ELEMENTY ELEKTRONICZNE
|
|
- Oskar Mazur
- 8 lat temu
- Przeglądów:
Transkrypt
1 DEMI GÓRNICZO-HUTNICZ IM. STNISŁW STSZIC W ROWIE Wydział Informatyki, Elektroniki i Telekomunikacji atedra Elektroniki ELEMENTY ELETRONICZNE dr inż. Piotr Dziurdzia paw. C-3, pokój 413; tel , piotr.dziurdzia@agh.edu.pl dr inż. Ireneusz Brzozowski paw. C-3, pokój 512; tel , ireneusz.brzozowski@agh.edu.pl Co to jest? B 2 I B I E R E I E E p E U BB U E n U BB ' < U BB '' < U BB ''' B 1 ujemna rezystancja 0 n0 q 0 q n p0 0 n p U E n p p EiT 2013 r. PD&IB Elementy elektroniczne 2 1
2 ELEMENTY PRZEŁĄCZJĄCE Pracują w stanie: blokowania (wyłączenia) bardzo duża rezystancja, przewodzenia (włączenia) bardzo mała rezystancja. Już poznane to: dioda: polaryzacja zaporowa i przewodząca, tranzystor unipolarny: stan zatkania i przewodzenia tranzystor bipolarny: stan odcięcia i nasycenia EiT 2013 r. PD&IB Elementy elektroniczne elementy przełączające 3 ELEMENTY PRZEŁĄCZJĄCE tranzystor jednozłączowy dynistor, diak tyrystor, triak EiT 2013 r. PD&IB Elementy elektroniczne elementy przełączające 4 2
3 TRNYZSTOR JEDNOZŁĄCZOWY B 2 I B U E' Gdy dioda zatkana (I E =0): rb I BrB U BB 1 1 U rb r 1 B2 BB I E E p r b2 E' U BB r B1 rb1 r B2 wewnętrzny współczynnik podziału U E' I E U E n r b1 U BB ' < U BB '' < U BB ''' B 1 U E 0 I E r b1 U j I E U RE U E EiT 2013 r. PD&IB Elementy elektroniczne tranzystor jednozłączowy 5 TRNYZSTOR JEDNOZŁĄCZOWY E B 2 p Philips Semiconductors: 2N2646 n B 1 U BB > 0 E emiter typu p B 2 B 1 U BB = 0 E emiter typu n B 2 B 1 blokowanie ujemna rezystancja nasycenie EiT 2013 r. PD&IB Elementy elektroniczne tranzystor jednozłączowy 6 3
4 TRNYZSTOR JEDNOZŁĄCZOWY PRMETRY Philips Semiconductors: 2N2646 zakres ujemnej rezystancji EiT 2013 r. PD&IB Elementy elektroniczne tranzystor jednozłączowy 7 TRNYZSTOR JEDNOZŁĄCZOWY ZSTOSOWNIE Generator wykorzystanie ujemnej rezystancji U E R 1 R 2 t C U E wy U wy (U RL ) R L t EiT 2013 r. PD&IB Elementy elektroniczne tranzystor jednozłączowy 8 4
5 STRUTUR p-n-p-n Brak polaryzacji: J 1 J 2 J 3 p ++ n p + n ++ Polaryzacja zaporowa: J 1 J 2 J 3 p ++ n p + n ++ J 1 zaporowo, J 2 przewodząco, J 3 zaporowo EiT 2013 r. PD&IB Elementy elektroniczne struktura p-n-p-n 9 STRUTUR p-n-p-n Polaryzacja przewodząca: blokowanie J 1 J 2 J 3 p ++ n p + n ++ J 1 przewodząco, J 2 zaporowo, J 3 przewodząco Polaryzacja przewodząca: przewodzenie akumulacja elektronów akumulacja dziur J 1 J 2 J 3 p ++ n p + n ++ I J 1 przewodząco, J 2 przewodząco, J 3 przewodząco EiT 2013 r. PD&IB Elementy elektroniczne struktura p-n-p-n 10 5
6 DYNISTOR I U BR I H I B0 U U H U B0 U B0 napięcie załączenia U H napięcie podtrzymania U BR napięcie przebicia I H prąd podtrzymania EiT 2010 r. PD&IB Elementy elektroniczne dynistor 11 STRUTUR p-n-p-n z BRMĄ J 1 J 2 J 3 p ++ n p + n ++ G Pod wpływem prądu bramki I G następuje wstrzykiwanie elektronów z katody przez złącze J 3, które wywołują przebicie lawinowe w złączu J 2 zanim napięcie U osiągnie U B0 załączenie tyrystora sterowany dynistor tyrystor Raz załączony tyrystor nie może być wyłączony prądem bramki (chyba, że jest to GTO). Wyłączenie następuje przez zanik prądu anodowego, lub zmianę polaryzacji napięcia U. EiT 2010 r. PD&IB Elementy elektroniczne tyrystor 12 6
7 TYRYSTOR I G G U BR I L I H I IN I G2 > I G1 I G =0 U U H U B2 U B1 U B0 U Bx napięcie załączenia przy I gx U H napięcie podtrzymania U BR napięcie przebicia I H prąd podtrzymania I L prąd pewnego przełączenia I IL prąd włączenia przy U B0 EiT 2013 r. PD&IB Elementy elektroniczne tyrystor 13 TYRYSTOR zastosowanie obwody o dużych prądach i napięciach elektroenergetyka, napędy elektryczne, trakcje elektryczne, układy regulacji operujące na dużych mocach przekształtniki o fazowym sterowaniu sterowniki napięcia zmiennego, sterowane prostowniki napięcia, falowniki w układach elektrotermicznych do regulacji mocy grzania w elektrotechnice samochodowej tyrystorowe układy zapłonowe, a także zastępują układy przekaźnikowe sterowanie oświetleniem tyrystorowe regulatory oświetlenia, ściemniacze EiT 2010 r. PD&IB Elementy elektroniczne tyrystor 14 7
8 DI Dwie struktury: n-p-n-p i p-n-p-n połączone równolegle J 1 J 2 J 3 n ++ p n + p ++ J 1 J 2 J 3 p ++ n p + n ++ Struktura pięciowarstwowa: n-p-n-p-n p n p EiT 2013 r. PD&IB Elementy elektroniczne struktura n-p-n-p-n diak 15 DI I U EiT 2013 r. PD&IB Elementy elektroniczne diak 16 8
9 DW TYRYSTORY - TRI Struktura pięciowarstwowa: n-p-n-p-n z bramką G n p n p n n EiT 2010 r. PD&IB Elementy elektroniczne triak 17 TRI I G U EiT 2013 r. PD&IB Elementy elektroniczne traiak 18 9
10 PÓŁPRZEWODNIOWE PRZYRZĄDY ŁDUNOWE CCD Charge-Coupled Devices EiT 2013 r. PD&IB 19 ondensator MOS zubożenie G warstwa zubożona brak inwersji studnia potencjału generacja termiczna prąd ciemny Czas relaksacji termicznej czas potrzebny na wypełnienie obszaru zubożonego ładunkiem Q I i powstanie warstwy inwersyjnej (nasycenie) O (SiO 2 ) półprzewodnik typu P B (podłoże) U G >> 0 równowaga termodynamiczna potencjał powierzchniowy: s 2 F F potencjał Fermiego EiT 2013 r. PD&IB Elementy elektroniczne CCD 20 10
