PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

Wielkość: px
Rozpocząć pokaz od strony:

Download "PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI"

Transkrypt

1 ARKUSZ 21 MATURA 2010 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy: 170 minut 1. Sprawdê, czy arkusz zawiera 11 stron. 2. W zadaniach od 1. do 20. sà podane 4 odpowiedzi: A, B, C, D, z których tylko jedna jest prawdziwa. Wybierz tylko jednà odpowiedê. 3. Rozwiàzania zadaƒ od 21. do 29. zapisz starannie i czytelnie w wyznaczonych miejscach. Przedstaw swój tok rozumowania prowadzàcy do ostatecznego wyniku. 4. Pisz czytelnie. U ywaj d ugopisu/pióra tylko z czarnym tuszem/atramentem. 5. Nie u ywaj korektora. B dne zapisy przekreêl. 6. Pami taj, e zapisy w brudnopisie nie podlegajà ocenie. 7. Obok numeru ka dego zadania podana jest maksymalna liczba punktów mo liwych do uzyskania. 8. Mo esz korzystaç z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora. yczymy powodzenia! Za rozwiàzanie wszystkich zadaƒ mo na otrzymaç àcznie 50 punktów. Arkusz opracowany przez Wydawnictwo Pedagogiczne OPERON na wzór arkuszy opublikowanych przez Centralnà Komisj Egzaminacyjnà

2

3 Matematyka. Poziom podstawowy 3 ZADANIA ZAMKNI TE W zadaniach od 1. do 20. wybierz i zaznacz na karcie odpowiedzi jednà poprawnà odpowiedê. Zadanie 1. (1 pkt) Wielomiany Wx () = ( x- 2)( x+ 1)( x+ 2) + x i P() x = ( a+ b) x + x + ( a-b) x-4 sà równe. Z tego wynika, e: A. a= 1, b= 2 B a=- 1, b=-2 C. a=- 1, b= 2 D. a= 2, b=-1 Zadanie 2. (1 pkt) Liczby sin 60 c, cos 60 c, 1 tg a w podanej kolejnoêci sà trzema kolejnymi wyrazami ciàgu 2 geometrycznego. Kàt a jest kàtem ostrym. Zatem jego miara jest równa: A. 30c B. 60c C. 45c D. 15c Zadanie 3. (1 pkt) 3 2 Liczba niewymiernych pierwiastków równania x log 9- x= 0 jest równa: 3 A. 0 B. 1 C. 2 D. 3 Zadanie 4. (1 pkt) 4x+ 5y= 2 Uk ad równaƒ ( dla 8x+ 10y= p p = 3: A. ma jedno rozwiàzanie B. ma dwa rozwiàzania C. nie ma rozwiàzania D. ma nieskoƒczenie rozwiàzaƒ 3 Zadanie 5. (1 pkt) W turnieju zapaêniczym rozegrano 36 walk. Ka dy walczy z ka dym dok adnie raz. Liczba zawodników bioràcych udzia w turnieju to: A. 9 B. 18 C. 8 D. 12 Zadanie 6. (1 pkt) Liczb pi ciocyfrowych, które mo na zapisaç tylko za pomocà cyfr 0 i 5, jest: A. 5 B. 10 C. 16 D. 32 Zadanie 7. (1 pkt) Liczby 7-1 i 7 + 1to liczby: 6 A. przeciwne B. równe C. wymierne D. b dàce swoimi odwrotnoêciami Zadanie 8. (1 pkt) Liczba n jest liczbà naturalnà wi kszà od 1 i n + 1 jest liczbà naturalnà. Z tego wynika, e liczbà n - 1 naturalnà jest równie liczba: A. 3 n + 2 B. 6 n C. n D. 1 n + 3 n + 1

4 4 Matematyka. Poziom podstawowy Zadanie 9. (1 pkt) Suma pierwiastków wielomianu Wx ( ) = ( x-1)( x-2) $... $ ( x-99)( x-100) jest równa: A. 100 B C D Zadanie 10. (1 pkt) Punkty A = ( 04, ) i B = ( 60, ) sà koƒcami odcinka AB. Prosta y= x przecina odcinek AB w punkcie C. AC Wówczas liczba jest równa: CB A. 2 1 B. 2 3 C. 3 2 D Zadanie 11. (1 pkt) Przedzia przedstawiony na rysunku: jest zbiorem rozwiàzaƒ nierównoêci: A. x - 1 < 3 B. x + 1 < 3 C. x - 1 > 3 D. x + 1 > 3 Zadanie 12. (1 pkt) Piàty wyraz ciàgu _ a n iokreêlonego wzorem a = 3 2n n 1 n + - jest równy: 4 A. 1 B. 5 C. 10 D. 05, Zadanie 13. (1 pkt) W puszce w kszta cie walca o Êrednicy 10 cm mieêci si 785 cm 3 soku. Przyjmij, e r. 314,. Wtedy wysokoêç puszki jest równa oko o: A. 25cm, B. 50 cm C. 25 cm D. 10 cm Zadanie 14. (1 pkt) W trapezie prostokàtnym kàt ostry ma miar 60c, a podstawy majà d ugoêci 6 i 9. WysokoÊç tego trapezu jest równa: A. 3 3 B. 2 3 C. 6 D. Zadanie 15. (1 pkt) Przez kilka dni o godz mierzono temperatur powietrza w miejscowoêci Tkaczewska Góra. Wyniki pomiarów zapisano w tabelce. Temperatura w cc Liczba wskazaƒ 5 m 2 Obliczono, e Êrednia temperatur wynosi 07C, c. Zatem liczba m jest równa: A. 13 B. 4 C. 10 D. 3 Zadanie 16. (1 pkt) Liczba dodatnich wyrazów ciàgu _ a n iokreêlonego wzorem a = n jest równa: n A. 8 B. 7 C. 4 D. 16

