ZADANIE 1 Codzienna trasa listonosza ma kształt trójkata równobocznego, którego wierzchołki stanowia
|
|
- Amalia Świątek
- 7 lat temu
- Przeglądów:
Transkrypt
1 ZADANIE 1 Codzienna trasa listonosza ma kształt trójkata równobocznego, którego wierzchołki stanowia bloki A, B, C. Z bloku A do bloku B listonosz idzie z 3 km/h. Z bloku B do bloku C idzie z dwukrotnie większa. Średnia prędkość na całej trasie jest równa 4 km/h. Oblicz, z jaka średnia listonosz porusza się od bloku C do bloku A. ZADANIE 2 Szkolne koło turystyczne zorganizowało dla swoich członków piesza wycieczkę po okolicach Łodzi. Grupa wyszła o godz W ciagu pierwszych dwóch godzin turyści przeszli 8km. Następnie przez 1,5 godziny odpoczywali w lesie. Do celu wędrówki pozostała trasa, która grupa pokonała w ciagu 2 godzin idac z 3 km/h. Po półgodzinnym ponownym odpoczynku turyści udali się w drogę powrotna do Łodzi, idac z 2km/h. a) Narysuj wykres funkcji przyporzadkowuj acej czasowi wędrówki (w godzinach) przebyta drogę (w kilometrach) przez turystów. b) Ile łacznie kilometrów przebyła grupa turystów? c) Podaj średnia prędkość marszu turystów na całej trasie. d) O której godzinie turyści dotarli do Łodzi? 1
2 ZADANIE 3 Dwaj turyści przebyli te sama trasę długości 15 km. Drugi turysta szedł z o 1 km/h mniejsza niż pierwszy, przez co trasę tę pokonał w czasie o 1 godzinę i 15 minut dłuższym niż pierwszy turysta. Oblicz średnia prędkość pierwszego turysty na tej trasie. ZADANIE 4 Paweł i Gaweł wyruszyli w 500 kilometrowa podróż dwoma samochodami. Samochód Pawła poruszał się cały czas ze stała prędkościa, a sposób poruszania się samochodu Gawła przedstawiony jest na poniższym wykresie. [km] [h] a) Oblicz z jaka poruszał się samochód Pawła, jeżeli dojechał on do celu 20 minut po Gawle. Wynik podaj w kilometrach na godzinę b) Przez ile godzin Gaweł jechał wolniej od Pawła? c) Ile razy, i w której minucie podróży oba samochody się spotkały (nie liczac poczatku i końca podróży). Wynik podaj z dokładnościa do 1 minuty. 2
3 ZADANIE 5 W czasie wycieczki rowerowej uczniowie mieli do przebycia trasę długości 84 km. Podzielili tę trasę na odcinki równej długości i codziennie przejeżdżali wyznaczony odcinek. Gdyby na przebycie całej trasy zużyli o dwa dni więcej, to mogliby dziennie przejeżdżać o 7 km mniej. Ile kilometrów przebywali uczniowie dziennie i ile dni potrzebowali na pokonanie trasy? 3
4 ZADANIE 6 Z miejscowości A i B, które sa odległe o 58,5 km wyruszyły jednocześnie ku sobie dwa samochody. Pierwszy samochód w ciagu pierwszej minuty jechał ze średnia 30 km/h, a w ciagu każdej następnej minuty pokonywał drogę o 0,25 km dłuższa, niż w ciagu poprzedniej minuty. Drugi samochód przez pierwsze 6 minut przejechał 21 kilometrów, a potem jechał ze stała 150 km/h. Oblicz po ilu minutach nastapi spotkanie samochodów. ZADANIE 7 Dwa pociagi towarowe wyjechały z miast A i B oddalonych od siebie o 540 km. Pociag jadacy z miasta A do miasta B wyjechał o godzinę wcześniej niż pociag jadacy z miasta B do miasta A i jechał z o 9 km/h mniejsza. Pociagi te minęły się w połowie drogi. Oblicz, z jakimi prędkościami jechały te pociagi. 4
5 ZADANIE 8 Zawodnik kopnał piłkę, która zakreśliła w powietrzu fragment toru opisanego równaniem h(x) = 3x 10 1 x2 (x oznacza pozioma odległość piłki od zawodnika, a h(x) wysokość na jakiej znajduje się piłka). Oblicz, na jaka największa wysokość wzniosła się piłka. ZADANIE 9 Doświadczalnie ustalono, że czas T(n), liczony w sekundach, potrzebny na alfabetyczne ułożenie n kartek z nazwiskami wyraża się, z dobrym przybliżeniem, wzorem T(n) = a n 2 + b n. Ułożenie 10 kartek trwa średnio 20 sekund, a 30 kartek średnio 90 sekund. Wyznacz wzór funkcji T(n) i oblicz, ile kartek można ułożyć średnio w ciagu 50 sekund. 5
6 ZADANIE 10 Gumowa piłkę upuszczono z 81 metrów. Za każdym razem, po odbiciu piłka wznosi się na 3 2 wysokości, z której spadła. a) Znajdź największa wysokość piłki między 5 i 6 uderzeniem o podłoże. b) Jaka drogę pokona piłka zakładajac, że odbija się ona 20 razy i po 20 odbiciu pozostaje na podłożu? ZADANIE 11 Karawana o długości 1 km jedzie przez pustynię z 4 km/h. Co jakiś czas od czoła karawany do jej końca i z powrotem jedzie goniec z 6 km/h. Oblicz długość drogi tam i z powrotem, która pokonuje goniec. Oblicz, ile czasu zajmuje mu przebycie tej drogi. 6
