Wykłady specjalistyczne. (wszystkie specjalności oprócz specjalności nauczycielskiej) oferowane na stacjonarnych studiach II stopnia (dla 2 roku)
|
|
- Jerzy Szczepaniak
- 8 lat temu
- Przeglądów:
Transkrypt
1 Wykłady specjalistyczne (wszystkie specjalności oprócz specjalności nauczycielskiej) oferowane na stacjonarnych studiach II stopnia (dla 2 roku) w roku akademickim 2015/2016 (semestr zimowy)
2 Spis treści 1. Convex Functions and Risk Measures Cryptography Matematyczne metody w modelowaniu rynków finansowych Statystyczne modelowanie procesów ekonomicznych i finansowych Układy dynamiczne na miarach - modele fizyczne i biologiczne
3 1. Convex Functions and Risk Measures (wykład specjalistyczny [03-MO2S-15-MSpe- CFaRM]) Specjalność F+T Poziom 4 Status W L. godz. tyg. 2 W+ 2 L L. pkt. 6 Socr. Code 11.1 Convex functions. Basic properties. Generalizations. Different concepts and definitions of risk. The notion of risk measure. Properties. Examples. Properties of Value at Risk. Deviation risk measures. Convex and coherent risk measures and their representations. Relations between various risk measures. Applications in market risk. Wykład jest prowadzony w ramach studiów Polsko-Włoskich Intermath 1. Kenneth J. Arrow, Essays in the theory of risk-bearing, North-Holland Publishing Co., Amsterdam-London, Freddy Delbaen, Coherent risk measures, Cattedra Galileiana. [Galileo Chair], Scuola Normale Superiore, Classe di Scienze, Pisa, Jan Grandell, Aspects of risk theory, Springer Series in Statistics: Probability and its Applications, Springer- Verlag, New York, Alexander J. McNeil, Rüdiger Frey, and Paul Embrechts, Quantitative risk management, Princeton Series in Finance, Princeton University Press, Princeton, NJ, Concepts, techniques and tools. 5. Georg Ch. Pflug and Werner Römisch, Modeling, measuring and managing risk, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, A. Wayne Roberts and Dale E. Varberg, Convex functions, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, Pure and Applied Mathematics, Vol Ludger Rüschendorf, Mathematical risk analysis, Springer Series in Operations Research and Financial Engineering, Springer, Heidelberg, Dependence, risk bounds, optimal allocations and portfolios. dr hab. Włodzimierz Fechner. 3
4 2. Cryptography (wykład specjalistyczny [03-MO2S-15-MSpe-Cryp]) Specjalność M+T Poziom 4 Status W L. godz. tyg. 2 W+ 2 L L. pkt. 6 Socr. Code 11.1 This course will consist of an introduction to the mathematical foundations of cryptography. We will study results from number theory and algebra and how they are used for the safe trans- mission of information. We will discuss various security protocols, the mathematical principles needed for them, and the mathematical principles used in possible attacks. Brief outline of the topics covered: Mathematical Background Symmetric Cryptosystems Asymmetric Cryptosystems Pri- mality Testing Factoring Integers RSA Discrete Logarithm Cryptographic Schemes Diffie-Hellman ElGamal Public Key Management Security Questions and Attacks. Wykład jest prowadzony w ramach studiów Polsko-Włoskich Intermath 1. Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone: Handbook of Applied Cryptography, CRC Press, ISBN: J. A. Buchmann: Introduction to Cryptography. Undergraduate Texts in Mathematics, 2nd edition (paperback), Springer, ISBN: C. Vanden Eynden: Elementary Number Theory, McGraw-Hill, ISBN Neal Koblitz: A course in number theory and cryptography, Springer GTM 114, ISBN Prof. dr hab. Franz-Viktor Kuhlmann. 4
5 3. Matematyczne metody w modelowaniu rynków finansowych (wykład specjalistyczny [03-MO2S-15-MSpe-MMwMRF]) Specjalność F+T Poziom 3 Status W L. godz. tyg. 2 W+ 2 L L. pkt. 6 Socr. Code Modele z czasem dyskretnym (teoria arbitrażu, miary martyngałowe, wycena instrumentów pochodnych, modele zupełne i niezupełne). Modele rynków finansowych z nieskończonym horyzontem czasowym (metoda systemów rzutowych). Modele z czasem ciągłym i ich dyskretna aproksymacja. Transformata Esschera i jej zastosowania do konstrukcji równoważnych miar martyngałowych. 1. R.J.Elliott, P.E.Kopp, Mathematics of financial markets, Springer H.U.Gerber, E.S.W.Shiu, Option pricing by Esscher transforms, Transactions of Society of Actuaries 1994, vol 46, J.Jakubowski, Modelowanie rynków finansowych, SCRIPT J.Jakubowski, A.Palczewski, M.Rutkowski, Ł.Stettner, Matematyka finansowa, instrumenty pochodne, WNT M.Musiela, M.Rutkowski, Martingale methods in financial modelling, Springer A.Weron, R.Weron, Inżynieria finansowa, WNT Prace A.Balbas, M.Fritelli, H.Follmer, M.Schweizer. dr Maria Górnioczek. 5