5 Matematyka. Poziom podstawowy 5 Zadanie 17. (1 pkt) Prosta y= ax+ b przecina oê OX pod kàtem 60c, a oê OY w punkcie ( 02, 3). Wska punkt, który le y na tej prostej. A. P = (, 1 3) B. P = ( 3 3, 1) C. P = (-1, 3) D. P = (- 3, -1) Zadanie 18. (1 pkt) 3 64 Liczba ` 3j 3 jest liczbà: A. naturalnà mniejszà od 81 B. niewymiernà mniejszà od 81 C. ca kowità wi kszà od 81 D. niewymiernà wi kszà do 81 Zadanie 19. (1 pkt) Kod, który zapisany jest na karcie do bankomatu, sk ada si z czterech cyfr. Chcemy, aby prawdopodobieƒstwo odkrycia tego kodu zmniejszy o si stukrotnie. Ile jeszcze cyfr nale y dopisaç do kodu? A. 1 B. 2 C. 100 D. 50 Zadanie 20. (1 pkt) Cyfra jednoêci liczby jest taka sama jak cyfra jednoêci liczby: A. 5$ B C D ZADANIA OTWARTE Rozwiàzania zadaƒ o numerach od 21. do 29. nale y zapisaç w wyznaczonych miejscach pod treêcià zadania. Zadanie 21. (2 pkt) 2 2 Wierzcho kami trójkàta ABC sà Êrodki okr gów okreêlonych równaniami: ( x+ 1) + ( y- 4) = 7, ( x+ 1) + ( y+ 1) = 3, ( x- 2) + ( y+ 1) = 9. Oblicz pole tego trójkàta.

6 6 Matematyka. Poziom podstawowy Zadanie 22. (2 pkt) Wyka, e 997 $ = Zadanie 23. (2 pkt) Powierzchnia boczna sto ka po rozwini ciu na p aszczyzn jest pó kolem. Oblicz miar kàta rozwarcia sto ka.

7 Matematyka. Poziom podstawowy 7 Zadanie 24. (2 pkt) Pani Ela zamierza za o yç lokat, wp acajàc do banku z na okres jednego roku. Bank proponuje oprocentowanie kapita u 8% w stosunku rocznym, z kapitalizacjà odsetek co kwarta. Oblicz, jakà kwot (nie uwzgl dniajàc podatku) b dzie mog a wyp aciç pani Ela po roku. Zadanie 25. (2 pkt) January kopnà pi k, która zakreêli a w powietrzu fragment toru opisanego równaniem 2 2 px () = 12x- x. Oblicz, na jakà najwi kszà wysokoêç wznios a si pi ka. 5

8 8 Matematyka. Poziom podstawowy Zadanie 26. (4 pkt) Wyka, e ( x+ y+ z) > x + y + z, gdy xyzsà,, d ugoêciami boków dowolnego trójkàta.

9 Matematyka. Poziom podstawowy 9 Zadanie 27. (6 pkt) Liczby xy, sà liczbami naturalnymi, wi kszymi od zera. OkreÊl liczb rozwiàzaƒ równania ( 1-3)x+ `2+ 3j y= 3.

10 10 Matematyka. Poziom podstawowy Zadanie 28. (4 pkt) Kraw dê boczna ostros upa prawid owego trójkàtnego jest dwa razy d u sza od kraw dzi podstawy. Kraw dê podstawy jest równa a. Oblicz pole powierzchni bocznej i sinus po owy kàta mi dzy Êcianami bocznymi ostros upa.

11 Matematyka. Poziom podstawowy 11 Zadanie 29. (6 pkt) Pos aniec codziennie przebywa tras w kszta cie trójkàta równobocznego, którego wierzcho ki stanowià miejscowoêci ABC.,, Z miejscowoêci A do miejscowoêci B pos aniec jedzie z pr dkoêcià 40 km/h. Z miejscowoêci B do miejscowoêci C jedzie z pr dkoêcià dwukrotnie wi kszà. Ârednia pr dkoêç na ca ej trasie jest równa 55 5 km/h. Oblicz, z jakà pr dkoêcià jedzie pos aniec z miejscowoêci 13 C do miejscowoêci A.

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA LISTOPAD ROK 2009

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA LISTOPAD ROK 2009 Miejsce na naklejk z kodem ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA LISTOPAD ROK 2009 Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy 170 minut 1. Sprawdê, czy arkusz zawiera 15 stron. 2. W zadaniach

Bardziej szczegółowo

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI ARKUSZ 11 MATURA 2010 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy: 170 minut 1. Sprawdê, czy arkusz zawiera 11 stron. 2. W zadaniach od 1. do 21.