7 ZADANIE 12 W rajdzie motocyklowym zawodnik, który zwyciężył, przejechał trasę z o 20 km/h większa niż drugi zawodnik i o 25 km/h większa od trzeciego zawodnika. Zawodnicy wystartowali jednocześnie. Na mecie drugi zawodnik był o 18 minut później niż zwycięzca i o 6 minut wcześniej niż trzeci zawodnik. Oblicz: a) długość trasy rajdu; b) prędkość jazdy każdego zawodnika; c) czasy przejazdu tych zawodników. ZADANIE 13 Z krawędzi dachu podrzucono kamień, który po 2 sekundach spadł na ziemię. Wysokość (wyrażona w metrach), na jakiej znajdował się kamień nad ziemia po upływie t sekund od chwili jego podrzucenia, opisuje funkcja h(t) = 5t 2 + 5t + 10, gdzie t 0, 2. a) Podaj, z jakiej wysokości (od ziemi) kamień został podrzucony. b) Oblicz, po jakim czasie od momentu podrzucenia kamień osiagn ał największa wysokość. c) Oblicz największa wysokość (od ziemi), na jaka wzniósł się ten kamień. 7
8 ZADANIE 14 Z miejscowości A i B oddalonych od siebie o 182 km wyjeżdżaja naprzeciw siebie dwaj rowerzyści. Rowerzysta jadacy z miejscowości B do miejscowości A jedzie ze średnia mniejsza od 25 km/h. Rowerzysta jadacy z miejscowości A do miejscowości B wyjeżdża o 1 godzinę wcześniej i jedzie ze średnia o 7 km/h większa od średniej prędkości drugiego rowerzysty. Rowerzyści spotkali się w takim miejscu, że rowerzysta jadacy z miejscowości A przebył do tego miejsca 13 9 całej drogi z A do B. Z jakimi średnimi prędkościami jechali obaj rowerzyści? ZADANIE 15 Statek wycieczkowy, płynac z pradem rzeki, pokonuje trasę z miasta A do miasta B w ciagu dwóch godzin, natomiast z powrotem płynie o pół godziny dłużej. Ile czasu będzie płynać tratwa z miasta A do miasta B? 8
9 ZADANIE 16 Dwa pociagi: towarowy o długości 490 m i osobowy o długości 210 m, jada naprzeciw siebie po dwóch równoległych torach i spotykaja się w miejscu S. Mijanie się pociagów trwa 20 s, a czas przejazdu pociagu osobowego przez miejsce S jest o 25 sekund krótszy od czasu przejazdu pociagu towarowego. Oblicz prędkości obu pociagów, zakładajac, że poruszaja się ruchem jednostajnym. ZADANIE 17 Z dwóch miast A i B, odległych od siebie o 18 kilometrów, wyruszyli naprzeciw siebie dwaj turyści. Pierwszy turysta wyszedł z miasta A o jedna godzinę wcześniej niż drugi z miasta B. Oblicz prędkość, z jaka szedł każdy turysta, jeżeli wiadomo, że po spotkaniu pierwszy turysta szedł do miasta B jeszcze 1,5 godziny, drugi zaś szedł jeszcze 4 godziny do miasta A. 9
10 ZADANIE 18 Rowerzysta jedzie ze stała 20km/h. a) Napisz wzór wyrażajacy drogę s rowerzysty w ciagu t godzin. b) Sporzadź tabelkę wartości s dla t = 0, 1, 2, 3, 4. c) Naszkicuj wykres zależności s od t. ZADANIE 19 Kuba pożyczył od taty samochód, którym wyruszył z domu na spotkanie ze swoja dziewczyna. Przed wyjazdem obliczył, że jadac ze średnia prędkościa 60km/h przybędzie na spotkanie dokładnie o umówionej godzinie. Po przejechaniu (z zaplanowana prędkościa) 60% drogi "złapał gumę", a zmiana koła zajęła mu 16 minut. Teraz, aby zdażyć na spotkanie, musiałby jechać z 120km/h. Oblicz odległość od domu Kuby do miejsca spotkania z ukochana. 10
11 ZADANIE 20 Samochód jadacy autostrada pali 5,6 litra paliwa na 100km. Napisz wzór funkcji s określajacej przebyta drogę (w kilometrach) w zależnosci od zużytego paliwa p (w litrach). Rozwiazania zadań znajdziesz na stronie 11
Określ zbiór wartości i przedziały monotoniczności funkcji.
Zadanie 1 Sprowadź do postaci ogólnej funkcję kwadratową Zadanie 2 Wyznacz zbiór wartości funkcji Zadanie 3 Określ zbiór wartości i przedziały monotoniczności funkcji Zadanie 4 Wykres funkcji kwadratowej
Bardziej szczegółowoSPRAWDZIAN NR Na wykresie przedstawiono zależność prędkości pociągu od czasu.
SPRAWDZIAN NR 1 AGNIESZKA JASTRZĘBSKA IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Na wykresie przedstawiono zależność prędkości pociągu od czasu. Dokończ zdanie. Wybierz stwierdzenie A albo B oraz jego uzasadnienie
Bardziej szczegółowoSPRAWDZIAN NR 1. Oceń prawdziwość każdego zdania. Zaznacz P, jeśli zdanie jest prawdziwe, lub F, jeśli jest fałszywe.