11 Struktura CCD S G 1 O (SiO 2 ) G 2 G 3 G 4 G 5 G 6 D półprzewodnik typu P B (podłoże) Jak to działa? EiT 2013 r. PD&IB Elementy elektroniczne CCD 21 Struktura CCD transport ładunku U G 1 = U in U G2 = U 1 S G 1 O (SiO 2 ) G 2 G 3 G 4 G 5 G 6 D półprzewodnik typu P B (podłoże) U G2 U 2 U 1 U G3 U 2 t 1 t 2 U 1 t 1 t 2 EiT 2013 r. PD&IB Elementy elektroniczne CCD 22 11
12 Struktura CCD transport ładunku U G 1 = 0 U G2 = U 1 U G2 = U 2 S G 1 O (SiO 2 ) G 2 G 3 G 4 G 5 G 6 D półprzewodnik typu P B (podłoże) U G2 U 2 U 1 U G3 U 2 t 1 t 2 U 1 t 1 t 2 EiT 2013 r. PD&IB Elementy elektroniczne CCD 23 Struktura CCD transport ładunku U G 1 = 0 U G2 = 0 U G2 = U 1 S G 1 O (SiO 2 ) G 2 G 3 G 4 G 5 G 6 D półprzewodnik typu P B (podłoże) U G2 U 2 U 1 U G3 U 2 t 1 t 2 t 3 U 1 t 1 t 2 t 3 EiT 2013 r. PD&IB Elementy elektroniczne CCD 24 12
13 Struktura CCD transport ładunku U zas U G 1 = 0 U G2 = 0 U G3 = 0 U G4 = 0 U G5 = 0 U G6 = U 1 I out R L G 1 G 2 G 3 G 4 G 5 G 6 S D U out O (SiO 2 ) półprzewodnik typu P B (podłoże) U G2 U 2 U 1 t U G3 U 2 U 1 t 1 t 1 t 2 t 2 t 3 t 3 t Struktura CCD należy do grupy: CTD charge transport devices EiT 2013 r. PD&IB Elementy elektroniczne CCD 25 Struktura CCD (podział): Struktura CCD SCCD surface charge-coupled device BCCD bulk charge-coupled device z kanałem zagrzebanym Sposoby wprowadzania ładunku (informacji): generacja lawinowa pod bramką G 1 wstrzykiwanie nośników z obszaru dyfuzyjnego obok pierwszej elektrody generacja nośników w skutek oświetlenia zjawisko fotoelektryczne wewnętrzne EiT 2013 r. PD&IB Elementy elektroniczne CCD 26 13
14 Struktura CCD Parametry: maksymalna wielkość gromadzonego ładunku sprawność (efektywność) transportu ładunku stosunek ładunku odebranego na wyjściu do ładunku na wej. Zjawiska: D n wsp. dyfuzji elektronów 2 skończony czas przelotu (dyfuzja termiczna L ) 2,5D n rekombinacja i pułapkowanie ładunku w stanach powierzchniowych istnienie barier potencjałów pomiędzy studniami różne prędkości elektronów L odległość, miedzy bramkami EiT 2013 r. PD&IB Elementy elektroniczne CCD 27 Sensor optyczny CCD BUDOW i DZIŁNIE U 1 G 11 O (SiO 2 ) G 12 G 13 G 21 G 22 G 23 G 31 G 32 G 33 out p-podłoże B h h h EiT 2014 r. PD&IB Elementy elektroniczne CCD 28 14
15 Sensor optyczny CCD Hydrauliczna zasada działania EiT 2013 r. PD&IB Elementy elektroniczne sensor CCS 29 Sensor optyczny CMOS ktywny piksel EiT 2013 r. PD&IB Elementy elektroniczne sensor CMOS 30 15
16 Porównanie CCD i CMOS CCD Duży zakres dynamiki Małe szumy Duży pobór mocy Średnia niezawodność Małe rozmiary pikseli Wymaga układów zewnętrznych (odczytowych) Duży współczynnik wypełnienia nalogowy sygnał wyjściowy CMOS Średni zakres dynamiki Większe szumy, ale szybszy Średni pobór mocy Bardziej niezawodny (scalenie w jednym chipie) Większe rozmiary pikseli Scalony w jednym chipie Mniejszy współczynnik wypełnienia Cyfrowy sygnał wyjściowy EiT 2013 r. PD&IB Elementy elektroniczne sensor CMOS 31 Sensory CCD i CMOS EiT 2013 r. PD&IB Elementy elektroniczne sensor CCD vs. CMOS 32 16
17 BEZZŁĄCZOWE ELEMENTY PÓŁPRZEWODNIOWE warystor, termistor, fotorezystor, piezorezystor, rezonator piezoelektryczny, hallotron, magnetorezystor EiT 2012 r. PD&IB 33 WRYSTOR Półprzewodnikowy nieliniowy rezystor o silnej zależności rezystancji od napięcia I VDR Voltage Dependent Resistor U węglik krzemu U tlenki metali b U I stała materiałowa b współczynnik nieliniowości (zwykle od 0,1 do 1) EiT 2012 r. PD&IB Elementy elektroniczne warystor 34 17
18 WRYSTOR Budowa: Struktura polikrystaliczna z węgliku krzemu (SiC) lub tlenku cynku (ZnO) spiekana z domieszkami innych tlenków metali (Bi2O3, MnO, Sb2O3, itp.) ZnO Bi 2 O 3 Ziarnista struktura warystora odpowiada elektrycznej sieci kondensatorów i rezystorów oraz złącz półprzewodnikowych na krawędzi ziaren EiT 2012 r. PD&IB Elementy elektroniczne warystor 35 WRYSTOR Parametry: max. napięcie pracy napięcie charakterystyczne (przy danym prądzie) max. prąd max. rozpraszana moc max. energia rozpraszanego impulsu (i jego parametry) pojemność Zastosowanie: zabezpieczenia obwodów przed przepięciami (zasilacze, prostowniki, rozwierane styki, linie energetyczne i transformatory, odgromniki itd.) stabilizacja napięcia filtry, przetworniki częstotliwości (wykorzystanie nieliniowości) EiT 2012 r. PD&IB Elementy elektroniczne warystor 36 18
