zmiana stanu pamięci następuje bezpośrednio (w dowolnej chwili czasu) pod wpływem zmiany stanu wejść,

Wielkość: px
Rozpocząć pokaz od strony:

Download "zmiana stanu pamięci następuje bezpośrednio (w dowolnej chwili czasu) pod wpływem zmiany stanu wejść,"

Transkrypt

1 Sekwencyjne układy cyfrowe Układ sekwencyjny to układ cyfrowy, w którym zależność między wartościami sygnałów wejściowych (tzw. stan wejść) i wyjściowych (tzw. stan wyjść) nie jest jednoznaczna. Stan wyjść układu sekwencyjnego zależy nie tylko od aktualnego stanu wejść ale również od poprzednich stanów wejść tzn. od kolejności (sekwencji) zmian stanów wejść. Układy te zapamiętują historię oddziaływań sygnałów wejściowych dlatego też nazywane są układami z pamięcią. Pamięć układu, tzw. blok pamięci, tworzy minimalna liczba wielkości niezbędnych do opisania wszystkich skutków przeszłych oddziaływań. Wielkości te nazywane są stanem pamięci wewnętrznej (stanem pamięci lub stanem wewnętrznym) układu. Temu samemu stanowi wejść mogą więc w układzie sekwencyjnym odpowiadać różne stany wyjść, zależność pomiędzy stanem wejść i wyjść układu nie jest jednoznaczna. W zależności od sposobu oddziaływania sygnałów wejściowych na układ (a właściwie na blok pamięci) układy sekwencyjne dzielone są na: układy asynchroniczne zmiana stanu pamięci następuje bezpośrednio (w dowolnej chwili czasu) pod wpływem zmiany stanu wejść, układy synchroniczne zmiana stanu pamięci następuje tylko w ściśle określonych chwilach czasu wyznaczanych przez dodatkowy sygnał wejściowy układu tzw. sygnał taktujący (zegarowy, synchronizujący). " Układy cyfrowe f.2/

2 Sekwencyjne układy cyfrowe oznaczenia x i i-ty sygnał wejściowy; y i i-ty sygnał wejściowy; Q i i-ty element pamięci; q i aktualny stan i-tego elementu pamięci Q i : X = (x, x 2,, x m ) stan wejść; Y = (y, y 2,, y n ) stan wyjść ; m ilość sygnałów wejściowych; n ilość sygnałów wejściowych; p ilość elementów pamięci; A = (q, q 2,, q p ) stan pamięci wewnętrznej (stan pamięci lub stan wewnętrzny); X zbiór wszystkich stanów wejść (zawiera maksymalnie 2 m stanów); Y zbiór wszystkich stanów wyjść (zawiera maksymalnie 2 n stanów); A zbiór wszystkich stanów wewnętrznych (zawiera maksymalnie 2 p stanów); W realizacji stykowej element pamięci Q i realizowany jest jako przekaźnik. Po zmianie sygnału wejściowego przekaźnika stan jego cewki Q i może różnić się od stanu jego zestyków q i. W praktyce na przełączenie potrzebny jest czas (kilkanaście milisekund). Jeżeli stan zestyków q i różni się od stanu cewki Q i to elementy bloku pamięci będą zmieniały swój stan aż do zrównania stanów Q i i q i. Podobne opóźnienie (kilka nanosekund) wprowadzają elementy bezstykowe po zmianie stanu wejść sygnały wyjściowe bloku pamięci q i będą miały przez pewien czas wartości wynikające ze stanu poprzedniego. " Układy cyfrowe f.2/2

3 Sekwencyjne układy cyfrowe struktura Przyjmuje się następujący opis funkcjonowania układu sekwencyjnego: sygnały wejściowe x i (i = : m) przekazywane są do elementów pamięci Q j (j = : p) które tworzą tzw. blok pamięci, sygnały wyjściowe bloku pamięci q j zależą od wartości sygnałów wejściowych x i oraz od stanu samej pamięci q j (tzn. od poprzednich sygnałów wyjściowych bloku pamięci), oddziaływanie sygnałów wyjściowych bloku na jego wejścia stanowi sprzężenie zwrotne, sygnały z wyjść bloku pamięci q j wysyłane są również do elementów wyjściowych układu, które na ich podstawie (i ewentualnie sygnałów wejściowych układu) generują sygnały wyjściowe y k (k = : n). BP blok pamięci; BW blok elementów wyjściowych; S sygnał taktujący (tylko w układach synchronicznych) Sygnały wejściowe przesyłane są na wejście bloku wyjściowego tylko w tzw. układach Mealy ego, Jeżeli blok wyjściowy otrzymuje wyłącznie sygnały z bloku pamięci to układ taki jest nazywany układem Moore a. S x x i x m q q j q p BP q q j q p BW y (t) y j (t) y n (t) Rys. Schemat blokowy układu sekwencyjnego " Układy cyfrowe f.2/3

4 Sekwencyjne układy cyfrowe opis Działanie układów sekwencyjnych opisuje się za pomocą funkcji przejść: oraz funkcji wyjść: δ: A X A, λ: A X Y (dla układu Mealy ego) lub λ: A Y (dla układu Moore a) Funkcja przejść określa stan wewnętrzny układu w chwili (t + ) na podstawie stanu wewnętrznego i stanu wejść w chwili poprzedniej t: A t + = δ(a t, X t ). Funkcja przejść δ odpowiada za pamięć układu, na schemacie blokowym układu była reprezentowana przez blok pamięci. Funkcja wyjść określa stan wyjściowy układu w zależności od stanu wewnętrznego, i ewentualnie stanu wejściowego, w tej samej chwili: Y t = λ(a t, X t ) Y t = λ(a t ) (dla układu Mealy ego), (dla układu Moore a). Każdy układ sekwencyjny może być zaprojektowany jako układ Moore a lub Mealy ego. Układy Mealy ego mają zwykle prostszą strukturę. " Układy cyfrowe f.2/4