SPRAWDZIAN NR 1 URSZULA ZDRODOWSKA IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Pociąg przejechał trasę o długości 50 km (z Bydgoszczy do Torunia) w czasie 50 minut. Oceń prawdziwość każdego zdania. Zaznacz P, jeśli
Bardziej szczegółowoPRĘDKOŚĆ, DROGA, CZAS
Imię i nazwisko... Klasa... PRĘDKOŚĆ, DROGA, CZAS GRUPA A 1. Rowerzysta jedzie z prędkością 20 km h. W ciągu godziny pokona: A. 1 3 km B. 60 km C. 20 km D. 10 km 2. Jaką trasę pokona w ciągu pół godziny
Bardziej szczegółowoSPRAWDZIAN Nr 1 (wersja A)
SPRAWDZIAN Nr 1 (wersja A) 1. Parasol leżący na fotelu jadącego samochodu względem tego samochodu Ojest w ruchu spoczywa względem szosy, po której jedzie samochód x (m)n Qjest w ruchu spoczywa 4^> 2. Chłopiec
Bardziej szczegółowoPrędkość, droga i czas w matematyce
Prędkość, droga i czas w matematyce Często uczniowie dostają gęsiej skórki po usłyszeniu treści zadania typu : Z miejscowości A do miejscowości B wyjechał pociąg...itd. Z góry skazują rozwiązanie takiego
Bardziej szczegółowoLIGA klasa 1 - styczeń 2017
LIGA klasa 1 - styczeń 2017 MAŁGORZATA PIECUCH IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Po prostoliniowym odcinku drogi ruchem jednostajnym poruszały się dwa samochody. Na wykresie przedstawiono zależność drogi
Bardziej szczegółowoWrześnia Dźwirzyno Września
Września Dźwirzyno Września 09.11.2012 11.11.2012 Ruch jednotajny W ruchu jednotajnym prędkość poruzającego ię ciała jet tała. W takim ruch zależność między prędkością, drogą i czaem opiuje wzór: v = t
Bardziej szczegółowoZad. 1 Samochód przejechał drogę s = 15 km w czasie t = 10 min ze stałą prędkością. Z jaką prędkością v jechał samochód?
Segment A.I Kinematyka I Przygotował: dr Łukasz Pepłowski. Zad. 1 Samochód przejechał drogę s = 15 km w czasie t = 10 min ze stałą prędkością. Z jaką prędkością v jechał samochód? v = s/t, 90 km/h. Zad.
Bardziej szczegółowo1 WEKTORY, KINEMATYKA
Włodzimierz Wolczyński 1 WEKTORY, KINEMATYKA Wektory, działania: Mamy bazę wektorów o różnych jednostkach długości a=3 b=2 c=4 d=4 e=2 f=3 W wyniku mnożenia wektora przez liczbę otrzymujemy wektor o zwrocie:
Bardziej szczegółowoKlasa 3. Odczytywanie wykresów.
Klasa 3 Odczytywanie wykresów 1 Wykres obok przedstawia zmiany temperatury podczas pewnego zimowego dnia w Giżycku Jaką temperaturę powietrza pokazywał tego dnia termometr o godzinie 18 00? A 0 C B 1 C
Bardziej szczegółowoRuch jednostajny prostoliniowy
Ruch jednostajny prostoliniowy Ruch jednostajny prostoliniowy to taki ruch, którego torem jest linia prosta, a ciało w jednakowych odcinkach czasu przebywa jednakową drogę. W ruchu jednostajnym prostoliniowym
Bardziej szczegółowoSamochód jadąc z prędkością 60km/h pokonał 140km. Jak długo jechał ten samochód?
PRĘDKOŚĆ, DROGA, CZAS. Zadanie 1. Samochód jadąc z prędkością 60km/h pokonał 140km. Jak długo jechał ten samochód? Zadanie 2. Dwa samoloty wystartowały jednocześnie z dwóch lotnisk oddalonych o 3400km
Bardziej szczegółowoLista 8 Wyrażenia wymierne. Przypomnijmy, że: Jeżeli wykres funkcji przesuniemy o wektor, to otrzymamy wykres funkcji.
Lista 8 Wyrażenia wymierne. Zad 1. Narysuj wykres funkcji. Przykład 1:. Przypomnijmy, że: Jeżeli wykres funkcji przesuniemy o wektor, to otrzymamy wykres funkcji. Funkcję nazywamy funkcja podstawową, a
Bardziej szczegółowoZESTAW POWTÓRKOWY (1) KINEMATYKA POWTÓRKI PRZED EGZAMINEM ZADANIA WYKONUJ SAMODZIELNIE!
Imię i nazwisko: Kl. Termin oddania: Liczba uzyskanych punktów: /50 Ocena: ZESTAW POWTÓRKOWY (1) KINEMATYKA POWTÓRKI PRZED EGZAMINEM ZADANIA WYKONUJ SAMODZIELNIE! 1. /(0-2) Przelicz jednostki szybkości:
Bardziej szczegółowoZadania z fizyki. Promień rażenia ładunku wybuchowego wynosi 100 m. Pewien saper pokonuje taką odległość z. cm. s
c) 6(3x - 2) + 5(1-3x) = 7(x + 2) 3(1-2x) d) - 4)(5x + 3) + (4x - 3)(6x + 3) = (6x - 6)(8x + 3) + (9x 2-10) Zadanie 1. Zadania z fizyki Działająca na motocykl siła, której źródłem jest jego silnik, ma
Bardziej szczegółowoZADANIA Z KINEMATYKI
ZADANIA Z KINEMATYKI 1. Określ na poszczególnych przykładach czy względem określonego układu odniesienia ciało jest w ruchu, czy w spoczynku: a) kubek stojący na stole względem stołu b) kubek stojący na
Bardziej szczegółowoZależność prędkości od czasu
prędkość {km/h} KINEMATYKA ruch jednostajny i przyspieszony 1. Na trasie z Olesna do Poznania kursuje autobus pospieszny i osobowy. Autobus zwykły wyjechał o 8 00 i jechał ze średnią prędkością 40 km/h.
