółowo

Nauka o Materiałach. Wykład XI. Właściwości cieplne. Jerzy Lis

Nauka o Materiałach. Wykład XI. Właściwości cieplne. Jerzy Lis Nauka o Materiałach Wykład XI Właściwości cieplne Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Stabilność termiczna materiałów 2. Pełzanie wysokotemperaturowe 3. Przewodnictwo cieplne 4. Rozszerzalność

Bardziej szczegółowo

Kształtowanie struktury i własności użytkowych umacnianej wydzieleniowo miedzi tytanowej. 7. Podsumowanie

Kształtowanie struktury i własności użytkowych umacnianej wydzieleniowo miedzi tytanowej. 7. Podsumowanie Kształtowanie struktury i własności użytkowych umacnianej wydzieleniowo miedzi tytanowej 7. Podsumowanie Praca wykazała, że mechanizm i kinetyka wydzielania w miedzi tytanowej typu CuTi4, jest bardzo złożona

Bardziej szczegółowo

Zachodniopomorski Uniwersytet Technologiczny INSTYTUT INŻYNIERII MATERIAŁOWEJ Zakład Metaloznawstwa i Odlewnictwa

Zachodniopomorski Uniwersytet Technologiczny INSTYTUT INŻYNIERII MATERIAŁOWEJ Zakład Metaloznawstwa i Odlewnictwa Zachodniopomorski Uniwersytet Technologiczny INSTYTUT INŻYNIERII MTERIŁOWEJ Zakład Metaloznawstwa i Odlewnictwa Przedmiot: Podstawy Nauki o Materiałach I i II, Materiały Konstrukcyjne, Współczesne Materiały

Bardziej szczegółowo

KILKA SŁÓW NA TEMAT CIĄGLIWOŚCI STALI ZBROJENIOWEJ

KILKA SŁÓW NA TEMAT CIĄGLIWOŚCI STALI ZBROJENIOWEJ KILKA SŁÓW NA TEMAT CIĄGLIWOŚCI STALI ZBROJENIOWEJ CZYM CHARAKTERYZUJE SIĘ MARKA EPSTAL? EPSTAL jest znakiem jakości poznaj wyjątkowe właściwości stali epstal drodze ze dobrowolnej stali nadawanym w certyfikacji

Bardziej szczegółowo

STALE STOPOWE KONSTRUKCYJNE

STALE STOPOWE KONSTRUKCYJNE STALE STOPOWE KONSTRUKCYJNE Podział stali stopowych ze względu na zastosowanie: stale konstrukcyjne stale narzędziowe stale o szczególnych właściwościach STALE STOPOWE KONSTRUKCYJNE Ważniejsze grupy stali:

Bardziej szczegółowo

PIERWIASTKI STOPOWE W STALACH. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

PIERWIASTKI STOPOWE W STALACH. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego PIERWIASTKI STOPOWE W STALACH Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Stal stopowa stop żelaza z węglem, zawierający do ok. 2% węgla i pierwiastki

Bardziej szczegółowo

ODKSZTAŁCENIE I REKRYSTALIZACJA METALI. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

ODKSZTAŁCENIE I REKRYSTALIZACJA METALI. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego ODKSZTAŁCENIE I REKRYSTALIZACJA METALI Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego ODKSZTAŁCENIE I REKRYSTALIZACJA METALI 1. ODKSZTAŁCENIE METALI

Bardziej szczegółowo

Nowoczesne stale bainityczne

Nowoczesne stale bainityczne Nowoczesne stale bainityczne Klasyfikacja, projektowanie, mikrostruktura, właściwości oraz przykłady zastosowania Wykład opracował: dr hab. inż. Zdzisław Ławrynowicz, prof. nadzw. UTP Zakład Inżynierii

Bardziej szczegółowo

MATERIAŁOZNAWSTWO. dr hab. inż. Joanna Hucińska Katedra Inżynierii Materiałowej Pok. 128 (budynek Żelbetu )

MATERIAŁOZNAWSTWO. dr hab. inż. Joanna Hucińska Katedra Inżynierii Materiałowej Pok. 128 (budynek Żelbetu ) MATERIAŁOZNAWSTWO dr hab. inż. Joanna Hucińska Katedra Inżynierii Materiałowej Pok. 128 (budynek Żelbetu ) jhucinsk@pg.gda.pl MATERIAŁOZNAWSTWO dziedzina nauki stosowanej obejmująca badania zależności