19 TERMISTOR Półprzewodnikowy nieliniowy rezystor o rezystancji zależnej od temperatury T R Ch-ki rezystancyjno-temperaturowe CTC PTC U Ch-ka napięciowo-prądowa NTC NTC T I BT RT _ PTC 1 2e T _ NTC e EiT 2012 r. PD&IB Elementy elektroniczne termistor 37 R, 1, 2 stałe wsp., B stała materiałowa B T TERMISTOR Rodzaje: NTC (Negative Temperature Coefficient) ujemny współczynnik temperaturowy wzrost temperatury powoduje zmniejszanie się rezystancji PTC (Positive Temperature Coefficient) dodatni współczynnik temperaturowy, tak zwany wzrost temperatury powoduje wzrost rezystancji (pozystor) CTR (Critical Temperature Resistor) skokowa zmiana rezystancji wzrost temperatury powyżej określonej powoduje gwałtowny wzrost rezystancji R (bezpieczniki polimerowe) CTC PTC NTC T EiT 2012 r. PD&IB Elementy elektroniczne termistor 38 19
20 Jak działa termistor? 3 Eg 2 2kT ni T T e 3 n i 300 1,5 10 cm 3 czyli w 1mm możemy znaleźć 15 milionów swobodnych elektronów!!! i tyleż samo dziur ;)) 10 Jaka jest wrażliwość zmian koncentracji swobodnych elektronów i dziur w samoistnym krzemie w otoczeniu temperatury T=300? należy obliczyć: dni dt i n i 3 E 2T 2kT g 2 b E T e 2 g kt po podstawieniu danych otrzymujemy: % i EiT 2012 r. PD&IB Elementy elektroniczne termistor 39 TERMISTOR Budowa: Bryła odpowiednio dobranego i ukształtowanego półprzewodnika z wyprowadzeniami. Mieszanina sproszkowanych materiałów półprzewodnikowych (tlenki: manganu, niklu, kobaltu i miedzi) połączona odpowiednim spoiwem, sprasowana i spieczona w wysokiej temperaturze. Mogą być wykonane jako: pałeczki, krążki, pierścienie, cylindry, bryłki, cienkie warstwy naniesione podłoże, itd.. Świt, J. Pułtorak, Przyrządy półprzewodnikowe, WNT, Warszawa, 1979 EiT 2012 r. PD&IB Elementy elektroniczne termistor 40 20
21 TERMISTOR Parametry: rezystancja nominalna (R 25 ) wartość rezystancji w temp. 25 o C temperaturowy współczynnik rezystancji (TWR, T ) dla CTR temperatura krytyczna dopuszczalna moc strat tolerancja Zastosowanie: pomiar i regulacja temperatury kompensacja temperaturowa innych elementów obwody opóźniające i ograniczające prądy rozruchu ograniczniki natężenia prądu (CTR) stabilizacja napięcia i amplitudy drgań R T 1 T EiT 2012 r. PD&IB Elementy elektroniczne termistor 41 R T FOTOREZYTOR Półprzewodnikowy nieliniowy rezystor o rezystancji zależnej od oświetlenia (natężenia promieniowania widzialnego i niewidzialnego) LDR Light Dependent Resistor I Ch-ka prądowo-napięciowa R Ch-ka rezystancyjno-oświetleniowa E 5 E 1 < E 2 < E 3 < E 4 < E 5 E 4 I E 3 E 2 E 1 P max U max I I 0 I 0 prąd ciemny F I F prąd fotoelektryczny U E0 R E R0 E EiT 2012 r. PD&IB Elementy elektroniczne fotorezystor 42 E R E rezystancja fotorezystora E natężenie oświetlenia R 0 rezystancja przy natężeniu E 0 współczynnik materiałowy dla CdS = 0,5 1 21
22 FOTOREZYSTOR h półprzewodnik Przewodność: q( n n 0 p0) p I 0 + I F Materiały: CdS siarczek kadmu CdSe selenek kadmu CdTe tellurek kadmu PbS, PbSe, CdHgTe, InSb, PbSnTe i inne U ilość nadmiarowych, samoistnych nośników: n p G L G L prędkość generacji p czas życia nośników nadmiarowych wzrost przewodności: q p)( ) p ( n p fotoprzewodnictwo EiT 2012 r. PD&IB Elementy elektroniczne fotorezystor 43 FOTOREZYSTOR Parametry: czułość widmowa rezystancja ciemna - bez oświetlenia rezystancja przy określonym oświetleniu (np. 10lx, 100lx) czułość max. dla długości fali dopuszczalna moc strat czas odpowiedzi (przełączania), Zastosowanie: proste mierniki oświetlenia automatyczne włączanie oświetlenia detektory promieniowania kosmicznego EiT 2012 r. PD&IB Elementy elektroniczne fotorezystor 44 22
23 PIEZOREZYTOR Półprzewodnikowy nieliniowy rezystor o rezystancji zależnej od naprężenia lub deformacji mechanicznej piezoelektryczność [gr.], zjawisko piezoelektryczne, fiz. powstawanie ładunku elektrycznego na ściankach niektórych kryształów pod wpływem ich ściskania lub rozciągania wzdłuż jednej z osi krystalograficznych; odkryta 1880 przez Pierre a i Paula Curie; wykorzystywana w przyrządach pomiarowych, mikrofonach, gramofonach. tensometry czujniki mechano-elektryczne EiT 2012 r. PD&IB Elementy elektroniczne piezorezystor 45 PIEZOREZYSTOR Tensometr rezystancyjny l l R S S odkształcenie: l R mała czułość k = 1,63,5 Tensometr krzemowy pręt krzemowy (wym.: 0,1x0,1x510mm) R k l R 0 podkładka izolacyjna R0 k R l0 l k = R rezystancja płytki po przyłożeniu siły, R 0 rezystancja początkowa (bez działania siły) l długość płytki po przyłożeniu siły, l 0 początkowa długość płytki (bez działania siły EiT 2012 r. PD&IB Elementy elektroniczne piezorezystor 46 23
24 PIEZOREZYSTOR - TENSOMETR Parametry: czułość rezystancja wymiary Zastosowanie: tensometry półprzewodnikowe piezorezystancyjne czujniki ciśnienia (w układach scalonych) piezoelektryczny czujnik przyspieszenia silnik piezoelektryczny (mikrosilnik) EiT 2012 r. PD&IB Elementy elektroniczne piezorezystor 47 REZONTOR PIEZOELETRYCZNY Płytka wycięta z monokryształu kwarcu (SiO 2 ) po doprowadzeniu napięcia sinusoidalnego zaczyna drgać z częstotliwością rezonansową, w skutek odwrotnego efektu piezoelektrycznego. Model zastępczy C 0 L k C k 2 s 2 s s Qk Zk ( s) 2 s C k 2 sc0 s s 1 s Qk C0 r k rezonans szeregowy s 1 L C k dobroć rezonatora slk Qk r k k rezonans równoległy 1 C k r s 1 C C 0 2C k 0 L Reaktancja X Z w funkcji częstotliwości k Ck C0 dla bezstratnego rezonatora kwarcowego Rysunek zaczerpnięto z S. uta Elementy i układy elektroniczne, GH 2000 EiT 2012 r. PD&IB Elementy elektroniczne rezonator piezoelektryczny 48 24