Bardziej szczegółowo

ARKUSZ EGZAMINACYJNY Z MATEMATYKI

ARKUSZ EGZAMINACYJNY Z MATEMATYKI dysleksja Miejsce na naklejk z kodem szko y ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw 1 POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdajàcego 1. Sprawdê, czy arkusz zawiera 12 stron (zadania

Bardziej szczegółowo

ARKUSZ EGZAMINACYJNY Z MATEMATYKI

ARKUSZ EGZAMINACYJNY Z MATEMATYKI dysleksja Miejsce na naklejk z kodem szko y ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw 1 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla zdajàcego 1. Sprawdê, czy arkusz zawiera 18 stron (zadania 1

Bardziej szczegółowo

Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu.

Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. pobrano z www.sqlmedia.pl Uk ad graficzny CKE 00 KOD Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. WPISUJE ZDAJ CY PESEL Miejsce na naklejk

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 80 minut Instrukcja dla zdaj¹cego. SprawdŸ, czy arkusz egzaminacyjny zawiera stron (zadania 0). Ewentualny brak zg³oœ przewodnicz¹cemu

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 120 minut Instrukcja dla zdaj¹cego 1. SprawdŸ, czy arkusz egzaminacyjny zawiera 13 stron (zadania 1 11). Ewentualny brak zg³oœ przewodnicz¹cemu

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MMA-P1_1P-092 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2009 Czas pracy 120 minut Instrukcja

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 014 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 1

Bardziej szczegółowo

APRZYK ADOWY ARKUSZ EGZAMINACYJNY FIZYKA I ASTRONOMIA POZIOM ROZSZERZONY. Czas pracy 150 minut. Instrukcja dla zdajàcego

APRZYK ADOWY ARKUSZ EGZAMINACYJNY FIZYKA I ASTRONOMIA POZIOM ROZSZERZONY. Czas pracy 150 minut. Instrukcja dla zdajàcego APRZYK ADOWY ARKUSZ EGZAMINACYJNY FIZYKA I ASTRONOMIA Instrukcja dla zdajàcego POZIOM ROZSZERZONY Czas pracy 150 minut 1. Sprawdê, czy arkusz egzaminacyjny zawiera 12 stron (zadania 1 9). Ewentualny brak

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkę z kodem szkoły dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-R1A1P-062 POZIOM ROZSZERZONY Czas pracy 150 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 14

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejk z kodem dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Czas pracy 10 minut Instrukcja dla zdaj cego 1. Prosz sprawdzi, czy arkusz egzaminacyjny zawiera 9 stron. Ewentualny brak nale

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 200 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MMA-P1_1P-091 PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI STYCZEŃ ROK 2009 POZIOM PODSTAWOWY Czas pracy 120 minut

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 00 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY entralna Komisja Egzaminacyjna rkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny KE 2013 KO WPISUJE ZJĄY PESEL Miejsce na naklejkę z kodem dysleksja EGZMIN MTURLNY

Bardziej szczegółowo

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z FIZYKI I ASTRONOMI

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z FIZYKI I ASTRONOMI PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z FIZYKI I ASTRONOMI Instrukcja dla zdajàcego POZIOM ROZSZERZONY Czas pracy: 170 minut 1. Sprawdê, czy arkusz egzaminacyjny zawiera 12 stron (zadania 1 9). Ewentualny brak

Bardziej szczegółowo

Plik pobrany ze strony www.zadania.pl

Plik pobrany ze strony www.zadania.pl Plik pobrany ze strony www.zadania.pl Wpisuje zdający przed rozpoczęciem pracy PESEL ZDAJĄCEGO Miejsce na nalepkę z kodem szkoły PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Instrukcja dla zdającego Arkusz I

Bardziej szczegółowo

Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL We współpracy z: PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 011 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2015 WPISUJE ZDAJĄCY KOD PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY PRZYKŁADOWY

Bardziej szczegółowo

MAJ 2014. Czas pracy: 170 minut. do uzyskania: Miejsce na naklejkę z kodem PESEL KOD. punktów. pióra z czarnym tuszem. liczby. cyrkla.

MAJ 2014. Czas pracy: 170 minut. do uzyskania: Miejsce na naklejkę z kodem PESEL KOD. punktów. pióra z czarnym tuszem. liczby. cyrkla. Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 03 WPISUJE ZDAJĄCY KOD PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM

Bardziej szczegółowo

MATERIAŁ ĆWICZENIOWY Z MATEMATYKI

MATERIAŁ ĆWICZENIOWY Z MATEMATYKI Materiał ćwiczeniowy zawiera informacje prawnie chronione do momentu rozpoczęcia diagnozy. Materiał ćwiczeniowy chroniony jest prawem autorskim. Materiału nie należy powielać ani udostępniać w żadnej innej

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkę z kodem dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Czas pracy 10 minut Instrukcja dla zdającego 1. Proszę sprawdzić, czy arkusz egzaminacyjny zawiera 9 stron. Ewentualny brak należy

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkę z kodem (Wpisuje zdający przed rozpoczęciem pracy) KOD ZDAJĄCEGO MMA-PGP-0 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 0 minut ARKUSZ I MAJ ROK 00 Instrukcja dla zdającego.

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkę z kodem szkoły dysleksja MMA-P_P-07 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 0 minut Instrukcja dla zdającego. Sprawdź, czy arkusz egzaminacyjny zawiera 5 stron (zadania

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkę z kodem szkoły dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 120 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15 stron

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY CZERWIEC 2013. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY CZERWIEC 2013. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 00 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

Próbny egzamin maturalny z matematyki Poziom podstawowy. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

Próbny egzamin maturalny z matematyki Poziom podstawowy. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI We współpracy z POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2015 WPISUJE ZDAJĄCY KOD PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY PRZYKŁADOWY

Bardziej szczegółowo

MAJ 2014. Czas pracy: 170 minut. do uzyskania: Miejsce na naklejkę z kodem PESEL KOD. punktów. pióra z czarnym tuszem. liczby. cyrkla.