Bardziej szczegółowo

LABORATORIUM NAUKI O MATERIAŁACH

LABORATORIUM NAUKI O MATERIAŁACH Politechnika Łódzka Wydział Mechaniczny Instytut Inżynierii Materiałowej LABORATORIUM NAUKI O MATERIAŁACH Ćwiczenie nr 6 Temat: Stale w stanie ulepszonym cieplnie Łódź 2010 Cel ćwiczenia Zapoznanie się

Bardziej szczegółowo

WPŁYW DODATKÓW STOPOWYCH NA WŁASNOŚCI STOPU ALUMINIUM KRZEM O NADEUTEKTYCZNYM SKŁADZIE

WPŁYW DODATKÓW STOPOWYCH NA WŁASNOŚCI STOPU ALUMINIUM KRZEM O NADEUTEKTYCZNYM SKŁADZIE WYDZIAŁ ODLEWNICTWA AGH Oddział Krakowski STOP XXXIV KONFERENCJA NAUKOWA Kraków - 19 listopada 2010 r. Marcin PIĘKOŚ 1, Stanisław RZADKOSZ 2, Janusz KOZANA 3,Witold CIEŚLAK 4 WPŁYW DODATKÓW STOPOWYCH NA

Bardziej szczegółowo

Wykład 8: Lepko-sprężyste odkształcenia ciał

Wykład 8: Lepko-sprężyste odkształcenia ciał Wykład 8: Lepko-sprężyste odkształcenia ciał Leszek CHODOR dr inż. bud, inż.arch. leszek@chodor.pl Literatura: [1] Piechnik St., Wytrzymałość materiałów dla wydziałów budowlanych,, PWN, Warszaw-Kraków,

Bardziej szczegółowo

Dekohezja materiałów. Przedmiot: Degradacja i metody badań materiałów Wykład na podstawie materiałów prof. dr hab. inż. Jerzego Lisa, prof. zw.

Dekohezja materiałów. Przedmiot: Degradacja i metody badań materiałów Wykład na podstawie materiałów prof. dr hab. inż. Jerzego Lisa, prof. zw. Dekohezja materiałów Przedmiot: Degradacja i metody badań materiałów Wykład na podstawie materiałów prof. dr hab. inż. Jerzego Lisa, prof. zw. AGH Nauka o Materiałach Treść wykładu: 1. Dekohezja materiałów

Bardziej szczegółowo

BADANIA WŁAŚCIWOŚCI MECHANICZNYCH MATERIAŁÓW. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

BADANIA WŁAŚCIWOŚCI MECHANICZNYCH MATERIAŁÓW. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego BADANIA WŁAŚCIWOŚCI MECHANICZNYCH MATERIAŁÓW Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Właściwości Fizyczne (gęstość, ciepło właściwe, rozszerzalność

Bardziej szczegółowo

ZAGADNIENIA EGZAMINACYJNE

ZAGADNIENIA EGZAMINACYJNE ZAGADNIENIA EGZAMINACYJNE - zagadnienia, na które należy zwrócić szczególną uwagę 1. Omówić budowę atomu. 2. Co to jest masa atomowa? 3. Omówić budowę układu okresowego pierwiastków. 4. Wyjaśnić strukturę

Bardziej szczegółowo

Ćwiczenie 11. Moduł Younga

Ćwiczenie 11. Moduł Younga Ćwiczenie 11. Moduł Younga Małgorzata Nowina-Konopka, Andrzej Zięba Cel ćwiczenia Wyznaczenie modułu Younga metodą statyczną za pomocą pomiaru wydłużenia drutu z badanego materiału obciążonego stałą siłą.