5 Sekwencyjne układy cyfrowe uwagi Funkcja wyjść λ wyznacza wartości sygnałów wyjściowych na schemacie blokowym układu sekwencyjnego była reprezentowana przez blok wyjściowy; λ jest funkcją przyporządkowującą każdemu argumentowi (A t, X t ) czy (A t ) dokładnie jeden stan wyjść Y t ; stąd blok wyjściowy układu sekwencyjnego jest układem kombinacyjnym. Stany wejść, stany wewnętrzne i stany wyjść układów sekwencyjnych określone są w dyskretnych chwilach czasu: t, t 2, t 3,. W układach asynchronicznych odstęp pomiędzy kolejnymi chwilami czasu jest różny, zależy od czasu reakcji elementów układu Δt k, t 2 = t + Δt, t 3 = t 2 + Δt 2,, w układach synchronicznych odstępy są równe, zależne od sygnału taktującego: t 2 = t + Δt, t 3 = t 2 + Δt,, (Δt > Δt k ). Układy asynchroniczne pracują na ogół szybciej od układów synchronicznych. Różnice w prędkościach działania elementów układu asynchronicznego przyczyniają się do powstawania niekorzystnych zjawisk (hazard, wyścig krytyczny), zjawiska te nie występują w układach synchronicznych. " Układy cyfrowe f.2/5

6 Stany wewnętrzne W układach asynchronicznych zmiana stanu pamięci A t następuje bezpośrednio (w dowolnej chwili czasu) pod wpływem zmiany stanu wejść X t. Nowy stan wewnętrzny A t+ ustala się w układzie po czasie Δt k zależnym od czasu reakcji elementów układu. Układ może znajdować się w stanach wewnętrznych: stabilnym lub niestabilnym. Jeżeli nie zmienia się stan wejść X i stan wewnętrzny A t+ A t, to stan A t jest niestabilnym stanem wewnętrznym. Jeżeli stan wejść się nie zmienia oraz A t+ = A t, to stan A t jest stabilnym stanem wewnętrznym. Stan taki ustala się po ustaniu procesów przejściowych po czasie Δt k (wynikającym z opóźnień wnoszonych przez elementy tworzące blok pamięci układu) od zmiany stanu wejść układu. Jeżeli układ znajduje się w stanie stabilnym to zmiana tego stanu może nastąpić jedynie pod wpływem zmiany stanu wejść. Po zmianie stanu wejść układ znajdzie się w stanie niestabilnym a po upływie czasu Δt k w nowym stanie stabilnym. Przyjmuje się (dla zapewnienia poprawnej pracy układów asynchronicznych), że: zmiana stanu wejść może być spowodowana zmianą tylko jednego sygnału wejściowego, zmiana stanu wejść może nastąpić tylko wtedy gdy układ znajduje się w stanie stabilnym. " Układy cyfrowe f.2/6

7 Metody opisu układów sekwencyjnych Opis słowny opisowo przedstawia funkcjonowanie układu, z opisu powinny wynikać wszystkie stany wejściowe (a właściwie wszystkie możliwe sekwencje tych stanów) i odpowiadające im stany wyjściowe (lub ich sekwencje). Z opisu słownego nie wynika np. ilość niezbędnych do realizacji układu elementów pamięci. Przykład. Przycisk P steruje pracą lampy. Jeśli lampa nie świeci, wciśnięcie przycisku powoduje jej zaświecenie, jeśli lampa świeci, wciśnięcie przycisku powoduje jej zgaszenie. Zwolnienie przycisku nie powoduje zmian jej stanu. Układ jest układem sekwencyjnym (z pamięcią) dla tego samego stanu wejściowego (wciskanie przycisku) możliwe są dwa stany wyjściowe (lampa świeci i lampa nie świeci). Przykład 2. Przyciski Z (załącz) i W (wyłącz) sterują pracą urządzenia. Naciśnięcie przycisku Z załącza urządzenie, urządzenie pracuje również po zwolnieniu tego przycisku. Naciśnięcie przycisku W wyłącza urządzenie. Urządzenie nie pracuje gdy wciśnięte są obydwa przyciski. Dodatkowo, nie jest możliwa jednoczesna zmiana stanu obydwu przycisków. Układ jest układem sekwencyjnym dla tego samego stanu wejściowego (obydwa przyciski zwolnione) możliwe są dwa stany wyjściowe (urządzenie pracuje i urządzenie nie pracuje). " Układy cyfrowe f.2/7

8 Metody opisu układów sekwencyjnych Wykres czasowy przedstawia przebieg w czasie zmian stanów wejściowych i odpowiadających im stanów wyjściowych przy czym nie są uwzględniane opóźnienia wynikające z czasu reakcji elementów układu. Do jednoznacznego opisu działania układu niezbędne jest zaznaczenie na wykresie wszystkich możliwych sekwencji stanów wejść i wyjść. Przy dużej liczbie sygnałów wejściowych lub wejściowych czy skomplikowanym sposobie przetwarzanie sygnałów wykres ten może być jednak mało czytelny. a) P Y t t W taktach: nieparzystych: P= a Y= lub Y= parzystych: P= a Y= lub Y= b) Z W Y t t t W taktach 2.,4.,8.,2. stan wejściowy Z=, W= a stan wyjściowy Y= lub Y= Rys. Wykresy czasowe układów a) z przykładu. i b) z przykładu 2. " Układy cyfrowe f.2/8

9 Metody opisu układów sekwencyjnych Opis słowny czy wykresy czasowe przedstawiają jedynie zależności pomiędzy zewnętrznymi sygnałami układu (tzn. sygnałami wejściowymi i wyjściowymi). Do syntezy układu potrzebna jest wiedza o stanach wewnętrznych układu oraz funkcjach przejść i wyjść. Informacje takie zawarte są w opisach typu graf przejść czy tablice przejść i wyjść. Graf przejść graf, którego wierzchołki odpowiadają stanom wewnętrznym układu A, a gałęzie oznaczają przejścia pomiędzy stanami wymuszane określonymi stanami wejściowymi X. Dla układów Moore a stan wyjść Y zależy wyłącznie od stanu wewnętrznego A więc jest przyporządkowywany odpowiedniemu wierzchołkowi grafu. Dla układów Mealye go stan wyjść Y zależy od stanu wewnętrznego A i od stanu wejść X i jest przyporządkowany podobnie jak stan wejść odpowiedniej gałęzi grafu. A lampa nie świeci (przycisk P zwolniony), A 2 lampa świeci (przycisk P wciśnięty), A 3 lampa świeci (przycisk P zwolniony), A 4 lampa nie świeci (przycisk P wciśnięty) stan wyjść stan wewnętrzny Rys. Graf przyjść układu z przykładu. A A 2 " Układy cyfrowe f.2/9 A 4 stan wejść A 3