6 4. Statystyczne modelowanie procesów ekonomicznych i finansowych (wykład specjalistyczny [03-MO2S-13-MSpe-SMPEiF]) Specjalność F+T Poziom 3 Status W L. godz. tyg. 2 W+ 2 L L. pkt. 6 Socr. Code 1. Kryteria selekcji modeli ekonometrycznych. 2. Uogólnione modele liniowe, estymacja parametrów modeli. Wnioskowanie statystyczne w modelach liniowych. 3. Jednorównaniowe i wielorównaniowe liniowe modele ekonometryczne. 4. Nieliniowe modele ekonometryczne. 5. Modele o parametrach zmieniających się w czasie. 6. Modele budowane przy założeniu racjonalnych oczekiwań co do przyszłości. 7. Modele układów ekonomicznych działających racjonalnie. 8. Wybrane modele szeregów czasowych z obserwacjami odstającymi,wahaniami cyklicznymi,wahaniami sezonowymi. 9. Modele ARIMA.GARCH,ARCH 10. Prognozowanie na podstawie różnych modeli ekonometrycznych. 11. Prognozowanie finansowe. 12. Metody jakościowe prognozowania. 13. Wskaźnik giełdy jako jednorównaniowy model ekonometryczny. 14. Modele wyceny nieruchomości. 15. System prognostyczny przedsiębiorstwa. 16. Wykorzystanie pakietów statystycznych do analizy aktualnych problemów ekonometrycznych i finansowych. 1. Barczak A, Biolik J,Podstawy ekonometrii, Katowice Charemza D, Dedeman D, Nowa ekonometria, PWE Chow G, C, Ekonometria, PWN Kolupa M, Plebaniak J, Budowa portfela lokat, PWE Nowak E,Prognozowanie gospodarcze, W-wa SGH Warszawa Ekonometria, Rao C.R, Modele liniowe statystyki matematycznej, PWN Dittman P, Prognozowanie w przedsiębiorstwie, OF, Kraków 2004 dr Irena Wistuba. 6
7 5. Układy dynamiczne na miarach - modele fizyczne i biologiczne (wykład specjalistyczny [03-MO2S-15-MSpe-UDnM]) Specjalność M+T Poziom 4 Status W L. godz. tyg. 2 W+ 2 L L. pkt. 6 Socr. Code 11.1 Wprowadzenie. Twierdzenia o podnoszeniu kontrakcji nad zbiorem zwartym. Metryki i normy w przestrzeni miar znakozmiennych. Problem transportu masy a zasady maksimum dla podstawowych metryk: Kantorowicza-Wassersteina, Fortet-Mouriera oraz całkowitego wahania. Zasady maksimum oraz zasady niezmienniczości w teorii stabilności układów dynamicznych na miarach: a) układy dynamiczne generowane przez różne wersje równań typu Boltzmanna na miarach - modelowanie zderzeń cząstek w gazie rzadkim, b) twierdzenia graniczne a sperturbowane układy dynamiczne z czasem dyskretnym - modele biologiczne, c) układy dynamiczne generowane przez impulsowe równanie Poissona (znane też jako stochastyczne równanie z zaburzeniami typu Poissona) - w modelowaniu cyklu komórkowego, d) uogólnione Iterowane Układy Funkcyjne - konstrukcje matematycznych modeli cyklu komórkowego. 1. H. Gacki, Applications of the Kantorovich-Rubinstein maximum principle in the theory of Markov semigroups, Dissertationes Mathematicae 448 (2007), H. Gacki, Skrypt - A. Lasota, Układy dynamiczne na miarach, Wydawnictwo Uniwersytetu Śląskiego, Katowice L. V. Kantorovich, G. S. Rubinstein, On a space of completely additive functions (in Russian), Vestnik Leningrad Univ. 13 (1958), J. P. Lasalle, The Stability of Dynamical Systems, Regional Conference Series in Applied Mathematics 25, Society for Industrial and Applied Mathematics, Philadelfia A. Lasota and M. C. Mackey, Chaos, Fractals, and Noise, Springer-Verlag, Berlin A. Lasota and M. C. Mackey, Cell division and the stability of cellular populations, J. Math. Biol. 38 (1999), G. Monge, Mémoire sur la théorie des déblais et des ermblais, Histoire de l Académie des Sciences de Paris, avec les Mémoires de mathématique et de phisique pour la méme année, pp , avec 2 pl. (1781). dr hab. Henryk Gacki. 7
Wykłady specjalistyczne. oferowane na kierunku matematyka. w roku akademickim 2017/2018. studia stacjonarne II stopnia, 2 rok
Wykłady specjalistyczne oferowane na kierunku matematyka w roku akademickim 2017/2018 studia stacjonarne II stopnia, 2 rok 1. Applied Graph Theory (wykład prowadzony w j. angielskim na studiach Intermath)
Wykłady specjalistyczne. oferowane na kierunku matematyka. w roku akademickim 2016/2017. studia stacjonarne II stopnia, 2 rok
Wykłady specjalistyczne oferowane na kierunku matematyka w roku akademickim 2016/2017 studia stacjonarne II stopnia, 2 rok 1. Applied Graph Theory (wykład prowadzony w j. angielskim na studiach Intermath)
Wykłady specjalistyczne. oferowane na kierunku matematyka. w roku akademickim 2018/2019 (semestr zimowy) studia stacjonarne II stopnia, 2 rok
Wykłady specjalistyczne oferowane na kierunku matematyka w roku akademickim 2018/2019 (semestr zimowy) studia stacjonarne II stopnia, 2 rok 1. Applied Graph Theory (wykład prowadzony w j. angielskim na
Wykłady specjalistyczne. oferowane na kierunku matematyka. w roku akademickim 2019/2020 (semestr zimowy) studia stacjonarne II stopnia, 2 rok
Wykłady specjalistyczne oferowane na kierunku matematyka w roku akademickim 2019/2020 (semestr zimowy) studia stacjonarne II stopnia, 2 rok 1. Applied Graph Theory (wykład prowadzony w j. angielskim na