Bardziej szczegółowoPRÓBNY EGZAMIN GIMNAZJALNY
PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 18 KWIETNIA 2015 CZAS PRACY: 90 MINUT 1 Informacja do zadań 1 i 2 W tabeli przedstawiono procentowy podział uczestników
Bardziej szczegółowoWŁASNOŚCI FUNKCJI. Poziom podstawowy
WŁASNOŚCI FUNKCJI Poziom podstawowy Zadanie ( pkt) Które z przyporządkowań jest funkcją? a) Każdej liczbie rzeczywistej przyporządkowana jest jej odwrotność b) Każdemu uczniowi klasy pierwszej przyporządkowane
Bardziej szczegółowoPowtórzenie wiadomości z klasy I. Temat: Ruchy prostoliniowe. Obliczenia
Powtórzenie wiadomości z klasy I Temat: Ruchy prostoliniowe. Obliczenia Ruch jest względny 1.Ruch i spoczynek są pojęciami względnymi. Można jednocześnie być w ruchu względem jednego ciała i w spoczynku
Bardziej szczegółowoPRÓBNY EGZAMIN ÓSMOKLASISTY
PRÓNY EGZAMIN ÓSMOKLASISTY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 13 KWIETNIA 2019 CZAS PRACY: 100 MINUT 1 ZADANIE 1 (1 PKT) Firma kurierska przyjmuje wyłacznie paczki, których
Bardziej szczegółowoK. Rochowicz, M. Sadowska, G. Karwasz i inni, Toruński poręcznik do fizyki Gimnazjum I klasa Całość: http://dydaktyka.fizyka.umk.
3.2 Ruch prostoliniowy jednostajny Kiedy obserwujemy ruch samochodu po drodze między dwoma tunelami, albo ruch bąbelka powietrza ku górze w szklance wody mineralnej, jest to ruch po linii prostej. W przypadku
Bardziej szczegółowoB2. Czy wiesz, na czym polega zasada względności ruchu? Jeśli wiesz, to rozpoznasz, które z poniższych zdań nie ma z tą zasadą nic wspólnego:
Bl. Ruch jest pojęciem względnym. Sens tego stwierdzenia można uzasadnić między innymi trzema z czterech niżej podanych obserwacji. Wybierz tę, która nie dotyczy tego tematu: (A) Ludziom trudno było zrozumieć,
Bardziej szczegółowoMatematyka podstawowa I. Liczby rzeczywiste, zbiory
Zadania wprowadzające: Matematyka podstawowa I Liczby rzeczywiste, zbiory 1. Liczba jest równa 2. Liczba jest równa 3. Wynikiem działania jest 4. Przedstaw w postaci nieskracalnego ułamka zwykłego 5. Oblicz
Bardziej szczegółowoA. 1 C B. 0 C C. 1 C D. 0,5 C
1. Wykres obok przedstawia zmiany temperatury podczas pewnego zimowego dnia w Giżycku. Jaką temperaturę powietrza pokazywał tego dnia termometr o godzinie 14 00? A. 1 C B. 0 C C. 1 C D. 0,5 C 2. Jurek
Bardziej szczegółowoPRÓBNY EGZAMIN GIMNAZJALNY
PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 11 KWIETNIA 2015 CZAS PRACY: 90 MINUT 1 Informacja do zadań 1 i 2 Koszt ubezpieczenia samochodu w pewnej firmie
Bardziej szczegółowoZadanie 2 Narysuj wykres zależności przemieszczenia (x) od czasu(t) dla ruchu pewnego ciała. m Ruch opisany jest wzorem x( t)
KINEMATYKA Zadanie 1 Na spotkanie naprzeciw siebie wyszło dwóch kolegów, jeden szedł z prędkością 2m/s, drugi biegł z prędkością 4m/s po prostej drodze. Spotkali się po 10s. W jakiej maksymalnej odległości
Bardziej szczegółowoPRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 5508 WYGENEROWANY AUTOMATYCZNIE W SERWISIE WWW.ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Wskaż rysunek,
Bardziej szczegółowoZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE II TECHNIKUM.
I. Funkcje. ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE II TECHNIKUM. 1. Pojęcie funkcji i jej dziedzina. 2. Zbiór wartości funkcji. 3. Wykres funkcji liczbowej i odczytywanie jej własności
Bardziej szczegółowoScenariusz zajęć na hospitację diagnozującą z fizyki kl I gimnazjum dział,,kinematyka
Scenariusz zajęć na hospitację diagnozującą z fizyki kl I gimnazjum dział,,kinematyka Temat: Rozwiązywanie zadań dotyczących ruchów z wykorzystaniem wykresów V(t) i S(t). Diagnoza: Na lekcjach fizyki w
Bardziej szczegółowo1. Na wycieczkę pojechało 21 osób o średniej wieku 23 lata. Średnia ta wzrośnie do 24 lat, jeśli doliczy się wiek przewodnika. Ile lat ma przewodnik?
Diagnoza klasa I Zestaw zawiera zadania z wcześniejszych diagnoz. Zadania zaczerpnięto z dostępnych zbiorów zadao różnych wydawnictw oraz arkuszy maturalnych CKE. Zadania otwarte 1. Na wycieczkę pojechało
Bardziej szczegółowoPRÓBNY EGZAMIN GIMNAZJALNY
PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 28 MARCA 2015 CZAS PRACY: 90 MINUT 1 ZADANIE 1 (1 PKT) Na diagramie przedstawiono wysokość miesięcznych zarobków
Bardziej szczegółowoPRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY+ MARCA 0 CZAS PRACY: 70 MINUT Zadania zamknięte ZADANIE ( PKT.) Liczba 5, 4, 4 π jest równa A)
Bardziej szczegółowoPRÓBNY EGZAMIN GIMNAZJALNY
PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 16 MARCA 2019 CZAS PRACY: 90 MINUT 1 Informacja do zadań 1 i 2 Poniższa tabela przedstawia temperaturę odczytywana
Bardziej szczegółowoTemat: Przedstawianie i odczytywanie informacji przedstawionych za pomocą wykresów. rysowanie i analizowanie wykresów zależności funkcyjnych.
Scenariusz lekcji matematyki dla klasy I Gimnazjum Temat: Przedstawianie i odczytywanie informacji przedstawionych za pomocą wykresów Cel ogólny : rysowanie i analizowanie wykresów zależności funkcyjnych.