25 PÓŁPRZEWODNI W POLU MGNETYCZNYM Wpływ pola magnetycznego na nośniki ładunku w półprzewodniku v e E x I U x EiT 2012 r. PD&IB Elementy elektroniczne półprzewodnik w polu magnetycznym 49 PÓŁPRZEWODNI W POLU MGNETYCZNYM Wpływ pola magnetycznego na nośniki ładunku w półprzewodniku Siła Lorentz a: F q( v B) B v e E x I U x EiT 2012 r. PD&IB Elementy elektroniczne półprzewodnik w polu magnetycznym 50 25
26 PÓŁPRZEWODNI W POLU MGNETYCZNYM Wpływ pola magnetycznego na nośniki ładunku w półprzewodniku E R y H J x B z V E x E y B Z I U x R H stała Halla: dla pp. donorowych: RH 3 8 qnn dla pp. akceptorowych: RH 3 8 qp p HLLOTRON EiT 2012 r. PD&IB Elementy elektroniczne półprzewodnik w polu magnetycznym 51 HLLOTRON Przyrząd półprzewodnikowy, działający w oparciu o zjawisko Halla U y Ch-ka napięciowo-prądowa wyjściowa U Ch-ka oddziaływania pola magnetycznego I x3 I x2 B 1 < B 2 < B 3 I x1 B 3 U y B 1 B 2 Ch-ka napięciowo-prądowa oddziaływania prądu sterującego U B 3 y y y y B1 < B 2 < B 3 B 2 B 1 I y I x U y U RH (0) c (0) R I x B I z B R y rezystancja obszaru roboczego R H stała Halla c grubość obszaru roboczego EiT 2012 r. PD&IB Elementy elektroniczne hallotron 52 26
27 HLLOTRON Parametry: czułość rezystancja wejściowa R x temperaturowy współczynnik rezystywności i stałej Halla parametry graniczne (max. prąd, napięcie, temperatura pracy, itd.) Zastosowanie: pomiar natężenia pola magnetycznego różnego rodzaju czujniki ruchu pośredni pomiar dużych prądów, mocy itp. pomiary wielkości nieelektrycznych (kąt obrotu, przesunięcie, drgania itp.) EiT 2012 r. PD&IB Elementy elektroniczne hallotron 53 MGNETOREZYSTOR - GUSSOTRON Półprzewodnikowy nieliniowy rezystor o rezystancji zależnej od pola magnetycznego R B Ch-ka rezystancyjna B R 0 B R R B 0 0 R R R 0 SB 2 R 0 rezystancja początkowa S kwadratowy współczynnik magnetorezystancji B natężenie pola magnetycznego EiT 2012 r. PD&IB Elementy elektroniczne gaussotron 54 27
28 GUSSOTRON Parametry: rezystancja początkowa współczynnik magnetorezystancji Zastosowanie: podobne jak hallotrony EiT 2012 r. PD&IB Elementy elektroniczne gaussotron 55 UŁDY SCLONE EiT 2014 r. PD&IB 56 28
29 UŁD SCLONY - DEFINICJ Układ scalony układ elektroniczny wykonany jako nierozłączne połączenie elementów elektronicznych, w jednym cyklu technologicznym wewnątrz lub na wspólnym podłożu. EiT 2014 r. PD&IB Elementy elektroniczne układy scalone 57 PODZIŁ UŁDÓW SCLONYCH Monolityczne wykonane w bryle półprzewodnika bipolarne unipolarne Hybrydowe wykonane na wspólnym podłożu cienkowarstwowe grubowarstwowe nalogowe pracują z sygnałami analogowymi Cyfrowe pracują z sygnałami cyfrowymi EiT 2014 r. PD&IB Elementy elektroniczne układy scalone 58 29
30 UŁDY SCLONE - PROJETOWNIE tranzystor NMOS PMOS EiT 2014 r. PD&IB Elementy elektroniczne układy scalone 59 UŁDY SCLONE - PROJETOWNIE rezystor cewka kondensator EiT 2014 r. PD&IB Elementy elektroniczne układy scalone 60 30
31 UŁDY SCLONE - PROJETOWNIE varaktor EiT 2014 r. PD&IB Elementy elektroniczne układy scalone 61 UŁDY SCLONE - PROJETOWNIE EiT 2014 r. PD&IB Elementy elektroniczne układy scalone 62 31
32 UŁDY SCLONE - PROJETOWNIE EiT 2014 r. PD&IB Elementy elektroniczne układy scalone 63 UŁDY SCLONE - PROJETOWNIE EiT 2014 r. PD&IB Elementy elektroniczne układy scalone 64 32
ELEMENTY ELEKTRONICZNE
DEMI GÓRNICZO-HUTNICZ IM. STNISŁW STSZIC W ROWIE Wydział Informatyki, Elektroniki i Telekomunikacji atedra Elektroniki ELEMENTY ELETRONICZNE dr inż. Piotr Dziurdzia paw. C-3, pokój 413; tel. 617-27-02,
ELEMENTY ELEKTRONICZNE
DEMI GÓRNICZO-HUTNICZ IM. STNISŁW STSZIC W ROWIE Wydział Informatyki, Elektroniki i Telekomunikacji atedra Elektroniki ELEMENTY ELETRONICZNE dr inż. Piotr Dziurdzia paw. C-3, pokój 413; tel. 617-27-02,
ELEMENTY ELEKTRONICZNE
AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE Wydział Informatyki, Elektroniki i Telekomunikacji Katedra Elektroniki ELEMENTY ELEKTRONICZNE dr inż. Piotr Dziurdzia paw. C-3, pokój 413;
Wybrane elementy elektroniczne. Rezystory NTC. Rezystory NTC
Wybrane elementy elektroniczne Rezystory NTC Czujniki temperatury Rezystancja nominalna 20Ω 40MΩ (typ 2kΩ 40kΩ) Współczynnik temperaturowy -2-5% [%/K] Max temperatura pracy 120 200 (350) [ºC] Współczynnik
SYMBOLE GRAFICZNE. Tyrystory. Struktura Charakterystyka Opis
SYMBOLE GRAFICZNE y Nazwa triasowy blokujący wstecznie SCR asymetryczny ASCR Symbol graficzny Struktura Charakterystyka Opis triasowy blokujący wstecznie SCR ma strukturę czterowarstwową pnpn lub npnp.
Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego
Półprzewodniki i elementy z półprzewodników homogenicznych Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Publikacja
Rozmaite dziwne i specjalne
Rozmaite dziwne i specjalne dyskretne przyrządy półprzewodnikowe Ryszard J. Barczyński, 2009 2015 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego
7. Tyrystory. Tyrystor SCR (Silicon Controlled Rectifier)
7. Tyrystory 1 Tyrystory są półprzewodnikowymi przyrządami mocy pracującymi jako łączniki dwustanowe to znaczy posiadające stan włączenia (charakteryzujący się małą rezystancją) i stan wyłączenia (o dużej
ELEKTRONIKA. SS-I, AiR, III sem. Wykład 30h, Laboratorium 30h (H22/B3) SS-I, AiR, IV sem. Wykład 30h, Laboratorium 30h (
ELEKTRONIKA SS-I, AiR, III sem. Wykład 30h, Laboratorium 30h (H22/B3) SS-I, AiR, IV sem. Wykład 30h, Laboratorium 30h ( ) Wykład (IIIsem): Elementy i układy elektroniczne dr inż. Jan Deskur, pok. 626,
Elementy przełącznikowe
Elementy przełącznikowe Dwie główne grupy: - niesterowane (diody p-n lub Schottky ego), - sterowane (tranzystory lub tyrystory) Idealnie: stan ON zwarcie, stan OFF rozwarcie, przełączanie bez opóźnienia
Część 3. Przegląd przyrządów półprzewodnikowych mocy. Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 51
Część 3 Przegląd przyrządów półprzewodnikowych mocy Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 51 Budowa przyrządów półprzewodnikowych Struktura składa się z warstw Warstwa
Elektronika: Polaryzację złącza w kierunku zaporowym i w kierunku przewodzenia (pod rozdz. 6.3). Charakterystykę diody (rozdz. 7).
114 PRZYPOMNIJ SOBIE! Elektronika: Polaryzację złącza w kierunku zaporowym i w kierunku przewodzenia (pod rozdz. 6.3). Charakterystykę diody (rozdz. 7). 9. Elektroniczne elementy przełączające Elementami
Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE. Badanie tranzystorów unipolarnych typu JFET i MOSFET
Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej TIA ZIENNE LAORATORIM PRZYRZĄÓW PÓŁPRZEWONIKOWYCH Ćwiczenie nr 8 adanie tranzystorów unipolarnych typu JFET i MOFET I. Zagadnienia
IV. TRANZYSTOR POLOWY
1 IV. TRANZYSTOR POLOWY Cel ćwiczenia: Wyznaczenie charakterystyk statycznych tranzystora polowego złączowego. Zagadnienia: zasada działania tranzystora FET 1. Wprowadzenie Nazwa tranzystor pochodzi z
Pytania podstawowe dla studentów studiów I-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych
Pytania podstawowe dla studentów studiów I-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych 1 Podstawy metrologii 1. Model matematyczny pomiaru. 2. Wzorce jednostek miar. 3. Błąd pomiaru.
SERIA IV ĆWICZENIE 4_3. Temat ćwiczenia: Badanie termistorów i warystorów. Wiadomości do powtórzenia:
SERIA IV ĆWICZENIE 4_3 Temat ćwiczenia: Badanie termistorów i warystorów. Wiadomości do powtórzenia: 1. Rodzaje, budowa, symbole, zasada działania i zastosowanie termistorów i warystorów. 2. Charakterystyka
1. Zarys właściwości półprzewodników 2. Zjawiska kontaktowe 3. Diody 4. Tranzystory bipolarne
Spis treści Przedmowa 13 Wykaz ważniejszych oznaczeń 15 1. Zarys właściwości półprzewodników 21 1.1. Półprzewodniki stosowane w elektronice 22 1.2. Struktura energetyczna półprzewodników 22 1.3. Nośniki
Pytania podstawowe dla studentów studiów I-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych
Pytania podstawowe dla studentów studiów I-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych 0 Podstawy metrologii 1. Model matematyczny pomiaru. 2. Wzorce jednostek miar. 3. Błąd pomiaru.
Elektronika. Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej.
Elektronika Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej. Zadania elektroniki: Urządzenia elektroniczne służą do przetwarzania i przesyłania informacji w postaci
TRANZYSTORY - PORÓWNANIE WYKŁAD 15 SMK
TRANZYSTORY - PORÓWNANIE WYKŁAD 15 SMK Na pdstw.: W. Marciniak, WNT 1987: Przyrządy półprzewodnikowe i układy scalone, Z. Nosal, J. Baranowski, Układy elektroniczne, PWN 2003 7. PORÓWNANIE TRANZYSTORÓW
Elementy optoelektroniczne. Przygotował: Witold Skowroński
Elementy optoelektroniczne Przygotował: Witold Skowroński Plan prezentacji Wstęp Diody świecące LED, Wyświetlacze LED Fotodiody Fotorezystory Fototranzystory Transoptory Dioda LED Dioda LED z elektrycznego
ELEMENTY ELEKTRONICZNE TS1C300 018
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEMENY ELEKONICZNE S1C300 018 BIAŁYSOK 2013 1. CEL I ZAKES ĆWICZENIA LABOAOYJNEGO
CZUJNIKI WIELKOŚCI NIEELEKTRYCZNYCH
CZUJNIKI WIELKOŚCI NIEELEKTRYCZNYCH Rozważmy tylko takie czujniki, które nie zawierają żadnych części ruchomych. Zasadniczo, wyróżnia się dwa rodzaje czujników wielkości nieelektrycznych. Pierwszy rodzaj,
W książce tej przedstawiono:
Elektronika jest jednym z ważniejszych i zarazem najtrudniejszych przedmiotów wykładanych na studiach technicznych. Co istotne, dogłębne zrozumienie jej prawideł, jak również opanowanie pewnej wiedzy praktycznej,
Elementy elektrotechniki i elektroniki dla wydziałów chemicznych / Zdzisław Gientkowski. Bydgoszcz, Spis treści
Elementy elektrotechniki i elektroniki dla wydziałów chemicznych / Zdzisław Gientkowski. Bydgoszcz, 2015 Spis treści Przedmowa 7 Wstęp 9 1. PODSTAWY ELEKTROTECHNIKI 11 1.1. Prąd stały 11 1.1.1. Podstawowe
Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych pokój:
Podstawy Elektroniki Prowadzący: Prof. dr hab. Zbigniew Lisik Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych pokój: 116 e-mail: zbigniew.lisik@p.lodz.pl Program: wykład - 15h laboratorium
Wybrane elementy optoelektroniczne. 1. Dioda elektroluminiscencyjna LED 2. Fotodetektory 3. Transoptory 4. Wskaźniki optyczne 5.
Wybrane elementy optoelektroniczne 1. Dioda elektroluminiscencyjna LED 2. Fotodetektory 3. Transoptory 4. Wskaźniki optyczne 5. Podsumowanie a) b) Light Emitting Diode Diody elektrolumiscencyjne Light
Laboratorium Przyrządów Półprzewodnikowych test kompetencji zagadnienia
Wrocław, 21.03.2017 r. Laboratorium Przyrządów Półprzewodnikowych test kompetencji zagadnienia Podczas testu kompetencji studenci powinni wykazać się znajomością zagadnień określonych w kartach kursów
Pytania podstawowe dla studentów studiów II-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych
Pytania podstawowe dla studentów studiów II-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych 0 Podstawy metrologii 1. Co to jest pomiar? 2. Niepewność pomiaru, sposób obliczania. 3.