Wykłady specjalistyczne. (Matematyka w finansach i ekonomii; Matematyczne podstawy informatyki)
Wykłady specjalistyczne (Matematyka w finansach i ekonomii; Matematyczne podstawy informatyki) oferowane na stacjonarnych studiach I stopnia (dla 3 roku) w roku akademickim 2017/2018 (semestr zimowy) Spis
Wykłady specjalistyczne. (specjalność: Matematyka w finansach i ekonomii) oferowane na stacjonarnych studiach I stopnia (dla 3 roku)
Wykłady specjalistyczne (specjalność: Matematyka w finansach i ekonomii) oferowane na stacjonarnych studiach I stopnia (dla 3 roku) w roku akademickim 2015/2016 (semestr zimowy) Spis treści 1. MODELE SKOŃCZONYCH
Przedmioty do wyboru oferowane na stacjonarnych studiach II stopnia (magisterskich) dla II roku w roku akademickim 2015/2016
Przedmioty do wyboru oferowane na stacjonarnych studiach II stopnia (magisterskich) dla II roku w roku akademickim 2015/2016 Przedmioty do wyboru oferowane na semestr IV - letni (I rok) Prowadzący Przedmiot
Wykłady specjalistyczne. (Matematyka w finansach i ekonomii; Matematyczne metody informatyki)
Wykłady specjalistyczne (Matematyka w finansach i ekonomii; Matematyczne metody informatyki) oferowane na stacjonarnych studiach I stopnia (dla 3 roku) w roku akademickim 2018/2019 (semestr zimowy) Spis
Opisy przedmiotów do wyboru
Opisy przedmiotów do wyboru moduły specjalistyczne oferowane na stacjonarnych studiach II stopnia (magisterskich) dla 2 roku matematyki semestr letni, rok akademicki 2017/2018 Spis treści 1. Data mining
Wykłady specjalistyczne. (Matematyka w finansach i ekonomii; Matematyczne metody informatyki)
Wykłady specjalistyczne (Matematyka w finansach i ekonomii; Matematyczne metody informatyki) oferowane na stacjonarnych studiach I stopnia (dla 3 roku) w roku akademickim 2019/2020 (semestr zimowy) Spis
Przedmioty do wyboru oferowane na stacjonarnych studiach I stopnia (licencjackich) dla II roku w roku akademickim 2015/2016
Przedmioty do wyboru oferowane na stacjonarnych studiach I stopnia (licencjackich) dla II roku w roku akademickim 2015/2016 Przedmioty do wyboru oferowane na semestr IV - letni (II rok) Prowadzący Przedmiot
Opisy przedmiotów do wyboru
Opisy przedmiotów do wyboru moduły specjalistyczne oferowane na stacjonarnych studiach II stopnia (magisterskich) dla 1 roku matematyki semestr letni, rok akademicki 2018/2019 Spis treści 1. Analiza portfelowa
Opisy przedmiotów do wyboru
Opisy przedmiotów do wyboru moduły specjalistyczne oferowane na stacjonarnych studiach II stopnia (magisterskich) dla 1 roku matematyki semestr letni, rok akademicki 2017/2018 Spis treści 1. Algebra i
Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka finansowa Rocznik: 2014/2015 Język wykładowy: Polski Semestr
Opisy przedmiotów do wyboru
Opisy przedmiotów do wyboru moduły specjalistyczne oferowane na stacjonarnych studiach II stopnia (magisterskich) dla 2 roku matematyki semestr letni, rok akademicki 2017/2018 Spis treści 1. Data mining
SEMINARIA DYPLOMOWE - studia II stopnia kierunek: informatyka i ekonometria oraz matematyka
SEMINARIA DYPLOMOWE - studia II stopnia kierunek: informatyka i ekonometria oraz matematyka Seminarium: Teoria grafów (IiE+MAT) Prowadzący: prof. dr hab. Mieczysław Borowiecki (1) Grafy na sferze i na
Przedmioty do wyboru. oferowane na stacjonarnych studiach II stopnia (dla II roku) w roku akademickim 2014/2015 (semestr zimowy)
Przedmioty do wyboru oferowane na stacjonarnych studiach II stopnia (dla II roku) w roku akademickim 2014/2015 (semestr zimowy) Spis treści 1. Badania operacyjne...................................... 3
Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka w informatyce Rocznik: 2013/2014 Język wykładowy: Polski
Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka ubezpieczeniowa Rocznik: 2013/2014 Język wykładowy: Polski
Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka finansowa Rocznik: 2013/2014 Język wykładowy: Polski Semestr
Propozycje przedmiotów do wyboru. oferowane na stacjonarnych studiach I stopnia (dla 2 roku) w roku akademickim 2013/2014
Propozycje przedmiotów do wyboru oferowane na stacjonarnych studiach I stopnia (dla 2 roku) w roku akademickim 2013/2014 Spis treści 1. ANALIZA PORTFELOWA I RYNKI KAPITAŁOWE................... 3 2. ELEMENTY
Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka ubezpieczeniowa Rocznik: 2016/2017 Język wykładowy: Polski
Ekonometria dynamiczna i finansowa Kod przedmiotu
Ekonometria dynamiczna i finansowa - opis przedmiotu Informacje ogólne Nazwa przedmiotu Ekonometria dynamiczna i finansowa Kod przedmiotu 11.5-WK-IiED-EDF-W-S14_pNadGenMOT56 Wydział Kierunek Wydział Matematyki,
Matematyka Stosowana na Politechnice Wrocławskiej. Komitet Matematyki PAN, luty 2017 r.