MAJ 2014. Czas pracy: 170 minut. do uzyskania: Miejsce na naklejkę z kodem PESEL KOD. punktów. pióra z czarnym tuszem. liczby. cyrkla. rkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny KE 03 WPISUJE ZJĄY KO PESEL Miejsce na naklejkę z kodem dysleksja EGZMIN MTURLNY Z MTEMTYKI POZIOM POSTWOWY MJ

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY entralna Komisja Egzaminacyjna rkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny KE 00 KO WPISUJE ZJĄY PESEL Miejsce na naklejkę z kodem EGZMIN MTURLNY Z MTEMTYKI

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA LFD-Arkusz1ZR-zadania 11/5/07 1:01 PM Page 1 dysleksja Miejsce na naklejk z kodem ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA POZIOM ROZSZERZONY GRUDZIE ROK 2007 Instrukcja dla zdajàcego Czas

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI 5 MAJA 2015 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI 5 MAJA 2015 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 0 KOD UZUPEŁNIA ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkę z kodem szkoły dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-P1A1P-052 POZIOM PODSTAWOWY Czas pracy 120 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 13

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 5508 WYGENEROWANY AUTOMATYCZNIE W SERWISIE WWW.ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Wskaż rysunek,

Bardziej szczegółowo

EGZAMIN MATURALNY OD ROKU SZKOLNEGO

EGZAMIN MATURALNY OD ROKU SZKOLNEGO EGZAMIN MATURALNY OD ROKU SZKOLNEGO 014/015 MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ DLA OSÓB SŁABOSŁYSZĄCYCH (A3) W czasie trwania egzaminu zdający może korzystać z zestawu wzorów matematycznych,

Bardziej szczegółowo

MATEMATYKA WYDZIAŁ MATEMATYKI - TEST 1

MATEMATYKA WYDZIAŁ MATEMATYKI - TEST 1 Wszelkie prawa zastrzeżone. Rozpowszechnianie, wypożyczanie i powielanie niniejszych testów w jakiejkolwiek formie surowo zabronione. W przypadku złamania zakazu mają zastosowanie przepisy dotyczące naruszenia

Bardziej szczegółowo

(a 1 2 + b 1 2); : ( b a + b ab 2 + c ). : a2 2ab+b 2. Politechnika Białostocka KATEDRA MATEMATYKI. Zajęcia fakultatywne z matematyki 2008

(a 1 2 + b 1 2); : ( b a + b ab 2 + c ). : a2 2ab+b 2. Politechnika Białostocka KATEDRA MATEMATYKI. Zajęcia fakultatywne z matematyki 2008 Zajęcia fakultatywne z matematyki 008 WYRAŻENIA ARYTMETYCZNE I ALGEBRAICZNE. Wylicz b z równania a) ba + a = + b; b) a = b ; b+a c) a b = b ; d) a +ab =. a b. Oblicz a) [ 4 (0, 5) ] + ; b) 5 5 5 5+ 5 5

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejk z kodem (Wpisuje zdajcy przed rozpoczciem pracy) KOD ZDAJCEGO MMA-PGP-0 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 0 minut ARKUSZ I MAJ ROK 00 Instrukcja dla zdajcego.

Bardziej szczegółowo

wybierz właściwą odpowiedź i zamaluj kratkę z odpowiednimi literami, np. gdy wybierasz odpowiedź FP:

wybierz właściwą odpowiedź i zamaluj kratkę z odpowiednimi literami, np. gdy wybierasz odpowiedź FP: WPISUJE UCZEŃ KOD UCZNIA PESEL PRÓBNY EGZAMIN GIMNAZJALNY Z OPERONEM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA Instrukcja dla ucznia 1. Sprawdź, czy zestaw egzaminacyjny zawiera 7 stron (zadania 1. 2.).

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego Kod ucznia Data urodzenia ucznia Dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP SZKOLNY Rok szkolny 2013/2014 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 10 stron.

Bardziej szczegółowo

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY ...................................... pieczątka nagłówkowa szkoły kod pracy ucznia KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY Drogi Uczniu Witaj na I etapie konkursu matematycznego. Przeczytaj

Bardziej szczegółowo

a) Wykaż, że przekształcenie P jest izometrią b) W prostokątnym układzie współrzędnych narysuj trójkąt o wierzchołkach A ( 1;2)

a) Wykaż, że przekształcenie P jest izometrią b) W prostokątnym układzie współrzędnych narysuj trójkąt o wierzchołkach A ( 1;2) ZESTAW I R Zad (3 pkt) Suma pierwiastków trójmianu a, c R R trójmianu jest równa 8 y ax bx c jest równa log c log a, gdzie Uzasadnij, że odcięta wierzchołka paraboli będącej wykresem tego a c Zad (7 pkt)

Bardziej szczegółowo

MATEMATYKA Instrukcja dla ucznia

MATEMATYKA Instrukcja dla ucznia KOD UCZNIA Centralna Komisja Egzaminacyjna UZUPEŁNIA UCZEŃ PESEL miejsce na naklejkę z kodem E W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA Instrukcja dla ucznia UZUPEŁNIA ZESPÓŁ