10 Metody opisu układów sekwencyjnych Konstrukcja grafu przejść nie zawsze jest zadaniem łatwym. Wymaga po pierwsze znajomości stanów wewnętrznych układu. Stany wewnętrzne można zidentyfikować np. uważnie analizując opis słowny układu lub wykres czasowy układu. Wykres czasowy należy podzielić na odcinki czasu w których sygnały wejściowe nie ulegają zmianie. Kolejne kombinacje wartości stanów wejściowych i wyjściowych odpowiadają stanom wewnętrznym układu. Każdą nową kombinację wartości stanu wejściowego i wyjściowego można oznaczyć jako nowy stan wewnętrzny. Stany w których wejścia i wyjścia są takie same mogą być stanami równoważnymi lub nie. Poniżej przedstawiony został wykres czasowy układu z przykładu 2. Założono, że wszystkie stany o tych samych wejściach i wyjściach są stanami równoważnymi. Z W Y A A 2 A 3 A 4 A A 5 A 3 A 4 A 3 A 5 A A 2 A Rys. Wykres czasowy i graf przejść układu z przykładu 2. (A urz. wył. Z=, W=, A 2 urz. wył. Z=, W=, A 3 urz. wł. Z=, W=, A 4 urz. wł. Z=, W=, A 5 urz. wył. Z=, W=). t t t " Układy cyfrowe f.2/ A 2 A 3 A 5 A A 4

11 Metody opisu układów sekwencyjnych Tablica przejść podobnie jak graf przejść zawiera wszystkie stany wewnętrzne układu i przejścia pomiędzy tymi stanami wymuszane stanami wejściowymi. Tablica ta ma tyle wierszy ile jest stanów wewnętrznych układu i tyle kolumn ile różnych stanów wejściowych może wystąpić podczas pracy układu (z tego powodu może być stosowana dla układów o maksymalnie 5, 6 wejściach). Do kratek tablicy wpisywane są stany wewnętrzne, do których przechodzi układ który był poprzednio w stanie określonym przez wiersz tablicy pod wpływem stanu wejściowego określonego przez kolumnę tablicy (w każdym z wierszy tablicy jedna z kratek opisana jest tak samo jak wiersz odpowiada to sytuacji kiedy stan wejść nie ulega zmianie, nie ulega więc zmianie również stan wewnętrzny). Tablica przejść odpowiada funkcji przejść δ układu. Tablica wyjść odpowiada funkcji wyjść λ układu; dla układu Mealye go podobnie jak tablica przejść ma tyle wierszy ile jest stanów wewnętrznych układu i tyle kolumn ile jest różnych stanów wejściowych, w kratkach tablicy wpisywane są stany wyjściowe odpowiadające stanom wewnętrznym wskazywanym przez wiersze tablicy i stanom wejściowym wskazywanym przez kolumny tablicy; dla układu Moore a stan wyjść jest funkcją tylko stanu wewnętrznego, tablica wyjść ma więc tyle wierszy ile jest stanów wewnętrznych i jedną kolumnę w której wpisywane są wartości stanów wyjściowych, dla układów tego typu tablicę przejść uzupełnia się dodatkową kolumną zawierającą wartości stanów wyjściowych otrzymuje się w ten sposób tablicę przejść wyjść). " Układy cyfrowe f.2/

12 Tablice przejść i wyjść A A 2 A 4 A 3 X=P A A A A 2 A 2 A 3 A 2 A 3 A 3 A 4 A 4 A A 4 A Y A A 2 A 3 A 4 X=P A Y A A A 2 A 2 A 3 A 2 A 3 A 3 A 4 A 4 A A 4 A 3 X=(Z,W) A A A 2 A A 5 A Y A X=(Z,W) A Y A A 2 A A 5 A 2 A 5 A 4 A 2 A 2 A A 3 A 3 A 4 A 5 A 3 A 4 A 4 A A 3 A 2 A 3 A 4 A 2 A 2 A A 3 A 3 A 4 A 5 A 3 A 4 A 4 A A 3 A A 5 A A 5 A 3 A 5 A 5 A A 5 A 3 Rys. Grafy przejść, tablice przejść, tablice wyjść i tablice przejść-wyjść układów z przykładu. i 2. (na niebiesko zaznaczono komórki których stan wewnętrzny nie zmienił się ponieważ nie zmienił się stan wejść) " Układy cyfrowe f.2/2

13 Analiza i synteza układów sekwencyjnych Analiza głównym celem analizy jest zrozumienie zasad działania układu, w przypadku gdy znana jest jego struktura; celem analizy może być również chęć wykrycia źródeł niewłaściwego zachowania układu (hazard, wyścig, zamknięty cykl drgań). Synteza to proces odwrotny do analizy, prowadzi od założeń definiujących sposób działania układu do jego projektu. a) schemat układu tablice stanów b) opis układu (wykres czasowy, graf przejść) pierwotna tablica programu tablice przejść i wyjść ew. graf przejść zredukowana tablica programu (tablice przejść i wyjść) tablice stanów schemat układu Rys. Algorytmy a) analizy i b) syntezy układu sekwencyjnego. " Układy cyfrowe f.2/3

14 Analiza przykładowych układów sekwencyjnych Przykład 4. Zbadać działanie układu przedstawionego na poniższym schemacie. Na podstawie schematu można zapisać wyrażenia logiczne opisujące funkcjonowanie elementu pamięci tego układu tzn.: Q b a q Sygnał na wyjściu układu jest równy sygnałowi wyjściowemu elementu pamięci: Y Q a q b & Q Rys. Schemat logiczny układu. Y=Q Na podstawie powyższych zależności otrzymuje się tablice przejść i wyjść układu. q ab Q q Y Tablice: przejść, wyjść, przejść wyjść i graf przejść układu (w tablicy przejść wyjść stany stabilne, dla odróżnienia od niestabilnych, zostały otoczone kółkiem). " Układy cyfrowe f.2/4 q ab Q Y

15 Analiza przykładowych układów sekwencyjnych Przykład 5. Zbadać działanie układu przedstawionego na poniższym schemacie. Na podstawie schematu można zapisać wyrażenia logiczne opisujące funkcjonowanie elementu pamięci tego układu tzn.: Q b aq a q & b Q Y=Q Sygnał na wyjściu układu jest równy : Y Q Rys. Schemat logiczny układu. Na podstawie powyższych zależności otrzymuje się tablice przejść i wyjść układu. ab Q ab q q Y q ab Q Y Tablice: przejść, wyjść, przejść wyjść i graf przejść układu. " Układy cyfrowe f.2/5