Matematyka Stosowana na Politechnice Wrocławskiej Komitet Matematyki PAN, luty 2017 r. Historia kierunku Matematyka Stosowana utworzona w 2012 r. na WPPT (zespół z Centrum im. Hugona Steinhausa) studia
Opisy przedmiotów do wyboru. oferowane na stacjonarnych studiach I stopnia dla 3 roku matematyki semestr letni, rok akademicki 2017/2018
Opisy przedmiotów do wyboru moduły specjalistyczne oferowane na stacjonarnych studiach I stopnia dla 3 roku matematyki semestr letni, rok akademicki 2017/2018 Spis treści 1. Wstęp do matematyki ubezpieczeń..............................
Teoria opcji SYLABUS
Teoria opcji nazwa przedmiotu SYLABUS B. Informacje szczegółowe Elementy składowe sylabusu Opis Nazwa przedmiotu Teoria opcji Kod przedmiotu 0600-FS2-2TO Nazwa jednostki prowadzącej Wydział Matematyki
SEMINARIA DYPLOMOWE - studia II stopnia kierunek: informatyka i ekonometria oraz matematyka
SEMINARIA DYPLOMOWE - studia II stopnia kierunek: informatyka i ekonometria oraz matematyka 2018-2019 Seminarium: Optymalizacja przydziału zasobów w terminach kolorowań grafów (MAT) Prowadzący: dr hab.
Propozycje przedmiotów do wyboru. oferowane na stacjonarnych studiach I stopnia (dla 3 roku) w roku akademickim 2013/2014
Propozycje przedmiotów do wyboru oferowane na stacjonarnych studiach I stopnia (dla 3 roku) w roku akademickim 2013/2014 Spis treści 1. EKONOMETRIA....................................... 3 2. EKONOMIA
Uniwersytet Śląski w Katowicach WYDZIAŁ MATEMATYKI, FIZYKI I CHEMII. Kierunek Matematyka. Studia stacjonarne i niestacjonarne I i II stopnia
Uniwersytet Śląski w Katowicach WYDZIAŁ MATEMATYKI, FIZYKI I CHEMII Kierunek Matematyka Studia stacjonarne i niestacjonarne I i II stopnia Organizacja roku akademickiego 2017/2018 Studia stacjonarne I
I. KARTA PRZEDMIOTU CEL PRZEDMIOTU
I. KARTA PRZEDMIOTU 1. Nazwa przedmiotu: MATEMATYKA STOSOWANA II 2. Kod przedmiotu: Ma2 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny 4. Kierunek: Mechatronika 5. Specjalność: Zastosowanie informatyki
Kierunek i poziom studiów: Matematyka, studia II stopnia, rok 1 Sylabus modułu: Analiza rzeczywista (03-MO2S-12-ARze)
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia II stopnia, rok 1 Sylabus modułu: Analiza rzeczywista (03-MO2S-12-ARze) 1. Informacje ogólne koordynator modułu prof.
SEMINARIA DYPLOMOWE - studia II stopnia kierunek: informatyka i ekonometria oraz matematyka
SEMINARIA DYPLOMOWE - studia II stopnia kierunek: informatyka i ekonometria oraz matematyka Seminarium: Metoda Kaczmarza, jej modyfikacje i zastosowania inżynierskie (IiE+MAT) Prowadzący: prof. dr hab.
SYLABUS PRZEDMIOTU rok akademicki 2012/2013
SYLABUS PRZEDMIOTU rok akademicki 2012/2013 Elementy składowe sylabusu Opis Nazwa przedmiotu Kod przedmiotu Nazwa kierunku Nazwa jednostki prowadzącej kierunek Język przedmiotu Charakterystyka przedmiotu
Ekonomia II stopień ogólnoakademicki. stacjonarne wszystkie Katedra Matematyki Dr hab. Artur Maciąg. podstawowy. obowiązkowy polski.