Bardziej szczegółowo

PRAWA ZACHOWANIA. Podstawowe terminy. Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc

PRAWA ZACHOWANIA. Podstawowe terminy. Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc PRAWA ZACHOWANIA Podstawowe terminy Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc a) si wewn trznych - si dzia aj cych na dane cia o ze strony innych

Bardziej szczegółowo

Elżbieta Świda Elżbieta Kurczab Marcin Kurczab. Zadania otwarte krótkiej odpowiedzi na dowodzenie na obowiązkowej maturze z matematyki

Elżbieta Świda Elżbieta Kurczab Marcin Kurczab. Zadania otwarte krótkiej odpowiedzi na dowodzenie na obowiązkowej maturze z matematyki Elżbieta Świda Elżbieta Kurczab Marcin Kurczab Zadania otwarte krótkiej odpowiedzi na dowodzenie na obowiązkowej maturze z matematyki Zadanie Trójkąt ABC jest trójkątem prostokątnym. Z punktu M, należącego

Bardziej szczegółowo

PRACA KONTROLNA nr 1 - poziom podstawowy

PRACA KONTROLNA nr 1 - poziom podstawowy XLIII KORESPONDENCYJNY KURS wrzesień 2013 r. Z MATEMATYKI PRACA KONTROLNA nr 1 - poziom podstawowy 1. Wzrost kursu Euro w stosunku do złotego spowodował podwyżkę ceny nowego modelu Volvo o 5%. Ponieważ

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych i przykładowe rozwiązania zadań otwartych

Klucz odpowiedzi do zadań zamkniętych i przykładowe rozwiązania zadań otwartych Centralna Komisja Egzaminacyjna Materiał współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Próbny egzamin maturalny z matematyki listopad 009 Klucz odpowiedzi do

Bardziej szczegółowo

Test kwalifikacyjny na I Warsztaty Matematyczne

Test kwalifikacyjny na I Warsztaty Matematyczne Test kwalifikacyjny na I Warsztaty Matematyczne Na pytania odpowiada się tak lub nie poprzez wpisanie odpowiednio T bądź N w pole obok pytania. W danym trzypytaniowym zestawie możliwa jest dowolna kombinacja

Bardziej szczegółowo

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy

Bardziej szczegółowo

KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM

KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM ... pieczątka nagłówkowa szkoły... kod pracy ucznia KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY Drogi Uczniu Witaj na I etapie konkursu matematycznego. Przeczytaj uważnie instrukcję

Bardziej szczegółowo

MATEMATYKA KWIECIEŃ 2014. miejsce na naklejkę z kodem. dysleksja EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA

MATEMATYKA KWIECIEŃ 2014. miejsce na naklejkę z kodem. dysleksja EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY PESEL miejsce na naklejkę z kodem dysleksja EGZAMIN W KLASIE

Bardziej szczegółowo

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM.

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. I Geometria analityczna 1. Równanie prostej w postaci ogólnej i kierunkowej powtórzenie 2. Wzajemne położenie dwóch prostych powtórzenie

Bardziej szczegółowo

Konkurs dla szkół ponadgimnazjalnych Etap szkolny 9 stycznia 2013 roku

Konkurs dla szkół ponadgimnazjalnych Etap szkolny 9 stycznia 2013 roku Konkurs dla szkół ponadgimnazjalnych Etap szkolny 9 stycznia roku Instrukcja dla ucznia W zadaniach o numerach od do są podane cztery warianty odpowiedzi: A, B, C, D Dokładnie jeden z nich jest poprawny

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM GEOGRAFIA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM GEOGRAFIA dysleksja Miejsce na identyfikacj szko y ARKUSZ PRÓBNEJ MATURY Z OPERONEM GEOGRAFIA POZIOM PODSTAWOWY Czas pracy 120 minut LISTOPAD ROK 2008 Instrukcja dla zdajàcego Sprawdê, czy arkusz egzaminacyjny zawiera

Bardziej szczegółowo

WPISUJE UCZEŃ GRUDZIEŃ 2014. Czas pracy: 90 minut. Liczba punktów do uzyskania: 30

WPISUJE UCZEŃ GRUDZIEŃ 2014. Czas pracy: 90 minut. Liczba punktów do uzyskania: 30 WPISUJE UCZEŃ KOD UCZNIA PESEL PRÓBNY EGZAMIN GIMNAZJALNY Z OPERONEM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA Instrukcja dla ucznia. Sprawdź, czy zestaw egzaminacyjny zawiera 7 stron (zadania..). Ewentualny

Bardziej szczegółowo

MATURA 2012. Przygotowanie do matury z matematyki

MATURA 2012. Przygotowanie do matury z matematyki MATURA 01 Przygotowanie do matury z matematyki Część IX: Stereometria ROZWIĄZANIA Powtórka jest organizowana przez redaktorów portalu MatmaNa.pl we współpracy z dziennikarzami Gazety Lubuskiej. Witaj,

Bardziej szczegółowo

Informator o egzaminie eksternistycznym. od 2007 roku MATEMATYKA. Liceum ogólnokształcące

Informator o egzaminie eksternistycznym. od 2007 roku MATEMATYKA. Liceum ogólnokształcące Informator o egzaminie eksternistycznym od 007 roku MATEMATYKA Liceum ogólnokształcące Warszawa 007 Opracowano w Centralnej Komisji Egzaminacyjnej we współpracy z okręgowymi komisjami egzaminacyjnymi w

Bardziej szczegółowo

Wszystkie znaki występujące w tekście są zastrzeżonymi znakami firmowymi bądź towarowymi ich właścicieli.