16 Analiza przykładowych układów sekwencyjnych Przykład 6. Zbadać działanie układu z rys. q a b a b a a b & & & & & Q Q 2 & Y Zapisując wyrażenia na Q i Q 2 w tablicach Karnaugha: ab Q q q 2 ab Q 2 q q 2 otrzymuje się tablicę przejść wyjść układu: q 2 Rys. Schemat logiczny układu. Wyrażenia logiczne elementów pamięci układu można zapisać w postaci: Q Q abq a sygnał wyjściowy: aq 2 q2 2 bq2 a q q2 abq Y Q Q 2 ab Q Q 2 q q 2 Y " Układy cyfrowe f.2/6

17 Analiza przykładowych układów sekwencyjnych Dla zwiększenia czytelności przyjęte zostały następujące oznaczenia dla stanów układu: : q =, q 2 =, : q =, q 2 =, : q =, q 2 =, : q =, q 2 =. Tablicę przejść wyjść można zapisać w postaci: ab Q Q 2 q q 2 Y Z analizy grafu przejść wynika, że na wyjściu układu pojawia się sygnał "" jeżeli po kombinacji sygnałów wejściowych "" następuje kombinacja "", we wszystkich pozostałych sytuacjach na wyjściu pojawia się sygnał "". " Układy cyfrowe f.2/7 ab Q Q 2 q q 2 Y

18 Synteza układów sekwencyjnych Podczas syntezy układu sekwencyjnego należy kolejno ustalić: liczbę elementów wejściowych i wejściowych (ilości te wynikają wprost ze sformułowania zadania, które ma realizować układ), liczbę elementów pamięci, funkcje przejść δ i wyjść λ układu, zaproponować schemat układu (budując blok pamięci: z wykorzystaniem pętli sprzężeń zwrotnych rozwiązanie takie wynika wprost postaci funkcji δ, z wykorzystaniem przerzutników w tym przypadku należy wybrać typ przerzutnika i na podstawie funkcji δ określić funkcje wzbudzeń wszystkich przerzutników użytych do budowy pamięci, wykorzystanie przerzutników eliminuje pętle sprzężeń zwrotnych). Do syntezy układów sekwencyjnych stosowane są metody: tablic kolejności łączeń (zwana metodą Siwińskiego) może być stosowana dla niezbyt złożonych algorytmów przetwarzania sygnałów ale niezależnie od ilości elementów wejściowych i wyjściowych układu, tablic przejść i wyjść (zwana metodą Huffmana) może być stosowana dla złożonych algorytmów przetwarzania ale przy niedużej liczbie sygnałów wejściowych (2, 3). z " Układy cyfrowe f.2/8

19 Synteza asynchronicznych układów sekwencyjnych metodą Huffmana Metoda polega na: sporządzeniu opisu działania układu w postaci tablicy przejść wyjść nazywanej także pierwotną tablicą programu, wykonaniu redukcji (minimalizacji) stanów wewnętrznych, pierwotna liczba stanów wewnętrznych układu przyjęta na podstawie pierwotnej tablicy programu może być większa od liczby stanów niezbędnych do realizacji określonego zadania, na tym etapie powstaje z pomocą wykresu redukcyjnego tzw. zredukowana tablica programu (tabela ta powstaje w wyniku połączenia wybranych wierszy pierwotnej tablicy programu), określeniu liczby elementów pamięci i przypisaniu im odpowiednich kodów, kodowanie elementów pamięci przeprowadza się z pomocą tzw. wykresu przejść, zestawieniu tablic stanów elementów pamięci i elementów wyjściowych. Przy pomocy tablic stanów można już zbudować schematy logiczne dla bloku pamięci i bloku wyjściowego. Konstrukcja bloku pamięci z przerzutników wymaga jeszcze dodatkowo określenia typu wykorzystywanych przerzutników i i ich funkcji wzbudzeń. " Układy cyfrowe f.2/9

20 Pierwotna tablica programu W pierwotnej tablicy programu: stany wewnętrzne układu oznaczane są zwykle kolejnymi liczbami naturalnymi, stabilny stan wewnętrzny zaznacza się obwodząc kółkiem liczbę odpowiadającą temu stanowi. X=(Z,W) a) b) A Y A A 2 A A 5 A 2 A 2 A A 3 A 3 A 4 A 5 A 3 A 4 A 4 A A 3 X=(Z,W) A Y Oznaczenia stanów: A (urz. wył. Z=, W=), 2 A 2 (urz. wył. Z=, W=), 3 A 3 (urz. wł. Z=, W=), 4 A 4 (urz. wł. Z=, W=), 5 A 5 (urz. wył. Z=, W=). A 5 A A 5 A Rys. Tablica przejść-wyjść układu z przykładu 2. a) przed i b) po wprowadzeniu nowych oznaczeń dla stanów wewnętrznych, W tablicy a) na niebiesko zaznaczone zostały komórki których stan wewnętrzny nie zmienił się z powodu braku zmian stanu wejściowego stany te są stanami stabilnymi układu. " Układy cyfrowe f.2/2

21 Redukcja stanów wewnętrznych Łączenie odpowiadających sobie wierszy pierwotnej tablicy programu pozwala na zmniejszenie liczby niezbędnych elementów pamięci potrzebnych do realizacji określonego programu. Łączyć można ze sobą wiersze tabeli: zawierające w opowiadających sobie kolumnach stany niesprzeczne, stany są niesprzeczne jeżeli jeden z nich jest opisany liczbą a drugi, jeżeli stan sygnałów wyjściowych w łączonych wierszach jest takim sam lub niesprzeczny to układ odpowiadający nowej tabeli jest w dalszym ciągu układem Moore a, jeżeli łączone są wiersze o różnych stanach wyjść, układ odpowiadający nowej tabeli będzie już układem Mealye go i konieczne będzie zapisanie stanu jego wyjść w tablicy wyjść, zawierające równoważne stany stabilne, dwa stany stabilne są równoważne jeżeli znajdują się w tej samej kolumnie (są reakcją na te same stany wejściowe), mają jednakowe lub niesprzeczne stany wyjściowe oraz wszystkie możliwe przejścia z tych stanów prowadzą do takich samych stanów lub stanów równoważnych. W wynikowym, połączonym wierszu wpisuje się: liczbę którą zawierały obydwie łączone komórki, lub liczbę z jednej z komórek w przypadku gdy druga zawierała, kreskę jeżeli obydwie łączone komórki zawierały, kółko jeżeli obydwie łączone komórki zawierały tą samą liczbę i dodatkowo w jednej z nich liczba ta oznaczała stabilny stan wewnętrzny. " Układy cyfrowe f.2/2