Urządzenia półprzewodnikowe
Urządzenia półprzewodnikowe Diody: - prostownicza - Zenera - pojemnościowa - Schottky'ego - tunelowa - elektroluminescencyjna - LED - fotodioda półprzewodnikowa Tranzystory - tranzystor bipolarny - tranzystor
Rozmaite dziwne i specjalne
Rozmaite dziwne i specjalne dyskretne przyrządy półprzewodnikowe Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego
Elementy półprzewodnikowe. Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego.
Elementy półprzewodnikowe Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Elementy elektroniczne i ich zastosowanie. Elementy stosowane w elektronice w większości
Przyrządy półprzewodnikowe część 5 FET
Przyrządy półprzewodnikowe część 5 FET r inż. Bogusław Boratyński Wydział Elektroniki Mikrosystemów i Fotoniki Politechnika Wrocławska 2011 Literatura i źródła rysunków G. Rizzoni, Fundamentals of Electrical
Elementy i układy elektroniczne i optoelektroniczne
Na podstawie: John Watson, Elektronika Elementy i układy elektroniczne i optoelektroniczne Podzespoły półprzewodnikowe. Transoptor: Użyteczny tam, gdzie układy mają bardzo różne potencjały (4 kv) zastępuje
Spis treści 3. Spis treści
Spis treści 3 Spis treści Przedmowa 11 1. Pomiary wielkości elektrycznych 13 1.1. Przyrządy pomiarowe 16 1.2. Woltomierze elektromagnetyczne 18 1.3. Amperomierze elektromagnetyczne 19 1.4. Watomierze prądu
Prostowniki. Prostownik jednopołówkowy
Prostowniki Prostownik jednopołówkowy Prostownikiem jednopołówkowym nazywamy taki prostownik, w którym po procesie prostowania pozostają tylko te części przebiegu, które są jednego znaku a części przeciwnego
PRZEŁĄCZANIE DIOD I TRANZYSTORÓW
L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE PRZEŁĄCZANIE DIOD I TRANZYSTORÓW REV. 1.1 1. CEL ĆWICZENIA - obserwacja pracy diod i tranzystorów podczas przełączania, - pomiary charakterystycznych czasów
Wzrost pseudomorficzny. Optyka nanostruktur. Mody wzrostu. Ekscyton. Sebastian Maćkowski
Wzrost pseudomorficzny Optyka nanostruktur Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 naprężenie
Diagnostyka układów elektrycznych i elektronicznych pojazdów samochodowych. 1.1.1. Podstawowe wielkości i jednostki elektryczne
Diagnostyka układów elektrycznych i elektronicznych pojazdów samochodowych 1. Prąd stały 1.1. Obwód elektryczny prądu stałego 1.1.1. Podstawowe wielkości i jednostki elektryczne 1.1.2. Natężenie prądu
Badanie półprzewodnikowych elementów bezzłączowych
Instrukcja do ćwiczenia: Badanie półprzewodnikowych elementów bezzłączowych (wersja robocza) Laboratorium Elektroenergetyki 1 1. Cel ćwiczenia. Celem ćwiczenia jest: Poznanie podstawowych właściwości i
Stabilizatory impulsowe
POITECHNIKA BIAŁOSTOCKA Temat i plan wykładu WYDZIAŁ EEKTRYCZNY Jakub Dawidziuk Stabilizatory impulsowe 1. Wprowadzenie 2. Podstawowe parametry i układy pracy 3. Przekształtnik obniżający 4. Przekształtnik
POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA
POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA ĆWICZENIE LABORATORYJNE NR 6 Temat: Pomiar zależności oporu półprzewodników
Badanie charakterystyk elementów półprzewodnikowych
Badanie charakterystyk elementów półprzewodnikowych W ramach ćwiczenia student poznaje praktyczne właściwości elementów półprzewodnikowych stosowanych w elektronice przez badanie charakterystyk diody oraz
Włączanie i wyłączanie tyrystora. Włączanie tyrystora przy pomocy kondensatora Cel ćwiczenia;
. Włączanie tyrystora przy pomocy kondensatora Cel ćwiczenia; Zapoznanie się z budową, działaniem i zastosowaniem tyrystora. Zapoznanie się z budową, działaniem i zastosowaniem tyrystora w obwodzie kondensatorem.
7. TYRYSTORY 7.1. WSTĘP
7. TYRYSTORY 7.1. WSTĘP Tyrystory są półprzewodnikowymi przyrządami mocy pracującymi jako łączniki dwustanowe, tj. mające stan włączenia (charakteryzujący się małą rezystancją) i stan wyłączenia (o dużej
Wykład V Złącze P-N 1
Wykład V Złącze PN 1 Złącze pn skokowe i liniowe N D N A N D N A p n p n zjonizowane akceptory + zjonizowane donory x + x Obszar zubożony Obszar zubożony skokowe liniowe 2 Złącze pn skokowe N D N A p n
Pytania z przedmiotu Inżynieria materiałowa
Pytania z przedmiotu Inżynieria materiałowa 1.Podział materiałów elektrotechnicznych 2. Potencjał elektryczny, różnica potencjałów 3. Związek pomiędzy potencjałem i natężeniem pola elektrycznego 4. Przewodzenie
Część 2. Przewodzenie silnych prądów i blokowanie wysokich napięć przy pomocy przyrządów półprzewodnikowych
Część 2 Przewodzenie silnych prądów i blokowanie wysokich napięć przy pomocy przyrządów półprzewodnikowych Łukasz Starzak, Przyrządy półprzewodnikowe mocy, zima 2015/16 20 Półprzewodniki Materiały, w których
SENSORY W BUDOWIE MASZYN I POJAZDÓW
SENSORY W BUDOWIE MASZYN I POJAZDÓW Wykład WYDZIAŁ MECHANICZNY Automatyka i Robotyka, rok II, sem. 4 Rok akademicki 2015/2016 Fizyczne zasady działania sensorów elementy oporowe Przy pomiarach wielkości
6. TRANZYSTORY UNIPOLARNE
6. TRANZYSTORY UNIPOLARNE 6.1. WSTĘP Tranzystory unipolarne, inaczej polowe, są przyrządami półprzewodnikowymi, których działanie polega na sterowaniu za pomocą pola elektrycznego wielkością prądu przez
Repeta z wykładu nr 6. Detekcja światła. Plan na dzisiaj. Metal-półprzewodnik
Repeta z wykładu nr 6 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 - kontakt omowy
ELEMENTY UKŁADÓW ENERGOELEKTRONICZNYCH
Politechnika Warszawska Wydział Elektryczny ELEMENTY UKŁADÓW ENERGOELEKTRONICZNYCH Piotr Grzejszczak Mieczysław Nowak P W Instytut Sterowania i Elektroniki Przemysłowej 2015 Wiadomości ogólne Tranzystor
Diody półprzewodnikowe cz II
Diody półprzewodnikowe cz II pojemnościowe Zenera tunelowe PIN Schottky'ego Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku
Czujniki temperatury
Czujniki temperatury Pomiar temperatury Pomiar temperatury jest jednym z najczęściej wykonywanych pomiarów wielkości nieelektrycznej w gospodarstwach domowych jak i w przemyśle. Do pomiaru temperatury
Elementy elektroniczne Wykład 9: Elementy przełączające
Elementy elektroniczne Wykład 9: Elementy przełączające Tyrystory konwencjonalne - wprowadzenie A I A p 1 p 1 j 1 + G n 1 G n 1 j C - p 2 p 2 j 2 n 2 n 2 K I K SRC silicon controlled rectifier Tyrystory
Politechnika Białostocka
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA EKS1A300024 BADANIE TRANZYSTORÓW BIAŁYSTOK 2015 1. CEL I ZAKRES
Rekapitulacja. Detekcja światła. Rekapitulacja. Rekapitulacja
Rekapitulacja Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje: czwartek
Ćwiczenie 4. Parametry statyczne tranzystorów polowych JFET i MOSFET
Ćwiczenie 4 Parametry statyczne tranzystorów polowych JFET i MOSFET Cel ćwiczenia Podstawowym celem ćwiczenia jest poznanie charakterystyk statycznych tranzystorów polowych złączowych oraz z izolowaną
Przyrządy półprzewodnikowe część 6
Przyrządy półprzewodnikowe część 6 Dr inż. Bogusław Boratyński Wydział Elektroniki Mikrosystemów i Fotoniki Politechnika Wrocławska 2011 Literatura i źródła rysunków G. Rizzoni, Fundamentals of Electrical
Czujniki. Czujniki służą do przetwarzania interesującej nas wielkości fizycznej na wielkość elektryczną łatwą do pomiaru. Najczęściej spotykane są
Czujniki Ryszard J. Barczyński, 2010 2015 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Czujniki Czujniki służą do przetwarzania interesującej
Tranzystory polowe FET(JFET), MOSFET
Tranzystory polowe FET(JFET), MOSFET Ryszard J. Barczyński, 2009 2015 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Tranzystor polowy złączowy
i elementy z półprzewodników homogenicznych część II
Półprzewodniki i elementy z półprzewodników homogenicznych część II Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego
12.7 Sprawdzenie wiadomości 225
Od autora 8 1. Prąd elektryczny 9 1.1 Budowa materii 9 1.2 Przewodnictwo elektryczne materii 12 1.3 Prąd elektryczny i jego parametry 13 1.3.1 Pojęcie prądu elektrycznego 13 1.3.2 Parametry prądu 15 1.4
Pytania podstawowe dla studentów studiów II-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych
Pytania podstawowe dla studentów studiów II-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych 1 Podstawy metrologii 1. Co to jest pomiar? 2. Niepewność pomiaru, sposób obliczania. 3.
Ćwiczenie 1 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH
LABORAORUM ELEKRONK Ćwiczenie 1 Parametry statyczne diod półprzewodnikowych Cel ćwiczenia Celem ćwiczenia jest poznanie statycznych charakterystyk podstawowych typów diod półprzewodnikowych oraz zapoznanie
Złącze p-n powstaje wtedy, gdy w krysztale półprzewodnika wytworzone zostaną dwa obszary o odmiennym typie przewodnictwa p i n. Nośniki większościowe
Diody Dioda jest to przyrząd elektroniczny z dwiema elektrodami mający niesymetryczna charakterystykę prądu płynącego na wyjściu w funkcji napięcia na wejściu. Symbole graficzne diody, półprzewodnikowej
Technik mechatronik modułowy
M1. Wprowadzenie do mechatroniki Technik mechatronik modułowy Klasa 1 5 godz./tyg. 5 x 30 tyg. = 150 godz. Rozkład zajęć lekcyjnych M1. J1 Przestrzeganie przepisów bezpieczeństwa i higieny pracy w mechatronice
ELEMENTY ELEKTRONICZNE
AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Katedra Elektroniki ELEMENTY ELEKTRONICZNE dr inż. Piotr Dziurdzia paw. C-3,
POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH LABORATORIUM ELEKTRYCZNE.
POLITECHNIK ŚLĄSK WYDZIŁ INŻYNIERII ŚRODOWISK I ENERGETYKI INSTYTUT MSZYN I URZĄDZEŃ ENERGETYCZNYCH LBORTORIUM ELEKTRYCZNE Badanie tyrystora (E 9) Opracował: Dr inż. Włodzimierz OGULEWICZ 3 1. Cel ćwiczenia
WARYSTORY, TERMISTORY, DIODY.
WARYSTORY, TERMISTORY, DIODY. 1. Warystory. Warystor jest rezystorem, którego wartośd rezystancji zmniejsza się silnie wraz ze wzrostem napięcia. Warystory produkuje się obecnie najczęściej z granulowanego
Właściwości tranzystora MOSFET jako przyrządu (klucza) mocy
Właściwości tranzystora MOSFET jako przyrządu (klucza) mocy Zalety sterowanie polowe niska moc sterowania wyłącznie nośniki większościowe krótki czas przełączania wysoka maksymalna częstotliwość pracy
Elementy elektroniczne Wykłady 5,6: Tranzystory bipolarne
lementy elektroniczne Wykłady 5,6: Tranzystory bipolarne Wprowadzenie Złacze PN spolaryzowane zaporowo: P N U - + S S U SAT =0.1...0.2V U S q D p L p p n D n n L n p gdzie: D p,n współczynniki dyfuzji
Ośrodek Egzaminowania Technik mechatronik
Ośrodek Egzaminowania Technik mechatronik Wykaz ćwiczeń realizowanych w Pracowni Urządzeń Mechatronicznych Nr ćwiczenia 1. Temat Badanie odpowiedzi skokowej członów elektrycznych 2. Badanie pneumatycznej
Część 2. Przewodzenie silnych prądów i blokowanie wysokich napięć przy pomocy przyrządów półprzewodnikowych
Część 2 Przewodzenie silnych prądów i blokowanie wysokich napięć przy pomocy przyrządów półprzewodnikowych Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 23 Półprzewodniki
Zestaw 1 1. Rodzaje ruchu punktu materialnego i metody ich opisu. 2. Mikrokontrolery architektura, zastosowania. 3. Silniki krokowe budowa, zasada działania, sterowanie pracą. Zestaw 2 1. Na czym polega
Tranzystory polowe FET(JFET), MOSFET
Tranzystory polowe FET(JFET), MOSFET Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Publikacja współfinansowana
ZJAWISKA FOTOELEKTRYCZNE
ZJAWISKA FOTOELEKTRYCZNE ZEWNĘTRZNE, WEWNETRZNE I ICH RÓŻNE ZASTOSOWANIA ZJAWISKO FOTOELEKTRYCZNE ZEWNĘTRZNE Światło padając na powierzchnię materiału wybija z niej elektron 1 ZJAWISKO FOTOELEKTRYCZNE
Ćwiczenie nr 4 Charakterystyki I= f(u) złącza p-n.