Bardziej szczegółowo09P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM PODSTAWOWY (dynamika ruchu prostoliniowego)
Włodzimierz Wolczyński 09P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM PODSTAWOWY (dynamika ruchu prostoliniowego) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią
Bardziej szczegółowo4 RUCH JEDNOSTAJNIE ZMIENNY
Włodzimierz Wolczyński Przyspieszenie 4 RUCH JEDNOSTAJNIE ZMIENNY Prędkość Droga 2 ś 2 Wykresy zależności od czasu 200 150 0 50 0-50 -0 0 5 50 30 - -30-50 0 5 5 0-5 - 0 5 droga prędkość przyspieszenie
Bardziej szczegółowoPRÓBNY EGZAMIN GIMNAZJALNY
PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 31 MARCA 2012 CZAS PRACY: 90 MINUT 1 ZADANIE 1 (1 PKT.) Kierowca samochodu dostawczego zanotował w tabeli informacje
Bardziej szczegółowoEGZAMIN WSTĘPNY Z MATEMATYKI
EGZAMIN WSTĘPNY Z MATEMATYKI 1. Przed sobą masz egzamin z matematyki, który składa się z dwóch części. Osoby, które chcą się dostać do klasy matematycznej muszą napisać obie części poniższego egzaminu
Bardziej szczegółowoPRÓBNY EGZAMIN GIMNAZJALNY
RÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW RZYGOTOWANY RZEZ SERWIS WWW.ZADANIA.INO 5 KWIETNIA 2014 CZAS RACY: 90 MINUT 1 ZADANIE 1 (1 KT) Do pustej szklanki wlano 3 miarki syropu. Ile takich samych
Bardziej szczegółowoKONKURS MATEMATYCZNY w szkole podstawowej 2010/2011 ETAP WOJEWÓDZKI
Kod ucznia Liczba uzyskanych punktów Nr zadania 1 14 15 16 17 18 Liczba punktów Drogi Uczniu! Witamy Cię w trzecim etapie konkursu. Przed Tobą test składający się z 14 zadań zamkniętych i 4 zadań otwartych.
Bardziej szczegółowoPRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 6 MARCA 2010 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT.) ( 5 Liczba 3 4 2 1 2
Bardziej szczegółowoSkrypt 10. Funkcja liniowa. Opracowanie L Równanie pierwszego stopnia z dwiema niewiadomymi.
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 10 Funkcja liniowa 10. Równanie
Bardziej szczegółowoPRÓBNY EGZAMIN GIMNAZJALNY
PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 30 MARCA 2019 CZAS PRACY: 90 MINUT 1 ZADANIE 1 (1 PKT) Na stacji paliw zatankowano do pełna 70 litrowy bak samochodu.
Bardziej szczegółowoBlok 2: Zależność funkcyjna wielkości fizycznych. Rzuty
Blok : Zależność funkcyjna wielkości fizycznych. Rzuty ZESTAW ZADAŃ NA ZAJĘCIA ROZGRZEWKA 1. Przeanalizuj wykresy zaprezentowane na rysunkach. Załóż, żę w każdym przypadku ciało poruszało się zgodnie ze
Bardziej szczegółowoNAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI ZADANIE 1 ZADANIE 2
ZADANIE 1 Wyznacz najmniejsza i największa wartość funkcji f (x) = (x 2)(x + 1) w przedziale 0; 4. ZADANIE 2 Wyznacz najmniejsza i największa wartość funkcji f (x) = x 2 4x 2 w przedziale 2; 2. 1 ZADANIE
Bardziej szczegółowoPRÓBNY EGZAMIN GIMNAZJALNY
PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 24 MARCA 2012 CZAS PRACY: 90 MINUT 1 ZADANIE 1 (1 PKT.) Która równość jest fałszywa? Wybierz odpowiedź spośród
Bardziej szczegółowoZadanie 3. Na prostej o równaniu y = 2x 3 znajdź punkt P, którego odległość od punktu A = ( 2, -1 ) jest najmniejsza. Oblicz AP
Zadania do samodzielnego rozwiązania: II dział Funkcja liniowa, własności funkcji Zadanie. Liczba x = - 7 jest miejscem zerowym funkcji liniowej f ( x) ( a) x 7 dla A. a = - 7 B. a = C. a = D. a = - 1
Bardziej szczegółowoWIELKOŚ CI WPROŚT PROPORCJONALNE I ODWROTNIE PROPORCJONALNE
WIELKOŚ CI WPROŚT PROPORCJONALNE I ODWROTNIE PROPORCJONALNE Równośd dwóch ilorazów nazywamy proporcją. Jeżeli wraz ze wzrostem jednej wielkości druga wielkośd rośnie tyle samo razy, to mówimy, że wielkości
Bardziej szczegółowoZADANIA OPTYMALIZACYJNE
ZADANIA OPTYMALIZACYJNE ZADANIE 1 (5 PKT) Suma dwóch liczb równa jest 6. Znajdź te liczby, jeśli wiadomo, że suma podwojonego kwadratu jednej z nich i kwadratu drugiej jest najmniejsza z możliwych. ZADANIE
Bardziej szczegółowo. c) do jej wykresu należą punkty A ( 3,2 3 3) oraz
Funkcja liniowa powtórzenie wiadomości Napisz wzór funkcji liniowej wiedząc, że: a) miejscem zerowym funkcji jest liczba oraz f()=, b) miejscem zerowym funkcji jest liczba i i wykres funkcji przecina oś
Bardziej szczegółowoZakład Dydaktyki Fizyki UMK