22 Redukcja stanów wewnętrznych Podczas łączenia wierszy pierwotnej tablicy programu pomocny jest tzw. wykres redukcyjny: na obwodzie koła umieszcza się liczby odpowiadające stanom wewnętrznym układu odpowiadają one jednocześnie numerom wierszy pierwotnej tablicy programu, numery wierszy, które mogą zostać połączone, łączone są odcinkami (jeżeli stan wyjść jest niesprzeczny odcinek powinien być narysowany linią ciągłą, w przeciwnym przypadku linią przerywaną). X=(Z,W) A Y 2 5 X=(Z,W) A Y,2, , Rys. Pierwotna tablica programu, wykres redukcyjny, zredukowana tablica programu układu z przykładu 2. " Układy cyfrowe f.2/22

23 Kodowanie wierszy zredukowanej tablicy programu Jeżeli liczba wierszy zredukowanej tablicy programu mieści się w zakresie 2 p a 2 p to blok pamięci można zrealizować wykorzystując p elementów pamięci. Wierszom zredukowanej tablicy programu należy przypisać kody w postaci ciągów zerojedynkowych o długości p (ciągi te odpowiadają stanom elementów pamięci Q, Q 2,, Q p ). Kody należy przypisać w taki sposób aby niezbędne przejścia pomiędzy wierszami tabeli można było zrealizować przy zmianie stanu tylko jednego elementu pamięci. Proces kodowania ułatwia tzw. wykres przejść: na wykresie każdy wiersz zredukowanej tablicy programu jest reprezentowany przez odpowiadający mu wierzchołek, wierzchołki odpowiadające wierszom pomiędzy którymi w tablicy są przejścia (w wierszach występuje ten sam numer stanu wewnętrznego raz w postaci stanu stabilnego drugi raz w postaci stanu niestabilnego) należy łączyć odcinkami, na koniec, wierzchołkom należy przypisać ciągi zerojedynkowe (o długości p) w taki sposób aby wierzchołki połączone były opisane ciągami różniącymi się tylko na jednej pozycji. X=(Z,W) A Y,2,5 3,2,5 3,4 Do realizacji pamięci wystarczy jeden element pamięci Q (dwa wiersze = 2 ). Wiersz pierwszy tabeli można zakodować jako, a drugi jako. 3,4 5 Rys. Kodowanie zredukowanej tablicy programu układu z przykładu 2. " Układy cyfrowe f.2/23

24 Tablice stanów Końcowy etap syntezy układu polega na przygotowaniu tablic stanów elementów pamięci i elementów wyjściowych. Tablice stanów odpowiadają funkcjom przejść δ i wyjść λ budowanego układu. Tablica stanów elementów pamięci ma tyle wierszy ile jest stanów elementów pamięci i tyle kolumn ile jest stanów wejść. Tak samo wygląda tablica stanów elementów wyjściowych dla układu Mealy ego. W przypadku układu Moore a tablica ta ma tylko jedną kolumnę. Tablicę stanów elementów pamięci otrzymuje się wprost ze zredukowanej tablicy programu uwzględniając przyjętą metodę kodowania. Stany stabilne opisuje się kodem wiersza w którym stany te występują, a stany niestabilne kodem wiersza docelowego. Podobnie otrzymuje się tablicę stanów elementów wyjściowych dla układów Moore a. Dla układów Mealy ego tablicę tą otrzymuje się wykorzystując zredukowaną i pierwotną tablicę programu. W kratkach, w których w tablicy zredukowanej występują stany stabilne wpisuje się wartości stanów wyjściowych na podstawie tablicy pierwotnej. W kratkach w których występują stany niestabilne wpisuje się wartość stanu wyjściowego jeżeli przy przejściu przez stan niestabilny stan wyjść układu się nie zmienia lub jeżeli stan wyjść się zmienia. Q w q z X=(Z,W) A Y,2,5 3 3,4 5 z,w q Y Q Rys. Zredukowana tablica programu, tablice stanów i ostateczny schemat układu z przykładu 2. " Układy cyfrowe f.2/24 q Y z q w & Q

1. SYNTEZA UKŁADÓW SEKWENCYJNYCH

1. SYNTEZA UKŁADÓW SEKWENCYJNYCH DODATEK: SEKWENCJNE UKŁAD ASNCHRONICZNE CD.. SNTEZA UKŁADÓW SEKWENCJNCH Synteza to proces prowadzący od założeń definiujących sposób działania układu do jego projektu. odczas syntezy należy kolejno ustalić:

Bardziej szczegółowo

Podstawy Techniki Cyfrowej Teoria automatów

Podstawy Techniki Cyfrowej Teoria automatów Podstawy Techniki Cyfrowej Teoria automatów Uwaga Niniejsza prezentacja stanowi uzupełnienie materiału wykładowego i zawiera jedynie wybrane wiadomości teoretyczne dotyczące metod syntezy układów asynchronicznych.

Bardziej szczegółowo

Asynchroniczne statyczne układy sekwencyjne

Asynchroniczne statyczne układy sekwencyjne Asynchroniczne statyczne układy sekwencyjne Układem sekwencyjnym nazywany jest układ przełączający, posiadający przynajmniej jeden taki stan wejścia, któremu odpowiadają, zależnie od sygnałów wejściowych

Bardziej szczegółowo

Projekt prostego układu sekwencyjnego Ćwiczenia Audytoryjne Podstawy Automatyki i Automatyzacji

Projekt prostego układu sekwencyjnego Ćwiczenia Audytoryjne Podstawy Automatyki i Automatyzacji WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego Projekt prostego układu sekwencyjnego Ćwiczenia Audytoryjne Podstawy Automatyki i Automatyzacji mgr inż. Paulina Mazurek Warszawa 2013 1 Wstęp Układ

Bardziej szczegółowo

Asynchroniczne statyczne układy sekwencyjne

Asynchroniczne statyczne układy sekwencyjne Asynchroniczne statyczne układy sekwencyjne Układem sekwencyjnym nazywany jest układ przełączający, posiadający przynajmniej jeden taki stan wejścia, któremu odpowiadają, zależnie od sygnałów wejściowych