Wszystkie znaki występujące w tekście są zastrzeżonymi znakami firmowymi bądź towarowymi ich właścicieli. Wszelkie prawa zastrzeżone. Nieautoryzowane rozpowszechnianie całości lub fragmentu niniejszej publikacji w jakiejkolwiek postaci jest zabronione. Wykonywanie kopii metodą kserograficzną, fotograficzną,

Bardziej szczegółowo

BAZA ZADAŃ KLASA 1 TECHNIKUM

BAZA ZADAŃ KLASA 1 TECHNIKUM LICZBY RZECZYWISTE BAZA ZADAŃ KLASA TECHNIKUM. Znajdź liczbę odwrotną i liczbę przeciwną do liczby jeśli a). Wyznacz NWD(x, y), jeśli: a) x = 780, y = 6 b) x = 0, y = 6 c) x = 700, y = 60 d) x = 96, y

Bardziej szczegółowo

MATURA 2012. Powtórka do matury z matematyki. Część VIII: Geometria analityczna ODPOWIEDZI. Organizatorzy: MatmaNa6.pl, naszemiasto.

MATURA 2012. Powtórka do matury z matematyki. Część VIII: Geometria analityczna ODPOWIEDZI. Organizatorzy: MatmaNa6.pl, naszemiasto. MATURA 2012 Powtórka do matury z matematyki Część VIII: Geometria analityczna ODPOWIEDZI Organizatorzy: MatmaNa6.pl, naszemiasto.pl Witaj, otrzymałeś już ósmą z dziesięciu części materiałów powtórkowych

Bardziej szczegółowo

Międzyszkolne Zawody Matematyczne Klasa I LO i I Technikum - zakres podstawowy Etap wojewódzki 02.04.2005 rok Czas rozwiązywania zadań 150 minut

Międzyszkolne Zawody Matematyczne Klasa I LO i I Technikum - zakres podstawowy Etap wojewódzki 02.04.2005 rok Czas rozwiązywania zadań 150 minut Klasa I - zakres podstawowy Etap wojewódzki 17.04.004 rok Zad 1 ( 6 pkt) Znajdź wszystkie liczby czterocyfrowe podzielne przez 15, w których cyfrą tysięcy jest jeden, a cyfrą dziesiątek dwa. Odpowiedź

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI CZERWIEC 2011 POZIOM PODSTAWOWY CZĘŚĆ I WYBRANE: Czas pracy: 75 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z INFORMATYKI CZERWIEC 2011 POZIOM PODSTAWOWY CZĘŚĆ I WYBRANE: Czas pracy: 75 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY

Bardziej szczegółowo

ZADANIA PRZYGOTOWAWCZE

ZADANIA PRZYGOTOWAWCZE Kraj bez matematyki nie wytrzyma współzawodnictwa z tymi krajami, które matematykę uprawiają Hugo Steinhause X I Dąbrowski Konkurs Matematyczny Dla uczniów klas pierwszych szkół ponad gimnazjalnych Konkurs

Bardziej szczegółowo

MATEMATYKA KWIECIEŃ 2014 UZUPEŁNIA UCZEŃ. miejsce na naklejkę z kodem EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA

MATEMATYKA KWIECIEŃ 2014 UZUPEŁNIA UCZEŃ. miejsce na naklejkę z kodem EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UCZNIA UZUPEŁNIA UCZEŃ PESEL miejsce na naklejkę z kodem EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ

Bardziej szczegółowo

Spis treêci. Od Autorek / 5

Spis treêci. Od Autorek / 5 Spis treêci Od Autorek / 5 I. Ułamki zwykłe i dziesiętne / 7 1. Działania na ułamkach zwykłych i dziesiętnych / 7 2. Kolejność wykonywania działań / 12 3. Rozwinięcia dziesiętne ułamków / 14 4. Przybliżenia

Bardziej szczegółowo

KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM

KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM ... kod pracy ucznia... pieczątka nagłówkowa szkoły KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY Drogi Uczniu, witaj na I etapie konkursu matematycznego. Przeczytaj uważnie instrukcję

Bardziej szczegółowo

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY PESEL miejsce na naklejkę EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ. MATEMATYKA Instrukcja

Bardziej szczegółowo

Konkurs matematyczny im. Samuela Chróścikowskiego

Konkurs matematyczny im. Samuela Chróścikowskiego Konkurs matematyczny im. Samuela Chróścikowskiego Państwowa Wyższa Szkoła Zawodowa w Chełmie 13 marzec 2008 Imię i nazwisko:... Szkoła:... Wyrażam zgodę na przetwarzanie moich danych osobowych w zakresie

Bardziej szczegółowo

Informator o egzaminie maturalnym. od 2010 roku

Informator o egzaminie maturalnym. od 2010 roku Informator o egzaminie maturalnym od 010 roku Warszawa 008 Opracowano w Centralnej Komisji Egzaminacyjnej we współpracy z okręgowymi komisjami egzaminacyjnymi SPIS TREŚCI I. Wstęp... 5 II. Matura w pytaniach