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Z-EKO2-500 Nazwa modułu Ekonometria i prognozowanie procesów ekonomicznych Nazwa modułu w języku angielskim Econometrics and forecasting economics proceses Obowiązuje
KARTA KURSU. Podstawy modelowania i symulacji
KARTA KURSU Nazwa Nazwa w j. ang. Podstawy modelowania i symulacji Foundations of modeling and simulation Kod Punktacja ECTS* 3 Koordynator prof. dr hab. Władimir Mitiuszew Zespół dydaktyczny: prof. dr
Propozycje przedmiotów do wyboru. oferowane na niestacjonarnych studiach II stopnia (dla 2 roku) w roku akademickim 2013/2014
Propozycje przedmiotów do wyboru oferowane na niestacjonarnych studiach II stopnia (dla 2 roku) w roku akademickim 2013/2014 Spis treści 1. Arytmetyka........................................... 3 2. Inżynieria
Teoria opcji 2015/2016
Teoria opcji 2015/2016 nazwa przedmiotu SYLABUS B. Informacje szczegółowe Elementy składowe Opis sylabusu Nazwa przedmiotu Teoria opcji Kod przedmiotu 0600-FS2-2TO Nazwa jednostki Wydział Matematyki i
Kluczowe przedmioty dla studentów studiów licencjackich i magisterskich na WNE UW od roku 2017/2018. Studia I stopnia
Kluczowe przedmioty dla studentów studiów licencjackich i magisterskich na WNE UW od roku 2017/2018 Przedmioty kluczowe (na podstawie Szczegółowych Zasad Studiowania na Wydziale Nauk Ekonomicznych Uniwersytetu
SEMINARIA DYPLOMOWE - studia II stopnia kierunek: informatyka i ekonometria oraz matematyka
SEMINARIA DYPLOMOWE - studia II stopnia kierunek: informatyka i ekonometria oraz matematyka Seminarium: Optymalizacja przydziału zasobów w terminach kolorowań grafów (MAT) Prowadzący: dr hab. Ewa Drgas-Burchardt,
Modelowanie stochastyczne Stochastic Modeling. Poziom przedmiotu: II stopnia. Liczba godzin/tydzień: 2W E, 2C
Nazwa przedmiotu: Kierunek: Matematyka Rodzaj przedmiotu: obowiązkowy dla specjalności matematyka przemysłowa Rodzaj zajęć: wykład, ćwiczenia Modelowanie stochastyczne Stochastic Modeling Poziom przedmiotu:
ECTS Razem 30 Godz. 330
3-letnie stacjonarne studia licencjackie kier. Matematyka profil: ogólnoakademicki Semestr 1 Przedmioty wspólne Algebra liniowa z geometrią analityczną I 7 30 30 E Analiza matematyczna I 13 60 60 E Technologie
WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU
WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim: Wybrane aspekty ubezpieczeń i reasekuracji Nazwa w języku angielskim: Selected Aspects Of Insurance And Reinsurance Kierunek
Kierunkowy Obowiązkowy Polski Semestr VI
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2015/2016 Z-ID-603 Prognozowanie i symulacje w przedsiębiorstwie Forecasting and
PLANY I PROGRAMY STUDIÓW
WYDZIAŁ INŻYNIERII PRODUKCJI I LOGISTYKI PLANY I PROGRAMY STUDIÓW STUDY PLANS AND PROGRAMS KIERUNEK STUDIÓW FIELD OF STUDY - ZARZĄDZANIE I INŻYNIERIA PRODUKCJI - MANAGEMENT AND PRODUCTION ENGINEERING Studia
strona 1 / 12 Autor: Walesiak Marek Publikacje:
Autor: Walesiak Marek Publikacje: 1. Autorzy rozdziału: Borys Tadeusz; Strahl Danuta; Walesiak Marek Tytuł rozdziału: Wkład ośrodka wrocławskiego w rozwój teorii i zastosowań metod taksonomicznych, s.
Rozwiązywanie równań liniowych. Transmitancja. Charakterystyki częstotliwościowe
Zał. nr do ZW 33/01 WYDZIAŁ Informatyki i Zarządzania / STUDIUM KARTA PRZEDMIOTU Nazwa w języku polskim Modele systemów dynamicznych Nazwa w języku angielskim Dynamic Systems Models. Kierunek studiów (jeśli
PLAN STUDIÓW STACJONARNYCH I NIESTACJONARNYCH WIECZOROWYCH II STOPNIA (od roku akademickiego 2015/2016)
PLAN STUDIÓW STACJONARNYCH I NIESTACJONARNYCH WIECZOROWYCH II STOPNIA (od roku akademickiego 2015/2016) Kierunek: Informatyka i Ekonometria Specjalność: Elektroniczny Biznes Lp. Przedmioty Grupa Wymiar
Uniwersytet Śląski w Katowicach WYDZIAŁ MATEMATYKI, FIZYKI I CHEMII. Kierunek Matematyka. Studia stacjonarne i niestacjonarne I i II stopnia
Uniwersytet Śląski w Katowicach WYDZIAŁ MATEMATYKI, FIZYKI I CHEMII Kierunek Matematyka Studia stacjonarne i niestacjonarne I i II stopnia Organizacja roku akademickiego 2016/2017 Studia stacjonarne I
KATALOG KURSÓW PRZEDMIOTY KSZTACŁENIA PODSTAWOWEGO I OGÓLNEGO
1 KATALOG KURSÓW PRZEDMIOTY KSZTACŁENIA PODSTAWOWEGO I OGÓLNEGO ROK AKADEMICKI 2018/2019 2 Politechnika Wrocławska Katalog kursów przedmiotów kształcenia podstawowego i ogólnego Oferta Ogólnouczelniana
LITERATURA I TREŚCI PROGRAMOWE STUDIÓW PODYPLOMOWYCH MATEMATYKA FINANSOWA I UBEZPIECZENIOWA
Załącznik nr 2 do zarządzenia nr 165 Rektora Uniwersytetu Śląskiego w Katowicach z dnia 26 października 2012 r. LITERATURA I TREŚCI PROGRAMOWE STUDIÓW PODYPLOMOWYCH MATEMATYKA FINANSOWA I UBEZPIECZENIOWA
3-letnie (6-semestralne) stacjonarne studia licencjackie kier. matematyka stosowana profil: ogólnoakademicki. Semestr 1. Przedmioty wspólne
3-letnie (6-semestralne) stacjonarne studia licencjackie kier. matematyka stosowana profil: ogólnoakademicki Semestr 1 Przedmioty wspólne Nazwa przedmiotu ECTS W Ć L P S Zal. Algebra liniowa z geometrią
SEMINARIA DYPLOMOWE - studia II stopnia kierunek: informatyka i ekonometria oraz matematyka
SEMINARIA DYPLOMOWE - studia II stopnia kierunek: informatyka i ekonometria oraz matematyka Seminarium: Matematyka dyskretna (IiE+MAT) Prowadzący: prof. dr hab. Mieczysław Borowiecki Teoria grafów, hipergrafów
STATYSTYKA OD PODSTAW Z SYSTEMEM SAS. wersja 9.2 i 9.3. Szkoła Główna Handlowa w Warszawie
STATYSTYKA OD PODSTAW Z SYSTEMEM SAS wersja 9.2 i 9.3 Szkoła Główna Handlowa w Warszawie Spis treści Wprowadzenie... 6 1. Podstawowe informacje o systemie SAS... 9 1.1. Informacje ogólne... 9 1.2. Analityka...