Bardziej szczegółowo

Technika Cyfrowa 1 wykład 12: sekwencyjne układy przełączające

Technika Cyfrowa 1 wykład 12: sekwencyjne układy przełączające Technika Cyfrowa 1 wykład 12: sekwencyjne układy przełączające Dr inż. Jacek Mazurkiewicz Katedra Informatyki Technicznej e-mail: Jacek.Mazurkiewicz@pwr.edu.pl Sekwencyjny układ przełączający układ przełączający

Bardziej szczegółowo

Układy asynchroniczne

Układy asynchroniczne Układy asynchroniczne Model układu asynchronicznego y x n UK y m układ kombinacyjny q k BP q k blok pamięci realizuje opóźnienia adeusz P x x t s tan stabilny s: δ(s,x) = s automacie asynchronicznym wszystkie

Bardziej szczegółowo

KATEDRA INFORMATYKI TECHNICZNEJ. Ćwiczenia laboratoryjne z Logiki Układów Cyfrowych. ćwiczenie 212

KATEDRA INFORMATYKI TECHNICZNEJ. Ćwiczenia laboratoryjne z Logiki Układów Cyfrowych. ćwiczenie 212 KATEDRA INFORMATYKI TECHNICZNEJ Ćwiczenia laboratoryjne z Logiki ów Cyfrowych ćwiczenie Temat: Automat asynchroniczny. Cel ćwiczenia Celem ćwiczenia jest nabycie praktycznej umiejętności projektowania

Bardziej szczegółowo

b) bc a Rys. 1. Tablice Karnaugha dla funkcji o: a) n=2, b) n=3 i c) n=4 zmiennych.

b) bc a Rys. 1. Tablice Karnaugha dla funkcji o: a) n=2, b) n=3 i c) n=4 zmiennych. DODATEK: FUNKCJE LOGICZNE CD. 1 FUNKCJE LOGICZNE 1. Tablice Karnaugha Do reprezentacji funkcji boolowskiej n-zmiennych można wykorzystać tablicę prawdy o 2 n wierszach lub np. tablice Karnaugha. Tablica

Bardziej szczegółowo

Podstawy Automatyki. Wykład 13 - Wprowadzenie do układów sekwencyjnych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 13 - Wprowadzenie do układów sekwencyjnych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 13 - Wprowadzenie do układów sekwencyjnych. Instytut Automatyki i Robotyki Warszawa, 2016 Pojęcia podstawowe Posłużmy się ponownie przykładem układu sterującego pracą siłowników, wymuszającego realizację

Bardziej szczegółowo

Podstawy Automatyki. Wykład 15 - Projektowanie układów asynchronicznych o programach liniowych. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 15 - Projektowanie układów asynchronicznych o programach liniowych. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki Wykład 15 - Projektowanie układów asynchronicznych o programach liniowych Instytut Automatyki i Robotyki Warszawa, 2015 Układy o programach liniowych - Przykład Zaprojektować procesowo-zależny układ sterowania

Bardziej szczegółowo

Wstęp do Techniki Cyfrowej... Teoria automatów i układy sekwencyjne

Wstęp do Techniki Cyfrowej... Teoria automatów i układy sekwencyjne Wstęp do Techniki Cyfrowej... Teoria automatów i układy sekwencyjne Alfabety i litery Układ logiczny opisywany jest przez wektory, których wartości reprezentowane są przez ciągi kombinacji zerojedynkowych.

Bardziej szczegółowo

Sławomir Kulesza. Projektowanie automatów synchronicznych

Sławomir Kulesza. Projektowanie automatów synchronicznych Sławomir Kulesza Technika cyfrowa Projektowanie automatów synchronicznych Wykład dla studentów III roku Informatyki Wersja 2.0, 20/12/2012 Automaty skończone Automat Mealy'ego Funkcja wyjść: Yt = f(st,

Bardziej szczegółowo

Podstawowe moduły układów cyfrowych układy sekwencyjne cz.2 Projektowanie automatów. Rafał Walkowiak Wersja /2015

Podstawowe moduły układów cyfrowych układy sekwencyjne cz.2 Projektowanie automatów. Rafał Walkowiak Wersja /2015 Podstawowe moduły układów cyfrowych układy sekwencyjne cz.2 Projektowanie automatów synchronicznych Rafał Walkowiak Wersja.2 24/25 UK Funkcje wzbudzeń UK Funkcje wzbudzeń Pamieć Pamieć UK Funkcje wyjściowe

Bardziej szczegółowo

Układy asynchroniczne

Układy asynchroniczne Układy asynchroniczne Model układu sekwencyjnego Model układu asynchronicznego (synchronicznego) y 1 x n UK y m układ kombinacyjny Z clock t 1 q 1 k B x s tan stabilny s: δ(s,x) = s x blok pamięci jest

Bardziej szczegółowo

Podstawy Automatyki. Człowiek- najlepsza inwestycja. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Podstawy Automatyki. Człowiek- najlepsza inwestycja. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Podstawy Automatyki Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Politechnika Warszawska Instytut Automatyki i Robotyki Dr inż.

Bardziej szczegółowo

SWB - Projektowanie synchronicznych układów sekwencyjnych - wykład 5 asz 1. Układy kombinacyjne i sekwencyjne - przypomnienie

SWB - Projektowanie synchronicznych układów sekwencyjnych - wykład 5 asz 1. Układy kombinacyjne i sekwencyjne - przypomnienie SWB - Projektowanie synchronicznych układów sekwencyjnych - wykład 5 asz 1 Układy kombinacyjne i sekwencyjne - przypomnienie SWB - Projektowanie synchronicznych układów sekwencyjnych - wykład 5 asz 2 Stan

Bardziej szczegółowo

Wstęp do Techniki Cyfrowej... Teoria automatów

Wstęp do Techniki Cyfrowej... Teoria automatów Wstęp do Techniki Cyfrowej... Teoria automatów Alfabety i litery Układ logiczny opisywany jest przez wektory, których wartości reprezentowane są przez ciągi kombinacji zerojedynkowych. Zwiększenie stopnia

Bardziej szczegółowo

Technika Cyfrowa 1 wykład 11: liczniki sekwencyjne układy przełączające

Technika Cyfrowa 1 wykład 11: liczniki sekwencyjne układy przełączające Technika Cyfrowa 1 wykład 11: liczniki sekwencyjne układy przełączające Dr inż. Jacek Mazurkiewicz Katedra Informatyki Technicznej e-mail: Jacek.Mazurkiewicz@pwr.edu.pl Liczniki klasyfikacja Licznik asynchroniczny:

Bardziej szczegółowo

Sławomir Kulesza. Projektowanie automatów asynchronicznych

Sławomir Kulesza. Projektowanie automatów asynchronicznych Sławomir Kulesza Technika cyfrowa Projektowanie automatów asynchronicznych Wykład dla studentów III roku Informatyki Wersja 3.0, 03/01/2013 Automaty skończone Automat skończony (Finite State Machine FSM)

Bardziej szczegółowo

TEMAT: PROJEKTOWANIE I BADANIE PRZERZUTNIKÓW BISTABILNYCH

TEMAT: PROJEKTOWANIE I BADANIE PRZERZUTNIKÓW BISTABILNYCH Praca laboratoryjna 2 TEMAT: PROJEKTOWANIE I BADANIE PRZERZUTNIKÓW BISTABILNYCH Cel pracy poznanie zasad funkcjonowania przerzutników różnych typów w oparciu o różne rozwiązania układowe. Poznanie sposobów

Bardziej szczegółowo

Podstawy Automatyki. Wykład 15 - Projektowanie układów asynchronicznych o programach liniowych. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 15 - Projektowanie układów asynchronicznych o programach liniowych. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki Wykład 15 - Projektowanie układów asynchronicznych o programach liniowych Instytut Automatyki i Robotyki Warszawa, 2016 Układy o programach liniowych - Przykład Zaprojektować procesowo-zależny układ sterowania

Bardziej szczegółowo

1.Wprowadzenie do projektowania układów sekwencyjnych synchronicznych

1.Wprowadzenie do projektowania układów sekwencyjnych synchronicznych .Wprowadzenie do projektowania układów sekwencyjnych synchronicznych.. Przerzutniki synchroniczne Istota działania przerzutników synchronicznych polega na tym, że zmiana stanu wewnętrznego powinna nastąpić

Bardziej szczegółowo

Synteza strukturalna automatów Moore'a i Mealy

Synteza strukturalna automatów Moore'a i Mealy Synteza strukturalna automatów Moore'a i Mealy Formalna definicja automatu: A = < Z, Q, Y, Φ, Ψ, q 0 > Z alfabet wejściowy Q zbiór stanów wewnętrznych Y alfabet wyjściowy Φ funkcja przejść q(t+1) = Φ (q(t),

Bardziej szczegółowo

Wstęp do Techniki Cyfrowej... Synchroniczne układy sekwencyjne

Wstęp do Techniki Cyfrowej... Synchroniczne układy sekwencyjne Wstęp do Techniki Cyfrowej... Synchroniczne układy sekwencyjne Schemat ogólny X Y Układ kombinacyjny S Z Pamięć Zegar Działanie układu Zmiany wartości wektora S możliwe tylko w dyskretnych chwilach czasowych

Bardziej szczegółowo

Spis treści. Przedmowa Wykaz oznaczeń Wstęp Układy kombinacyjne... 18

Spis treści. Przedmowa Wykaz oznaczeń Wstęp Układy kombinacyjne... 18 Spis treści Przedmowa... 11 Wykaz oznaczeń... 13 1. Wstęp... 15 1.1. Układycyfrowe... 15 1.2. Krótki esej o projektowaniu.... 15 2. Układy kombinacyjne... 18 2.1. Podstawyprojektowaniaukładówkombinacyjnych...

Bardziej szczegółowo

Podział układów cyfrowych. rkijanka

Podział układów cyfrowych. rkijanka Podział układów cyfrowych rkijanka W zależności od przyjętego kryterium możemy wyróżnić kilka sposobów podziału układów cyfrowych. Poniżej podam dwa z nich związane ze sposobem funkcjonowania układów cyfrowych

Bardziej szczegółowo

Przerzutnik ma pewną liczbę wejść i z reguły dwa wyjścia.

Przerzutnik ma pewną liczbę wejść i z reguły dwa wyjścia. Kilka informacji o przerzutnikach Jaki układ elektroniczny nazywa się przerzutnikiem? Przerzutnikiem bistabilnym jest nazywany układ elektroniczny, charakteryzujący się istnieniem dwóch stanów wyróżnionych

Bardziej szczegółowo

Podstawy techniki cyfrowej. Układy asynchroniczne Opracował: R.Walkowiak Styczeń 2014

Podstawy techniki cyfrowej. Układy asynchroniczne Opracował: R.Walkowiak Styczeń 2014 Podstawy techniki cyfrowej Układy asynchroniczne Opracował: R.Walkowiak Styczeń 2014 Charakterystyka układów asynchronicznych Brak wejścia: zegarowego, synchronizującego. Natychmiastowa (niesynchronizowana)

Bardziej szczegółowo

LICZNIKI PODZIAŁ I PARAMETRY

LICZNIKI PODZIAŁ I PARAMETRY LICZNIKI PODZIAŁ I PARAMETRY Licznik jest układem służącym do zliczania impulsów zerojedynkowych oraz zapamiętywania ich liczby. Zależnie od liczby n przerzutników wchodzących w skład licznika pojemność

Bardziej szczegółowo

Statyczne badanie przerzutników - ćwiczenie 3

Statyczne badanie przerzutników - ćwiczenie 3 Statyczne badanie przerzutników - ćwiczenie 3. Cel ćwiczenia Zapoznanie się z podstawowymi strukturami przerzutników w wersji TTL realizowanymi przy wykorzystaniu bramek logicznych NAND oraz NO. 2. Wykaz

Bardziej szczegółowo

Automat skończony FSM Finite State Machine

Automat skończony FSM Finite State Machine Automat skończony FSM Finite State Machine Projektowanie detektora sekwencji Laboratorium z Elektroniki Współczesnej A. Skoczeń, KOiDC, WFiIS, AGH, 2019 AGH, WFiIS, Elektronika Współczesna 1 Deterministyczny

Bardziej szczegółowo

1. Synteza automatów Moore a i Mealy realizujących zadane przekształcenie 2. Transformacja automatu Moore a w automat Mealy i odwrotnie

1. Synteza automatów Moore a i Mealy realizujących zadane przekształcenie 2. Transformacja automatu Moore a w automat Mealy i odwrotnie Opracował: dr hab. inż. Jan Magott KATEDRA INFORMATYKI TECHNICZNEJ Ćwiczenia laboratoryjne z Logiki Układów Cyfrowych ćwiczenie 207 Temat: Automaty Moore'a i Mealy 1. Cel ćwiczenia Celem ćwiczenia jest