Bardziej szczegółowo

Odpowiedzi do zadań zamkniętych. Schemat oceniania zadań otwartych

Odpowiedzi do zadań zamkniętych. Schemat oceniania zadań otwartych Odpowiedzi do zadań zamkniętych Nr zadania 3 4 5 6 7 8 9 0 3 4 5 6 7 8 9 0 3 4 5 Odpowiedź A C C B C A B C A D B C D B D C A B A A A C B A A Schemat oceniania zadań otwartych Zadanie 6. ( pkt) Rozwiąż

Bardziej szczegółowo

TEST KOŃCOWY Z MATEMATYKI

TEST KOŃCOWY Z MATEMATYKI I Liceum Ogólnokształcące w Słupsku TEST KOŃCOWY Z MATEMATYKI DLA UCZNIÓW LICEUM Słupsk, marzec 1998 r WSTĘP Test jest jedną z form kontroli osiągnięć ucznia, zwiększającą obiektywność jego oceny Testy

Bardziej szczegółowo

Zad. 1 Korzystając z rysunku oblicz długość odcinka OA, jeśli CD=4, AB=5, OC=8

Zad. 1 Korzystając z rysunku oblicz długość odcinka OA, jeśli CD=4, AB=5, OC=8 Testy do gimnazjum Jednokładność, podobieństwo, twierdzenie Talesa. Test dla klasy III Przekształcenia geometryczne. Grupa I Zad. Korzystając z rysunku oblicz długość odcinka OA, jeśli CD=4, AB=5, OC=

Bardziej szczegółowo

jest liczba (-1). a) Oblicz współczynnik a. b) Wyznacz pozostałe miejsca zerowe tego wielomianu. 8. Oblicz długość boku rombu. 15

jest liczba (-1). a) Oblicz współczynnik a. b) Wyznacz pozostałe miejsca zerowe tego wielomianu. 8. Oblicz długość boku rombu. 15 ZESTAW I Zad 1 (3 pkt) a) Zaznacz na osi liczbowej i zapisz w postaci przedziału zbiór wszystkich liczb rzeczywistych, których odległość na osi liczbowej od liczby (-1) jest niewiększa niż 4 b) Liczba

Bardziej szczegółowo

ZBIÓR ZADAŃ Z MATEMATYKI DLA KLASY II GIMNAZJUM W ZAKRESIE WYMAGAŃ KONIECZNYCH I PODSTAWOWYCH

ZBIÓR ZADAŃ Z MATEMATYKI DLA KLASY II GIMNAZJUM W ZAKRESIE WYMAGAŃ KONIECZNYCH I PODSTAWOWYCH ZBIÓR ZADAŃ Z MATEMATYKI DLA KLASY II GIMNAZJUM W ZAKRESIE WYMAGAŃ KONIECZNYCH I PODSTAWOWYCH Opracowała: nauczyciel matematyki mgr Małgorzata Drejka Legionowo 007 SPIS TREŚCI ALGEBRA potęgi i pierwiastki

Bardziej szczegółowo

Rozwiązania zadań. Arkusz maturalny z matematyki nr 1 POZIOM PODSTAWOWY

Rozwiązania zadań. Arkusz maturalny z matematyki nr 1 POZIOM PODSTAWOWY Rozwiązania zadań Arkusz maturalny z matematyki nr POZIOM PODSTAWOWY Zadanie (pkt) Sposób I Skoro liczba jest środkiem przedziału, więc odległość punktu x od zapisujemy przy pomocy wartości bezwzględnej.

Bardziej szczegółowo

PRÓBNY EGZAMIN GIMNAZJALNY

PRÓBNY EGZAMIN GIMNAZJALNY PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 11 KWIETNIA 2015 CZAS PRACY: 90 MINUT 1 Informacja do zadań 1 i 2 Koszt ubezpieczenia samochodu w pewnej firmie

Bardziej szczegółowo

WPISUJE UCZEŃ GRUDZIEŃ 2013. Czas pracy: 90 minut. Liczba punktów do uzyskania: 30

WPISUJE UCZEŃ GRUDZIEŃ 2013. Czas pracy: 90 minut. Liczba punktów do uzyskania: 30 WPISUJE UCZEŃ KOD UCZNIA PESEL PRÓBNY EGZAMIN GIMNAZJALNY Z OPERONEM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA Instrukcja dla ucznia 1. Sprawdź, czy zestaw egzaminacyjny zawiera 8 stron (zadania 1. 17.).

Bardziej szczegółowo

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej.

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej. Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE Rozwiązania Zadanie 1 Wartość bezwzględna jest odległością na osi liczbowej. Stop Istnieje wzajemnie jednoznaczne przyporządkowanie między punktami

Bardziej szczegółowo

Matematyka podstawowa V. Ciągi

Matematyka podstawowa V. Ciągi Matematyka podstawowa V Ciągi Teoria ciąg arytmetyczny - pierwszy wyraz ciągu - różnica Kolejny wyraz ciągu arytmetycznego powstaje przez dodanie do poprzedniego różnicy. = + Np. =2,=3 :2,5,8,11 = 4,=2

Bardziej szczegółowo

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI KLASA I Lb TECHNIKUM \ rok. LICZBY I DZIAŁANIA Liczby naturalne, całkowite, wymierne i niewymierne Działania na liczbach Przedziały liczbowe,działania na