Bardziej szczegółowo

Naprężenia, przemieszczenia, odkształcenia Właściwości materiałów. dr hab. inż. Tadeusz Chyży Katedra Mechaniki Konstrukcji

Naprężenia, przemieszczenia, odkształcenia Właściwości materiałów. dr hab. inż. Tadeusz Chyży Katedra Mechaniki Konstrukcji Naprężenia, przemieszczenia, odkształcenia Właściwości materiałów dr hab. inż. Tadeusz Chyży Katedra Mechaniki Konstrukcji Naprężeniem (p) nazywa się iloraz nieskończenie małej wypadkowej siły spójności

Bardziej szczegółowo

OBRÓBKA CIEPLNA. opracował dr inż. Stanisław Rymkiewicz

OBRÓBKA CIEPLNA. opracował dr inż. Stanisław Rymkiewicz OBRÓBKA CIEPLNA opracował dr inż. Stanisław Rymkiewicz Schemat wykresu układu równowagi fazowej żelazo-węgiel i żelazo-cementyt t, ºC Fe 6,67 Fe 3 C stężenie masowe, C [%] C żelazo cementyt (Fe - Fe 3

Bardziej szczegółowo

Nauka o materiałach III

Nauka o materiałach III Pomiar twardości metali metodami: Brinella, Rockwella i Vickersa Nr ćwiczenia: 1 Zapoznanie się z zasadami pomiaru, budową i obsługą twardościomierzy: Brinella, Rockwella i Vickersa. Twardościomierz Brinella

Bardziej szczegółowo

POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY

POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY Techniki niskotemperaturowe w Inżynierii Mechaniczno Medycznej Zmiana własności ciał w temperaturach kriogenicznych Prowadzący: dr inż. Waldemar Targański Emilia

Bardziej szczegółowo

Podstawy Nauki o Materiałach II Wydział Inżynierii Materiałowej Politechniki Warszawskiej

Podstawy Nauki o Materiałach II Wydział Inżynierii Materiałowej Politechniki Warszawskiej Podstawy Nauki o Materiałach II Wydział Inżynierii Materiałowej Politechniki Warszawskiej Zbigniew Pakieła Klasyfikacja defektów struktury krystalicznej wg wymiarów elementów 0 - wymiarowe (defekty punktowe)

Bardziej szczegółowo

Analityczne Modele Tarcia. Tadeusz Stolarski Katedra Podstaw Konstrukcji I Eksploatacji Maszyn

Analityczne Modele Tarcia. Tadeusz Stolarski Katedra Podstaw Konstrukcji I Eksploatacji Maszyn Analityczne Modele Tarcia Tadeusz Stolarski Katedra odstaw Konstrukcji I Eksploatacji Maszyn owierzchnia rzeczywista Struktura powierzchni Warstwa zanieczyszczeo - 30 A Warstwa tlenków - 100 A Topografia

Bardziej szczegółowo

Laboratorium wytrzymałości materiałów

Laboratorium wytrzymałości materiałów Politechnika Lubelska MECHANIKA Laboratorium wytrzymałości materiałów Ćwiczenie 19 - Ścinanie techniczne połączenia klejonego Przygotował: Andrzej Teter (do użytku wewnętrznego) Ścinanie techniczne połączenia

Bardziej szczegółowo

DEFEKTY STRUKTURY KRYSTALICZNEJ. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

DEFEKTY STRUKTURY KRYSTALICZNEJ. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego DEFEKTY STRUKTURY KRYSTALICZNEJ Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Defekty struktury krystalicznej są to każdego rodzaju odchylenia od

Bardziej szczegółowo

Dobór materiałów konstrukcyjnych cz.13

Dobór materiałów konstrukcyjnych cz.13 Dobór materiałów konstrukcyjnych cz.13 dr inż. Hanna Smoleńska Katedra Inżynierii Materiałowej i Spajania Wydział Mechaniczny, Politechnika Gdańska Materiały edukacyjne ROZSZERZALNOŚĆ CIEPLNA LINIOWA Ashby

Bardziej szczegółowo

KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Inżynieria materiałowa. 2. KIERUNEK: Mechanika i budowa maszyn. 3. POZIOM STUDIÓW: I stopnia

KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Inżynieria materiałowa. 2. KIERUNEK: Mechanika i budowa maszyn. 3. POZIOM STUDIÓW: I stopnia KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Inżynieria teriałowa 2. KIERUNEK: Mechanika i budowa szyn 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: 1/1 i 2 5. LICZBA PUNKTÓW ECTS: 5 6. LICZBA GODZIN:

Bardziej szczegółowo

O RÓŻNICACH W ZACHOWANIU SIĘ SKAŁ W WARUNKACH JEDNOOSIOWEGO ROZCIĄGANIA I ŚCISKANIA

O RÓŻNICACH W ZACHOWANIU SIĘ SKAŁ W WARUNKACH JEDNOOSIOWEGO ROZCIĄGANIA I ŚCISKANIA Górnictwo i Geoinżynieria Rok 31 Zeszyt 3/1 2007 Krzysztof Tomiczek* O RÓŻNICACH W ZACHOWANIU SIĘ SKAŁ W WARUNKACH JEDNOOSIOWEGO ROZCIĄGANIA I ŚCISKANIA 1. Wprowadzenie Dotychczasowa wiedza o własnościach

Bardziej szczegółowo

Definicja OC

Definicja OC OBRÓBKA CIEPLNA Podstawy teoretyczne Zakres tematyczny 1 Definicja OC Obróbka cieplna jest to zespół zabiegów wywołujących polepszenie właściwości mechanicznych oraz fizyko-chemicznych metali i stopów,

Bardziej szczegółowo

BUDOWA STOPÓW METALI

BUDOWA STOPÓW METALI BUDOWA STOPÓW METALI Stopy metali Substancje wieloskładnikowe, w których co najmniej jeden składnik jest metalem, wykazujące charakter metaliczny. Składnikami stopów mogą być pierwiastki lub substancje

Bardziej szczegółowo

MATERIAŁOZNAWSTWO. Prof. dr hab. inż. Andrzej Zieliński Katedra Inżynierii Materiałowej Pok. 204

MATERIAŁOZNAWSTWO. Prof. dr hab. inż. Andrzej Zieliński Katedra Inżynierii Materiałowej Pok. 204 MATERIAŁOZNAWSTWO Prof. dr hab. inż. Andrzej Zieliński Katedra Inżynierii Materiałowej Pok. 204 PODRĘCZNIKI Leszek A. Dobrzański: Podstawy nauki o materiałach i metaloznawstwo K. Prowans: Materiałoznawstwo

Bardziej szczegółowo

Własności materiałów konstukcyjnych w niskich temperaturach

Własności materiałów konstukcyjnych w niskich temperaturach Własności materiałów konstukcyjnych w niskich temperaturach Dobierając materiał konstrukcyjny do konkretnego zastosowania należy zawsze uwzględniać jego wytrzymałość, trwałość zmęczeniową, wagę, cenę,

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Próba skręcania pręta o przekroju okrągłym Numer ćwiczenia: 4 Laboratorium z

Bardziej szczegółowo

MATERIAŁY KOMPOZYTOWE

MATERIAŁY KOMPOZYTOWE MATERIAŁY KOMPOZYTOWE 1 DEFINICJA KOMPOZYTU KOMPOZYTEM NAZYWA SIĘ MATERIAL BĘDĄCY KOMBINACJA DWÓCH LUB WIĘCEJ ROŻNYCH MATERIAŁÓW 2 Kompozyt: Włókna węglowe ciągłe (preforma 3D) Osnowa : Al-Si METALE I

Bardziej szczegółowo

LABORATORIUM NAUKI O MATERIAŁACH

LABORATORIUM NAUKI O MATERIAŁACH Imię i Nazwisko Grupa dziekańska Indeks Ocena (kol.wejściowe) Ocena (sprawozdanie)........................................................... Ćwiczenie: MISW2 Podpis prowadzącego Politechnika Łódzka Wydział

Bardziej szczegółowo

Akademia Morska w Szczecinie Instytut InŜynierii Transportu Zakład Techniki Transportu. Materiałoznawstwo i Nauka o materiałach

Akademia Morska w Szczecinie Instytut InŜynierii Transportu Zakład Techniki Transportu. Materiałoznawstwo i Nauka o materiałach Akademia Morska w Szczecinie Instytut InŜynierii Transportu Zakład Techniki Transportu Instrukcja do ćwiczeń laboratoryjnych z przedmiotów Materiałoznawstwo i Nauka o materiałach Wpływ róŝnych rodzajów

Bardziej szczegółowo