Toruński poręcznik do fizyki I. Mechanika Materiały dydaktyczne Krysztof Rochowicz Zadania przykładowe Dr Krzysztof Rochowicz Zakład Dydaktyki Fizyki UMK Toruń, czerwiec 2012 1. Samochód jadący z prędkością
Bardziej szczegółowoPRÓBNY EGZAMIN GIMNAZJALNY
PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 18 MARCA 2017 CZAS PRACY: 90 MINUT 1 ZADANIE 1 (1 PKT) Klasa Ib wybrała się na wycieczkę składajac a się z trzech
Bardziej szczegółowoKINEMATYKA Zad.1 Pierwszą połowę drogi pojazd przebył z szybkością V 1 =72 km/h, a drugą z szybkością V 2 =90km/h. Obliczyć średnią szybkość pojazdu
KINEMATYKA Zad.1 Pierwszą połowę drogi pojazd przebył z szybkością V 1 =72 km/h, a drugą z szybkością V 2 =90km/h. Obliczyć średnią szybkość pojazdu na trasie. Na wykresie szybkości przedstawić geometrycznie
Bardziej szczegółowoFizyka elementarna - Zadania domowe. Części 1 i 2. Przygotowanie: Piotr Nieżurawski (24.09.2008)
Fizyka elementarna - Zadania domowe. Części 1 i 2. Przygotowanie: Piotr Nieżurawski (24.09.2008) Zadanie 1. Nominalne oprocentowanie lokaty bankowej w skali roku wynosi p. Oznacza to, że gdyby kapitalizacja
Bardziej szczegółowoMateriał powtórzeniowy dla klas pierwszych
Materiał powtórzeniowy dla klas pierwszych 1. Paweł trzyma w ręku teczkę siłą 20N zwróconą do góry. Ciężar teczki ma wartośd: a) 0N b) 10N c) 20N d) 40N 2. Wypadkowa sił działających na teczkę trzymaną
Bardziej szczegółowoZestaw zadań na I etap konkursu fizycznego. Zad. 1 Kamień spadał swobodnie z wysokości h=20m. Średnia prędkość kamienia wynosiła :
Zestaw zadań na I etap konkursu fizycznego Zad. 1 Kamień spadał swobodnie z wysokości h=20m. Średnia prędkość kamienia wynosiła : A) 5m/s B) 10m/s C) 20m/s D) 40m/s. Zad.2 Samochód o masie 1 tony poruszał
Bardziej szczegółowoMatematyka test dla uczniów klas piątych
Matematyka test dla uczniów klas piątych szkół podstawowych w roku szkolnym 2010/2011 Etap międzyszkolny (60 minut) [suma punktów]..... Imię i nazwisko Nazwa (numer) szkoły, miejscowość W sklepie sportowym
Bardziej szczegółowoMaraton Matematyczny zadania dla klasy I wrzesień 2014
ZADANIE Wykonaj działanie - 4 : ( -2 ) ( -8 )= -5* (-3) +46= 2-(-4)+ 25= (43 6 3 7+6+) (-2) = Maraton Matematyczny zadania dla klasy I wrzesień 204 ZADANIE 2 Podaj przybliżenia ułamków: 6,3456; 0,28065;
Bardziej szczegółowoMATEMATYKA PRĘDKOŚĆ, DROGA, CZAS
SCENARIUSZ LEKCJI PRZEDMIOT: MATEMATYKA TEMAT: PRĘDKOŚĆ, DROGA, CZAS AUTOR SCENARIUSZA : mgr Elżbieta Szmytkowska OPRACOWANIE ELEKTRONICZNO GRAFICZNE : mgr Beata Rusin TEMAT LEKCJI Prędkość, droga, czas
Bardziej szczegółowoMiędzyszkolne Zawody Matematyczne Klasa I LO i I Technikum - zakres podstawowy Etap wojewódzki 02.04.2005 rok Czas rozwiązywania zadań 150 minut
Klasa I - zakres podstawowy Etap wojewódzki 17.04.004 rok Zad 1 ( 6 pkt) Znajdź wszystkie liczby czterocyfrowe podzielne przez 15, w których cyfrą tysięcy jest jeden, a cyfrą dziesiątek dwa. Odpowiedź
Bardziej szczegółowoKONKURS FIZYCZNY dla uczniów gimnazjów województwa lubuskiego 6 lutego 2009 r. zawody II stopnia (rejonowe)
Pieczęć KONKURS FIZYCZNY dla uczniów gimnazjów województwa lubuskiego 6 lutego 2009 r. zawody II stopnia (rejonowe) Witamy Cię na drugim etapie Konkursu Fizycznego. Przed przystąpieniem do rozwiązywania
Bardziej szczegółowoZestaw 6 funkcje. Zad. 1. Zad.2 Funkcja określona jest przy pomocy tabeli
Zestaw 6 funkcje Zad. 1 Zad.2 Funkcja określona jest przy pomocy tabeli 5 10 15 20 25 3 2 17 10-8 a) Określ dziedzinę i wypisz wartości tej funkcji. b) Jaka jest największa wartość tej funkcji? c) Dla
Bardziej szczegółowoKuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ROK SZKOLNY 2014/2015 ETAP WOJEWÓDZKI
Kuratorium Oświaty w Lublinie KOD UCZNIA ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ROK SZKOLNY 2014/2015 ETAP WOJEWÓDZKI Instrukcja dla ucznia 1. Zestaw konkursowy zawiera 14
Bardziej szczegółowo1. Wykres przedstawia zależność wzrostu temperatury T dwóch gazów zawierających w funkcji ciepła Q dostarczonego gazom.
. Wykres przedstawia zależność wzrostu temperatury T dwóch gazów zawierających i N N w funkcji ciepła Q dostarczonego gazom. N N T I gaz II gaz Molowe ciepła właściwe tych gazów spełniają zależność: A),
Bardziej szczegółowoZadanie 6. (0-1) Który z poniższych obwodów należy zmontować w celu dokonania pomiaru oporu silnika?