3. Plan studiów PLAN STUDIÓW. Faculty of Fundamental Problems of Technology Field of study: MATHEMATICS
148 3. Plan studiów PLAN STUDIÓW 3.1. MATEMATYKA 3.1. MATHEMATICS - MSc studies - dzienne studia magisterskie - day studies WYDZIAŁ: PPT KIERUNEK: MATEMATYKA SPECJALNOŚCI: Faculty of Fundamental Problems
Wydział Zarządzania i Modelowania Komputerowego Politechnika Świętokrzyska Plan studiów Kierunek Ekonomia - studia stacjonarne pierwszego stopnia
Wydział Zarządzania i Modelowania Komputerowego Politechnika Świętokrzyska Plan studiów Kierunek Ekonomia - studia stacjonarne pierwszego stopnia obowiązujący od roku akademickiego 01/017 (W wykład, C
PLAN STUDIÓW Wydział Elektroniki, Telekomunikacji i Informatyki, Wydział Zarządzania i Ekonomii Inżynieria danych
WYDZIAŁ: KIERUNEK: poziom kształcenia: profil: forma studiów: Lp. O/F kod modułu/ przedmiotu* SEMESTR 1 1 O PG_00045356 Business law 2 O PG_00045290 Basics of computer programming 3 O PG_00045352 Linear
strona 1 / 11 Autor: Walesiak Marek Subdyscyplina: Klasyfikacja i analiza danych Publikacje:
Autor: Walesiak Marek Subdyscyplina: Klasyfikacja i analiza danych Publikacje: 1. Autorzy rozdziału: Borys Tadeusz; Strahl Danuta; Walesiak Marek Tytuł rozdziału: Wkład ośrodka wrocławskiego w rozwój teorii
PLANY I PROGRAMY STUDIÓW
WYDZIAŁ INŻYNIERII PRODUKCJI I LOGISTYKI PLANY I PROGRAMY STUDIÓW STUDY PLANS AND PROGRAMS KIERUNEK STUDIÓW FIELD OF STUDY - ZARZĄDZANIE I INŻYNIERIA PRODUKCJI - MANAGEMENT AND PRODUCTION ENGINEERING Studia
LISTA KURSÓW PLANOWANYCH DO URUCHOMIENIA W SEMESTRZE ZIMOWYM 2015/2016
LISTA KURSÓW PLANOWANYCH DO URUCHOMIENIA W SEMESTRZE ZIMOWYM 2015/2016 ZARZĄDZANIE I STOPNIA studia stacjonarne 1 sem. PO-W08-ZZZ-ZP- -ST-IL-WRO (2015/2016) MAP008010W Matematyka 30 MAP008010C Matematyka
PLANY STUDIÓW I 0 NIESTACJONARNYCH 6 SEMESTRÓW 1080 godz punktów ECTS I ROK STUDIÓW ( od roku akademickiego 2012/2013) studia 3 - letnie
WYDZIAŁ ZARZĄDZANIA UNIWERSYTET EKONOMICZNY W POZNANIU PLANY STUDIÓW I 0 NIESTACJONARNYCH I ROK STUDIÓW ( od roku akademickiego 2012/2013) Specjalność: Analityka usług (po zmianie nazwy z: Analiza rynku
Zastosowania metod analitycznej złożoności obliczeniowej do przetwarzania sygnałów cyfrowych oraz w metodach numerycznych teorii aproksymacji
Zastosowania metod analitycznej złożoności obliczeniowej do przetwarzania sygnałów cyfrowych oraz w metodach numerycznych teorii aproksymacji Marek A. Kowalski Uniwersytet Kardynała Stefana Wyszyńskiego
PLAN STUDIÓW STACJONARNYCH I NIESTACJONARNYCH WIECZOROWYCH II STOPNIA OD ROKU AKADEMICKIEGO 2017/2018
PLAN STUDIÓW STACJONARNYCH I NIESTACJONARNYCH WIECZOROWYCH II STOPNIA OD ROKU AKADEMICKIEGO 2017/2018 Kierunek: Informatyka i Ekonometria Specjalność: Analityka gospodarcza Lp. Przedmioty Grupa Wymiar
Katedra Demografii i Statystki Ekonomicznej
Katedra Demografii i Statystki Ekonomicznej Wydział Informatyki i Komunikacji http://www.ue.katowice.pl/jednostki/katedry/katedry-wiik/ Skład osobowy Katedry Pracownicy: prof. zw. dr hab. Grażyna Trzpiot
Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć
WYDZIAŁ MATEMATYKI KARTA PRZEDMIOTU Nazwa w języku polskim WSTĘP DO STATYSTYKI MATEMATYCZNEJ Nazwa w języku angielskim Introduction to Mathematical Statistics Kierunek studiów (jeśli dotyczy): Matematyka
SEMINARIA DYPLOMOWE DLA KIERUNKU
SEMINARIA DYPLOMOWE DLA KIERUNKU M A T E M A T Y K A UWAGA: Wybieramy dwa seminaria dyplomowe (w planie semestru II na studiach drugiego stopnia znajduje się seminarium 1A oraz seminarium 1B). Jedno z
PLAN STUDIÓW STACJONARNYCH DRUGIEGO STOPNIA DLA KIERUNKU MATEMATYKA NA WYDZIALE MATEMATYKI, INFORMATYKI I EKONOMETRII UNIWERSYTETU ZIELONOGÓRSKIEGO
PLAN STUDIÓW STACJONARNYCH DRUGIEGO STOPNIA DLA KIERUNKU MATEMATYKA NA WYDZIALE MATEMATYKI, INFORMATYKI I EKONOMETRII UNIWERSYTETU ZIELONOGÓRSKIEGO rekrutacja w roku akademickim 2014/2015 Zatwierdzono:
WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU
WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim: STATYSTYKA W MODELACH NIEZAWODNOŚCI I ANALIZIE PRZEŻYCIA Nazwa w języku angielskim: STATISTICS IN RELIABILITY MODELS AND
Ekonofizyka 2 (Metody fizyki w ekonomii 2)
Załącznik nr 2 do zarządzenia Nr 33/2012 z dnia 25 kwietnia 2012 r. OPIS PRZEDMIOTU/MODUŁU KSZTAŁCENIA (SYLABUS) 1. Nazwa przedmiotu/modułu w języku polskim Ekonofizyka 2 (Metody fizyki w ekonomii 2) 2.