Wydział Elektroniki Mikrosystemów i otoniki Politechniki Wrocławskiej TUDA DZENNE LABORATORUM PRZYRZĄDÓW PÓŁPRZEWODNKOWYCH Ćwiczenie nr 4 Charakterystyki = f(u) złącza p-n.. Zagadnienia do samodzielnego
Dioda półprzewodnikowa
mikrofalowe (np. Gunna) Dioda półprzewodnikowa Dioda półprzewodnikowa jest elementem elektronicznym wykonanym z materiałów półprzewodnikowych. Dioda jest zbudowana z dwóch różnie domieszkowanych warstw
Półprzewodniki. złącza p n oraz m s
złącza p n oraz m s Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Publikacja współfinansowana ze środków Unii
Ćwiczenie nr 3 Pomiary charakterystyk elementów biernych
Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH Ćwiczenie nr 3 Pomiary charakterystyk elementów biernych I. Zagadnienia
Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych pokój:
Podstawy Elektroniki Prowadzący: Prof. dr hab. Zbigniew Lisik Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych pokój: 116 e-mail: zbigniew.lisik@p.lodz.pl Program: wykład - 15h laboratorium
Ćwiczenie nr 7 Tranzystor polowy MOSFET
Wydział Elektroniki Mikrosystemów i Fotoniki Opracował zespół: Marek Panek, Waldemar Oleszkiewicz, Iwona Zborowska-Lindert, Bogdan Paszkiewicz, Małgorzata Kramkowska, Beata Ściana, Zdzisław Synowiec, Bogusław
Ćwiczenie 3 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH
LABORATORIUM ELEKTRONIKI Ćwiczenie 3 Wybór i stabilizacja punktu pracy tranzystorów bipolarnego el ćwiczenia elem ćwiczenia jest poznanie wpływu ustawienia punktu pracy tranzystora na pracę wzmacniacza
Równanie Shockley a. Potencjał wbudowany
Wykład VI Diody Równanie Shockley a Potencjał wbudowany 2 I-V i potencjał wbudowany Temperatura 77K a) Ge E g =0.7eV b) Si E g =1.14eV c) GaAs E g =1.5eV d) GaAsP E g =1.9eV qv 0 (0. 5 0. 7)E g 3 I-V i
ELEKTRONIKA ELM001551W
ELEKTRONIKA ELM001551W W4 Unoszenie Dyfuzja 2 Półprzewodnik w stanie nierównowagi termodynamicznej np n 2 i n = n0 + n' p = p0 + p ' Półprzewodnik w stanie nierównowagi termodynamicznej Generacja i rekombinacja
Wykaz symboli, oznaczeń i skrótów
Wykaz symboli, oznaczeń i skrótów Symbole a a 1 operator obrotu podstawowej zmiennych stanu a 1 podstawowej uśrednionych zmiennych stanu b 1 podstawowej zmiennych stanu b 1 A A i A A i, j B B i cosφ 1
Wykaz ćwiczeń realizowanych w Pracowni Urządzeń Mechatronicznych
Centrum Kształcenia Zawodowego 2000 Wykaz ćwiczeń realizowanych w Pracowni Urządzeń Mechatronicznych Nr ćwiczenia Temat Wiadomości i umiejętności wymagane do realizacji ćwiczenia na pracowni 1 Badanie
Repeta z wykładu nr 5. Detekcja światła. Plan na dzisiaj. Złącze p-n. złącze p-n
Repeta z wykładu nr 5 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:
Budowa. Metoda wytwarzania
Budowa Tranzystor JFET (zwany też PNFET) zbudowany jest z płytki z jednego typu półprzewodnika (p lub n), która stanowi tzw. kanał. Na jego końcach znajdują się styki źródła (ang. source - S) i drenu (ang.
1. Wymień trendy rozwojowe współczesnej elektroniki. 2. Zdefiniuj pojęcie sygnału. Jakie rodzaje sygnałów występują w elektronice?
1. Wymień trendy rozwojowe współczesnej elektroniki. 2. Zdefiniuj pojęcie sygnału. Jakie rodzaje sygnałów występują w elektronice? 3. Scharakteryzuj sygnał analogowy i sygnał cyfrowy. Określ istotne różnice
PRZETWORNIKI POMIAROWE
PRZETWORNIKI POMIAROWE PRZETWORNIK POMIAROWY element systemu pomiarowego, który dokonuje fizycznego przetworzenia z określoną dokładnością i według określonego prawa mierzonej wielkości na inną wielkość
Skalowanie układów scalonych
Skalowanie układów scalonych Technologia mikroelektroniczna Charakterystyczne parametry najmniejszy realizowalny rozmiar (ang. feature size), liczba bramek (układów) na jednej płytce, wydzielana moc, maksymalna
Tranzystorowe wzmacniacze OE OB OC. na tranzystorach bipolarnych
Tranzystorowe wzmacniacze OE OB OC na tranzystorach bipolarnych Wzmacniacz jest to urządzenie elektroniczne, którego zadaniem jest : proporcjonalne zwiększenie amplitudy wszystkich składowych widma sygnału
Materiały używane w elektronice
Materiały używane w elektronice Typ Rezystywność [Wm] Izolatory (dielektryki) Over 10 5 półprzewodniki 10-5 10 5 przewodniki poniżej 10-5 nadprzewodniki (poniżej 20K) poniżej 10-15 Model pasm energetycznych
LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH. Ćwiczenie nr 6 TYRYSTOR
Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH Ćwiczenie nr 6 TYRYSTOR Wykonując pomiary PRZESTRZEGAJ przepisów BHP związanych
Wykład X TRANZYSTOR BIPOLARNY
Wykład X TRANZYSTOR BIPOLARNY Tranzystor Trójkoocówkowy półprzewodnikowy element elektroniczny, posiadający zdolnośd wzmacniania sygnału elektrycznego. Nazwa tranzystor pochodzi z angielskiego zwrotu "transfer
Temat: Tyrystor i triak.
Temat: Tyrystor i triak. Tyrystor jest to półprzewodnikowy element który składa się z 4 warstw w układzie P N P N. Jest on wyposażony w 3 elektrody, z których dwie są przyłączone do warstw skrajnych, a
Wykład 12 Technologia na urządzenia mobilne. Mgr inż. Łukasz Kirchner
Wykład 12 Technologia na urządzenia mobilne Mgr inż. Łukasz Kirchner lukasz.kirchner@cs.put.poznan.pl http://www.cs.put.poznan.pl/lkirchner Sztuka Elektroniki - P. Horowitz, W.Hill Układy półprzewodnikowe
Przewodność elektryczna półprzewodników
Przewodność elektryczna półprzewodników p koncentracja dziur n koncentracja elektronów Domieszkowanie półprzewodników donory i akceptory 1 Koncentracja nośników ładunku w półprzewodniku domieszkowanym