Zadania z fizyki przygotowujące do egzaminu gimnazjalnego Zadanie 1. (0-1) Szkółka leśna zabezpieczona jest przewodem elektrycznym. Przewód otaczający szkółkę leśną ma opór 1000Ω., a zasilany jest z akumulatora
Bardziej szczegółowoZAPRASZAMY DO VI ETAPU MATEMATYCZNEJ LIGI ZADANIOWEJ TERMIN ODDAWANIA ROZWIĄZANYCH ZADAŃ UPŁYWA 24 MAJA 2013 R. ŻYCZYMY POWODZENIA!!
ZAPRASZAMY DO VI ETAPU MATEMATYCZNEJ LIGI ZADANIOWEJ TERMIN ODDAWANIA ROZWIĄZANYCH ZADAŃ UPŁYWA 24 MAJA 2013 R. ŻYCZYMY POWODZENIA!! LIGA ZADANIOWA KLASA IV Uzupełnij tabelę: Bok kwadratu Pole kwadratu
Bardziej szczegółowoKONKURS MATEMATYCZNO FIZYCZNY 3 marca 2009 r. Klasa II
...... imię i nazwisko ucznia... klasa KONKURS MATEMATYCZNO FIZYCZNY marca 2009 r. Klasa II... ilość punktów Drogi uczniu! Przed Tobą zestaw 14 zadań. Pierwsze 10 to zadania zamknięte. Rozwiązanie tych
Bardziej szczegółowoSZKOLNA LIGA ZADANIOWA
KLASA 4 - ZESTAW 1 W następujących działaniach wstaw w miejsce gwiazdek brakujące cyfry. Pewna liczba dwucyfrowa ma w rzędzie jedności 5. Jeżeli między jej cyfry wstawimy 0, to liczba ta zwiększy się o
Bardziej szczegółowo31 MAJA 2012 CZAS PRACY: 90 MIN.
IMIE I NAZWISKO MAJA 202 CZAS PRACY: 90 MIN. ZADANIE Asia jeździła rowerem 2 godziny. Na diagramie przedstawiono w procentach (w %) czas jazdy Asi po leśnej drodze, ścieżce rowerowej i polnej drodze, ale
Bardziej szczegółowoZ przedstawionych poniżej stwierdzeń dotyczących wartości pędów wybierz poprawne. Otocz kółkiem jedną z odpowiedzi (A, B, C, D lub E).
Zadanie 1. (0 3) Podczas gry w badmintona zawodniczka uderzyła lotkę na wysokości 2 m, nadając jej poziomą prędkość o wartości 5. Lotka upadła w pewnej odległości od zawodniczki. Jest to odległość o jedną
Bardziej szczegółowoZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI
Zadanie 51. ( pkt) Rozwiąż równanie 3 x = 1. 1 x Zadanie 5. ( pkt) x+ 3y = 5 Rozwiąż układ równań. x y = 3 Zadanie 53. ( pkt) Rozwiąż nierówność x + 6x 7 0. ZNI OTWRTE KRÓTKIEJ OPOWIEZI Zadanie 54. ( pkt)
Bardziej szczegółowoPRÓBNY EGZAMIN GIMNAZJALNY
PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 25 MARCA 2017 CZAS PRACY: 90 MINUT 1 Informacja do zadań 1 i 2 Grupa młodzieży wybrała się na spacer po lesie.
Bardziej szczegółowoPRÓBNY EGZAMIN GIMNAZJALNY
PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 8 KWIETNIA 2017 CZAS PRACY: 90 MINUT 1 Informacja do zadań 1 i 2 Ola odwiedziła koleżankę, a następnie wracała
Bardziej szczegółowoPRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY+ 5 MARCA 2011 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT.) Cena towaru bez podatku
Bardziej szczegółowoZADANIA DO ROZWIĄZANIA. MAJ 2016 r.
MAJ 2016 r. 1. W turnieju szachowym, rozgrywanym w systemie każdy z każdym, bez rewanżu, miało brać udział 8 zawodników. Jeden z nich zrezygnował. O ile zmniejszyła się liczba zaplanowanych rozgrywek?
Bardziej szczegółowo14P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM PODSTAWOWY (od początku do grawitacji)
Włodzimierz Wolczyński 14P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM PODSTAWOWY (od początku do grawitacji) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią
Bardziej szczegółowoSpis treści. Statystyka...2. Liczby...8. Figury płaskie Prostokątny układ współrzędnych Wielkości proporcjonalne Procenty...
Spis treści Statystyka...2 Liczby...8 Figury płaskie... 27 Prostokątny układ współrzędnych... 2 Wielkości proporcjonalne... 5 Procenty... 56 Potęga o wykładniku naturalnym... 6 Wyrażenia algebraiczne...
Bardziej szczegółowoKONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH
Kod ucznia - - pieczątka WKK Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP REJONOWY Drogi Uczniu! Witaj na etapie rejonowym konkursu matematycznego. Przeczytaj
Bardziej szczegółowoPRÓBNY EGZAMIN GIMNAZJALNY
PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 9 KWIETNIA 206 CZAS PRACY: 90 MINUT ZADANIE ( PKT) Dokończ zdanie tak, aby otrzymać zdanie prawdziwe. Różnica między
Bardziej szczegółowoWe wszystkich zadaniach przyjmij wartość przyspieszenia ziemskiego g = 10 2
m We wszystkich zadaniach przyjmij wartość przyspieszenia ziemskiego g = 10 2. s Zadanie 1. (1 punkt) Pasażer samochodu zmierzył za pomocą stopera w telefonie komórkowym, że mija słupki kilometrowe co
Bardziej szczegółowoZadania egzaminacyjne z fizyki.
Zadania egzaminacyjne z fizyki. Zad1 Gdy Ala z I a zapyta Cię: Skąd się wzięła ta piękna tęcza na niebie?, odpowiesz: A. to odbicie światła słonecznego od powierzchni kropli deszczu B. to rozszczepienie
Bardziej szczegółowoPRÓBNY EGZAMIN GIMNAZJALNY
PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 13 KWIETNIA 2013 CZAS PRACY: 90 MINUT 1 ZADANIE 1 (1 PKT.) 16 8 16 = 16 2 P F 3 2700 = 90 P F ZADANIE 2 (1 PKT.)