Metody komputerowe statystyki Computer Methods in Statistics. Matematyka. Poziom kwalifikacji: II stopnia. Liczba godzin/tydzień: 2W, 3L
Nazwa przedmiotu: Kierunek: Metody komputerowe statystyki Computer Methods in Statistics Matematyka Rodzaj przedmiotu: przedmiot obowiązkowy dla specjalności matematyka przemysłowa Rodzaj zajęć: wykład,
WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU
Zał. nr do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim Analiza sygnałów Nazwa w języku angielskim Signal analysis Kierunek studiów (jeśli dotyczy): Matematyka stosowana
Interdyscyplinarne seminaria
26 II 2019, uaktualnione: 5 III 2019, 12 III 2019 Interdyscyplinarne seminaria semestr letni 2018/2019 Zajęcia: wt. 8:15-9:00 s. 3.11, bud. C-11 Prowadzący: prof. dr hab. Krzysztof Bogdan dr Damian Brzyski
PLANY I PROGRAMY STUDIÓW
WYDZIAŁ INŻYNIERII PRODUKCJI I LOGISTYKI PLANY I PROGRAMY STUDIÓW STUDY PLANS AND PROGRAMS KIERUNEK STUDIÓW FIELD OF STUDY - INŻYNIERIA BEZPIECZEŃSTWA - SECURITY ENGINEERING Studia niestacjonarne pierwszego
Informatyka I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny) podstawowy (podstawowy / kierunkowy / inny HES)
KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
ZARZĄDZANIE I INŻYNIERIA PRODUKCJI studia stacjonarne pierwszego stopnia obowiązuje od roku akademickiego 2013/2014
ZARZĄDZANIE I INŻYNIERIA PRODUKCJI studia stacjonarne pierwszego stopnia obowiązuje od roku akademickiego 03/0 Semestr I Język angielski Repetytorium z matematyki 0 0 3 Algebra liniowa 3 Analiza matematyczna
INFORMACJA O PRZEDMIOTACH OFEROWANYCH W ROKU AKADEMICKIM 2019/20
INFORMACJA O PRZEDMIOTACH OFEROWANYCH W ROKU AKADEMICKIM 2019/20 Przypominamy, że każdy student studiuje według programu studiów obowiązującego w momencie rozpoczynania przez niego studiów. Nowy program
PLAN STUDIÓW STACJONARNYCH DRUGIEGO STOPNIA DLA KIERUNKU MATEMATYKA NA WYDZIALE MATEMATYKI, INFORMATYKI I EKONOMETRII UNIWERSYTETU ZIELONOGÓRSKIEGO
PLAN STUDIÓW STACJONARNYCH DRUGIEGO STOPNIA DLA KIERUNKU MATEMATYKA NA WYDZIALE MATEMATYKI, INFORMATYKI I EKONOMETRII UNIWERSYTETU ZIELONOGÓRSKIEGO rekrutacja w roku akademickim 2017/2018 Zatwierdzono:
Przedmiot Prowadzący Termin I (data/godz/miejsce) Analiza matematyczna I. Prof. T. Inglot Dr W. Wawrzyniak- Kosz. Prof. Z. Kowalski Dr G.