Bardziej szczegółowo

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP REJONOWY

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP REJONOWY Kod ucznia - - pieczątka WKK Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP REJONOWY Drogi Uczniu Witaj na II etapie konkursu matematycznego. Przeczytaj uważnie

Bardziej szczegółowo

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. KOD UCZNIA UZUPEŁNIA UCZEŃ PESEL miejsce na naklejkę EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA Instrukcja dla

Bardziej szczegółowo

Sprawdzian z matematyki na zakończenie nauki w drugiej klasie gimnazjum

Sprawdzian z matematyki na zakończenie nauki w drugiej klasie gimnazjum Wypełnia uczeń Kod ucznia Sprawdzian z matematyki na zakończenie nauki w drugiej klasie gimnazjum Informacje dla ucznia 1. Sprawdź, czy sprawdzian ma 6 stron. Ewentualny brak stron lub inne usterki zgłoś

Bardziej szczegółowo

Klasa 1 LO. Wymagania wraz z przykładowymi zadaniami na ocenę dopuszczającą

Klasa 1 LO. Wymagania wraz z przykładowymi zadaniami na ocenę dopuszczającą Klasa LO Wymagania wraz z przykładowymi zadaniami na ocenę dopuszczającą ZBIÓR I PODZBIOR DZIAŁANIA NA ZBIORACH I W ZBIORACH Przykładowe zadania: potrafi określić rodzaj liczby (N, C, W, NW, R) ) Ze zbioru

Bardziej szczegółowo

Zadania na dowodzenie Opracowała: Ewa Ślubowska

Zadania na dowodzenie Opracowała: Ewa Ślubowska Egzamin Gimnazjalny Zadania na dowodzenie Opracowała: Ewa Ślubowska W nauczaniu matematyki ważne jest rozwijanie różnych aktywności umysłu. Ma temu służyć min. rozwiązywanie jednego zadania czy dowodzenie

Bardziej szczegółowo

Wielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii

Wielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii Wielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii Obliczenia geometryczne z zastosowaniem własności funkcji trygonometrycznych w wielokątach wypukłych Wielokąt - figura płaską będąca sumą

Bardziej szczegółowo

KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM

KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM pieczątka WKK Kod ucznia - - Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM ETAP WOJEWÓDZKI Drogi Uczniu Witaj na II etapie konkursu matematycznego. Przeczytaj

Bardziej szczegółowo

EGZAMIN MATURALNY 2011 MATEMATYKA

EGZAMIN MATURALNY 2011 MATEMATYKA Centralna Komisja Egzaminacyjna w Warszawie EGZAMIN MATURALNY 0 MATEMATYKA POZIOM PODSTAWOWY MAJ 0 Egzamin maturalny z matematyki poziom podstawowy Zadanie (0 ) Obszar standardów i tworzenie informacji

Bardziej szczegółowo

Zadanie 2. (0 1) Oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, lub F jeśli jest fałszywe.

Zadanie 2. (0 1) Oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, lub F jeśli jest fałszywe. Strona 1 z 12 liczba osób Informacje do zadań 1. i 2. W dwóch dziesięcioosobowych grupach uczniów przeprowadzono test sprawności notując czas (w sekundach) wykonywania ćwiczenia. Wyniki przedstawia poniższy

Bardziej szczegółowo

PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa VI szkoła podstawowa marzec 2012

PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa VI szkoła podstawowa marzec 2012 PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa VI szkoła podstawowa marzec 202 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. 2 Zad. 3 SUMA PUNKTÓW Poprawna Zad.

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym.

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym. Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 2 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

3 zawartości szklanki obliczył, że w pozostałej

3 zawartości szklanki obliczył, że w pozostałej Klasa I - zakres podstawowy Etap rejonowy 07.0.004 rok Zadanie 1 ( pkt ) Uzasadnij, że 7 50 : 81 37 jest liczbą większą od 8. Zadanie ( pkt ) Spośród 40 uczniów pewnej klasy 17 gra w szachy, 1 w brydża,

Bardziej szczegółowo

X Dąbrowski Konkurs Matematyczny Dla uczniów klas pierwszych szkół ponad gimnazjalnych

X Dąbrowski Konkurs Matematyczny Dla uczniów klas pierwszych szkół ponad gimnazjalnych Kraj bez matematyki nie wytrzyma współzawodnictwa z tymi krajami, które matematykę uprawiają Hugo Steinhause X Dąbrowski Konkurs Matematyczny Dla uczniów klas pierwszych szkół ponad gimnazjalnych Cele

Bardziej szczegółowo

OGÓLNOPOLSKI SPRAWDZIAN KOMPETENCJI TRZECIOKLASISTY 2008

OGÓLNOPOLSKI SPRAWDZIAN KOMPETENCJI TRZECIOKLASISTY 2008 Imi i nazwisko ucznia.... Wype nia nauczyciel Klasa.... OGÓLNOPOLSKI SPRAWDZIAN KOMPETENCJI Numer ucznia w dzienniku TRZECIOKLASISTY 2008 Czas pracy: 2 razy po 45 minut Liczba punktów do uzyskania: 40

Bardziej szczegółowo

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych etap rejonowy

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych etap rejonowy Punktacja Numer zadania Kod ucznia: 29.11.2014r. Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych etap rejonowy.. Wypełnia komisja konkursowa 1 2 3 4 5 Razem.. Wskazówki dla

Bardziej szczegółowo