Bardziej szczegółowoWOJEWÓDZKI KONKURS PRZEDMIOTOWY z FIZYKI dla uczniów gimnazjum woj. łódzkiego w roku szkolnym 2013/2014 zadania eliminacji wojewódzkich.
ŁÓD ZK IE CEN TRUM DOSK ONALEN IA NAUC ZYC IEL I I KS ZTAŁ CEN IA P RAK TYC ZNE GO Kod pracy Wypełnia Przewodniczący Wojewódzkiej Komisji Wojewódzkiego Konkursu Przedmiotowego z Fizyki Imię i nazwisko
Bardziej szczegółowoKonkurs przedmiotowy z fizyki dla uczniów gimnazjów
Pieczęć Konkurs przedmiotowy z fizyki dla uczniów gimnazjów 25 stycznia 2014 r. zawody II stopnia (rejonowe) Witamy Cię na drugim etapie konkursu i życzymy powodzenia. Maksymalna liczba punktów 60. Czas
Bardziej szczegółowoZADANIE 1 ZADANIE 2. NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI A) 5,5 B) 8 C) 5,75 D) 4. nie wygramy nagrody jest równe A)
ZADANIE 1 Średnia arytmetyczna licz 5,5,7,3,9,9,4,4 jest liczba A) 5,5 B) 8 C) 5,75 D) 4 ZADANIE 2 Na loterii jest 10 losów, z których 4 sa wygrywajace. Kupujemy jeden los. Prawdopodobieństwo zdarzenia,
Bardziej szczegółowoPRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 14 KWIETNIA 2018 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 5 30 2 3 5
Bardziej szczegółowoWojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Szkolny 16 listopada 2018 Rozwiązania i punktacja
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Szkolny 16 listopada 018 Rozwiązania i punktacja ZADANIA ZAMKNIĘTE W zadaniach od 1. do 10. wybierz i zaznacz na karcie odpowiedzi jedną poprawną
Bardziej szczegółowoPRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 28 LUTEGO 2015 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Przybliżenie z niedomiarem
Bardziej szczegółowoII WOJEWÓDZKI KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH
II WOJEWÓDZKI KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ ODSTAWOWYCH ETA III - WOJEWÓDZKI 3 marca 2018 r. Godz.10:00 Kod pracy ucznia Suma punktów Czas pracy: 90 minut Liczba punktów możliwych do uzyskania:
Bardziej szczegółowoPRÓBNY EGZAMIN GIMNAZJALNY
PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 2 KWIETNIA 2016 CZAS PRACY: 90 MINUT 1 Informacja do zadań 1 i 2 Pomiędzy dworcem kolejowym i lotniskiem kursuja
Bardziej szczegółowoWojewódzki Konkurs Fizyczny dla uczniów Gimnazjum w roku szkolnym 2012/2013 ETAP WOJEWÓDZKI - 13 marca 2013 r.
NUMER KODOWY UCZNIA Punktacja za zadania Zad. Zad. Zad. Zad. Zad. Zad. Zad. Razem 1 2 3 4 5 6 7 4 p 7 p 3 p 4 p 5 p 4 p 13 p 40 p.. Podpis nauczyciela oceniającego zadanie 80% z 40 pkt. =32 pkt. Drogi
Bardziej szczegółowoLIGA MATEMATYCZNO-FIZYCZNA KLASA I ETAP IV
LIGA MATEMATYCZNO-FIZYCZNA KLASA I ETAP IV Zad. Janek oszczędza, aby kupić komputer, który kosztuje 5400 zł. Zapytany, ile już zgromadził pieniędzy, odpowiedział : Nawet gdybym miał o jedną piątą więcej
Bardziej szczegółowoCo ile minut odjeżdżają busy w dni powszednie między 6.00 a 10.00?
karty pracy 4 część KARTA PRACY nr 63 IMIĘ:... DATA: STRONA 1 ROZKŁAD JAZDY BUSÓW MIELEC RZESZÓW Poniedziałek - Piątek Sobota Niedziela 5.35 6.10 6.45 7.20 7.55 8.30 5.30 6.00 6.30 7.00 6.00 7.00 8.00
Bardziej szczegółowoKonkursy w województwie podkarpackim w roku szkolnym 2013/2014 KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP REJONOWY
Kod ucznia - - pieczątka WKK Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP REJONOWY Drogi Uczniu! Witaj na II etapie konkursu z matematyki. Przeczytaj
Bardziej szczegółowoImię i nazwisko ucznia Data... Klasa... Ruch i siły wer. 1
Przygotowano za pomocą programu Ciekawa fizyka. Bank zadań Copyright by Wydawnictwa Szkolne i Pedagogiczne sp. z o.o., Warszawa 2011 strona 1 Imię i nazwisko ucznia Data...... Klasa... Zadanie 1. Znajdź
Bardziej szczegółowoPRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 11 MARCA 2017 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Dla każdej dodatniej
Bardziej szczegółowoPRÓBNY EGZAMIN GIMNAZJALNY
PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 14 KWIETNIA 2012 CZAS PRACY: 90 MINUT 1 ZADANIE 1 (1 PKT.) Korzystajac z tego, że 12 2 = 144, wskaż wartość liczby
Bardziej szczegółowoBlok 6: Pęd. Zasada zachowania pędu. Praca. Moc.
Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc. ZESTAW ZADAŃ NA ZAJĘCIA ROZGRZEWKA 1. Przypuśćmy, że wszyscy ludzie na świecie zgromadzili się w jednym miejscu na Ziemi i na daną komendę jednocześnie
Bardziej szczegółowo