kierunek: INFORMATYKA WYDZIAŁ INFORMATYKI i ZARZĄDZANIA Instytut Informatyki Harmonogram egzaminów na studiach stacjonarnych L.p Rok / 1 I r. Analiza matematyczna I T. Inglot W. Wawrzyniak- Kosz 29.01.2013
Wstęp do ochrony własności intelektualnej Akademickie dobre wychowanie 5 0 Razem
Kierunek Zarządzanie i Inżynieria Produkcji - studia stacjonarne pierwszego stopnia Semestralny plan studiów obowiązujący od roku akademickiego 05/06 Semestr Język angielski I 30 Repetytorium z matematyki
Akademickie dobre wychowanie 5 0 Razem
Kierunek zarządzanie i inżynieria produkcji - studia stacjonarne pierwszego stopnia Semestralny plan studiów obowiązujący od roku akademickiego 2017/2018 Semestr 1 1 Język angielski I 30 1 2 Repetytorium
Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni
Zał. nr 4 do ZW WYDZIAŁ MATEMATYKI KARTA PRZEDMIOTU Nazwa w języku polskim WSTĘP DO STATYSTYKI MATEMATYCZNEJ Nazwa w języku angielskim Introduction to Mathematical Statistics Kierunek studiów (jeśli dotyczy):
PLANY I PROGRAMY STUDIÓW
WYDZIAŁ INŻYNIERII PRODUKCJI I LOGISTYKI PLANY I PROGRAMY STUDIÓW STUDY PLANS AND PROGRAMS KIERUNEK STUDIÓW FIELD OF STUDY - ZARZĄDZANIE I INŻYNIERIA PRODUKCJI - MANAGEMENT AND PRODUCTION ENGINEERING Studia
Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2017/2018
Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu obowiązuje studentów rozpoczynających studia w roku akademickim 2017/2018 Wydział Fizyki, Matematyki i Informatyki Kierunek studiów: Matematyka
WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU
WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim: Analiza wypukła Nazwa w języku angielskim: Convex analysis Kierunek studiów (jeśli dotyczy): MATEMATYKA Specjalność (jeśli
Demand Analysis L E C T U R E R : E W A K U S I D E Ł, PH. D.,
Demand Analysis L E C T U R E R : E W A K U S I D E Ł, PH. D., D E P A R T M E N T O F S P A T I A L E C O N O M E T R I C S U Ł L E C T U R E R S D U T Y H O U R S : W W W. K E P. U N I. L O D Z. P L
Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P)
Zał nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim : Kryptografia Nazwa w języku angielskim : Cryptography Kierunek studiów : Informatyka Specjalność (jeśli
WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU
WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim: PROBABILISTYKA NIEPRZEMIENNA Nazwa w języku angielskim: NONCOMMUTATIVE PROBABILITY Kierunek studiów (jeśli dotyczy): MATEMATYKA
PLANY I PROGRAMY STUDIÓW
WYDZIAŁ INŻYNIERII PRODUKCJI I LOGISTYKI PLANY I PROGRAMY STUDIÓW STUDY PLANS AND PROGRAMS KIERUNEK STUDIÓW FIELD OF STUDY - INŻYNIERIA BEZPIECZEŃSTWA - SECURITY ENGINEERING Studia stacjonarne pierwszego
LISTA KURSÓW PLANOWANYCH DO URUCHOMIENIA W SEMESTRZE ZIMOWYM 2015/2016
LISTA KURSÓW PLANOWANYCH DO URUCHOMIENIA W SEMESTRZE ZIMOWYM 2015/2016 INFORMATYKA I STOPNIA studia stacjonarne 1 sem. PO-W08-INF- - -ST-Ii-WRO-(2015/2016) MAP003055W Algebra z geometrią analityczną A
30 15 E/Z Instytut Nauk Ekonomicznych
suma godzin EKONOMIA - studia stacjonarne II stopnia Uchwała nr 87/V/2013 Rady ydziału z dnia 27.0.2013 r. I ROK SEMESTR I (zimowy) SEMESTR II (letni) RAZEM Nazwa przedmiotu (modułu) Punkty 1 Makroekonomia
Kierunek Ekonomia - studia stacjonarne pierwszego stopnia
Kierunek Ekonomia - studia stacjonarne pierwszego stopnia obowiązujący od roku akademickiego 2015/201 (W wykład, C ćwiczenia, P projekt/seminarium, L laboratorium/lektorat, E -egzamin) Semestr I 1 Język
Course syllabus. Mathematical Basis of Logistics. Information Technology in Logistics. Obligatory course. 1 1 English
Course syllabus Course name: Mathematical Basis of Logistics Study Programme group: i Cycle of studies: Study type: I cycle (bachelor) Full-time Study Programme name: Specialisation: ii Electivity: iii
KATALOG KURSÓW PRZEDMIOTÓW KSZTACŁENIA OGÓLNEGO
KATALOG KURSÓW PRZEDMIOTÓW KSZTACŁENIA OGÓLNEGO NA ROK AKADEMICKI 2015/2016 Politechnika Wrocławska Katalog kursów przedmiotów kształcenia ogólnego Oferta Ogólnouczelniana 2015/2016 Politechnika Wrocławska
Liczba godzin zajęć II rok. Egz. po sem. Razem. Wykłady. Ćwiczenia
Oferta przedmiotów do wyboru: EKONOMIA LICENCJAT Kursy stałe - wybór dwóch przedmiotów w ze. Wszystkie przedmioty pkt (alnie pkt w ciągu studiów 2 pkt) Kierunek : EKONOMIA Specjalność : EKONOMIKA I ZARZĄDZANIE
Wydział Inżynierii Produkcji i Logistyki Faculty of Production Engineering and Logistics
Wydział Inżynierii Produkcji i Logistyki Faculty of Production Engineering and Logistics Plan studiów niestacjonarnych I stopnia (inżynierskich) na kierunku ZARZĄDZANIE I INŻYNIERIA PRODUKCJI MANAGEMENT
Marcin Bartkowiak Krzysztof Echaust INSTRUMENTY POCHODNE WPROWADZENIE DO INŻYNIERII FINANSOWEJ
Marcin Bartkowiak Krzysztof Echaust INSTRUMENTY POCHODNE WPROWADZENIE DO INŻYNIERII FINANSOWEJ Spis treści Przedmowa... 7 1. Rynek instrumentów pochodnych... 9 1.1. Instrumenty pochodne... 9 1.2. Rynek