Bardziej szczegółowo

Część 3. Układy sekwencyjne. Układy sekwencyjne i układy iteracyjne - grafy stanów TCiM Wydział EAIiIB Katedra EiASPE 1

Część 3. Układy sekwencyjne. Układy sekwencyjne i układy iteracyjne - grafy stanów TCiM Wydział EAIiIB Katedra EiASPE 1 Część 3 Układy sekwencyjne Układy sekwencyjne i układy iteracyjne - grafy stanów 18.11.2017 TCiM Wydział EAIiIB Katedra EiASPE 1 Układ cyfrowy - przypomnienie Podstawowe informacje x 1 x 2 Układ cyfrowy

Bardziej szczegółowo

Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014

Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014 Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014 Temat 1. Algebra Boole a i bramki 1). Podać przykład dowolnego prawa lub tożsamości, które jest spełnione w algebrze Boole

Bardziej szczegółowo

Tab. 1 Tab. 2 t t+1 Q 2 Q 1 Q 0 Q 2 Q 1 Q 0

Tab. 1 Tab. 2 t t+1 Q 2 Q 1 Q 0 Q 2 Q 1 Q 0 Synteza liczników synchronicznych Załóżmy, że chcemy zaprojektować licznik synchroniczny o następującej sekwencji: 0 1 2 3 6 5 4 [0 sekwencja jest powtarzana] Ponieważ licznik ma 7 stanów, więc do ich

Bardziej szczegółowo

Układy sekwencyjne. Podstawowe informacje o układach cyfrowych i przerzutnikach (rodzaje, sposoby wyzwalania).

Układy sekwencyjne. Podstawowe informacje o układach cyfrowych i przerzutnikach (rodzaje, sposoby wyzwalania). Ćw. 10 Układy sekwencyjne 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z sekwencyjnymi, cyfrowymi blokami funkcjonalnymi. W ćwiczeniu w oparciu o poznane przerzutniki zbudowane zostaną układy rejestrów

Bardziej szczegółowo

Automat Moore a. Teoria układów logicznych

Automat Moore a. Teoria układów logicznych Automat Moore a Automatem Moore a nazywamy uporządkowaną piątkę (Q,X,Y,δ, λ )gdzie Qjestskończonym zbiorem niepustym, nazwanym zbiorem stanów automatu, Xjestskończonym zbiorem niepustym, nazwanym alfabetem

Bardziej szczegółowo

Układy sekwencyjne. 1. Czas trwania: 6h

Układy sekwencyjne. 1. Czas trwania: 6h Instytut Fizyki oświadczalnej UG Układy sekwencyjne 1. Czas trwania: 6h 2. Cele ćwiczenia Poznanie zasad działania podstawowych typów przerzutników: RS, -latch,, T, JK-MS. Poznanie zasad działania rejestrów

Bardziej szczegółowo

Synteza strukturalna automatu Moore'a i Mealy

Synteza strukturalna automatu Moore'a i Mealy Synteza strukturalna automatu Moore'a i Mealy (wersja robocza - w razie zauważenia błędów proszę o uwagi na mail'a) Załóżmy, że mamy następujący graf automatu z 2 y 0 q 0 z 1 z 1 z 0 z 0 y 1 z 2 q 2 z

Bardziej szczegółowo

PROGRAMOWALNE STEROWNIKI LOGICZNE

PROGRAMOWALNE STEROWNIKI LOGICZNE PROGRAMOWALNE STEROWNIKI LOGICZNE I. Wprowadzenie Klasyczna synteza kombinacyjnych i sekwencyjnych układów sterowania stosowana do automatyzacji dyskretnych procesów produkcyjnych polega na zaprojektowaniu

Bardziej szczegółowo

Układy kombinacyjne i sekwencyjne. Podczas ćwiczenia poruszane będą następujące zagadnienia:

Układy kombinacyjne i sekwencyjne. Podczas ćwiczenia poruszane będą następujące zagadnienia: Warszawa 207 Cel ćwiczenia rachunkowego Podczas ćwiczenia poruszane będą następujące zagadnienia: modelowanie i synteza kombinacyjnych układów przełączających; minimalizacja funkcji przełączającej; projektowanie

Bardziej szczegółowo

Wykład 9. Metody budowy schematu funkcjonalnego pneumatycznego układu przełączającego:

Wykład 9. Metody budowy schematu funkcjonalnego pneumatycznego układu przełączającego: Serwonapędy w automatyce i robotyce Wykład 9 Piotr Sauer Katedra Sterowania i Inżynierii Systemów przełączających Metody budowy schematu funkcjonalnego pneumatycznego układu przełączającego: intuicyjna

Bardziej szczegółowo

Na początek: do firmowych ustawień dodajemy sterowanie wyłącznikiem ściennym.

Na początek: do firmowych ustawień dodajemy sterowanie wyłącznikiem ściennym. Na początek: do firmowych ustawień dodajemy sterowanie wyłącznikiem ściennym. Mamy dwa rodzaje wyłączników ściennych: 1. Stabilny który zazwyczaj wszyscy używają do włączania oświetlenia. Nazywa się stabilny

Bardziej szczegółowo

dwójkę liczącą Licznikiem Podział liczników:

dwójkę liczącą Licznikiem Podział liczników: 1. Dwójka licząca Przerzutnik typu D łatwo jest przekształcić w przerzutnik typu T i zrealizować dzielnik modulo 2 - tzw. dwójkę liczącą. W tym celu wystarczy połączyć wyjście zanegowane Q z wejściem D.

Bardziej szczegółowo

W układach asynchronicznych statycznych są stosowane dwie metody realizacji pamięci. 226 4. Syntezu układów sekwencyjnych

W układach asynchronicznych statycznych są stosowane dwie metody realizacji pamięci. 226 4. Syntezu układów sekwencyjnych 226 4. Syntezu układów sekwencyjnych wać z separowania całycli bloków i przeanalizować pary. Zamiast dodatkowego warunku,2,43, powstają wówczas dwa warunki,23 i,43, gdyż 2 I 4 przechodzą w. Łatwo można

Bardziej szczegółowo

Cyfrowe układy scalone c.d. funkcje

Cyfrowe układy scalone c.d. funkcje Cyfrowe układy scalone c.d. funkcje Ryszard J. Barczyński, 206 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Kombinacyjne układy cyfrowe

Bardziej szczegółowo

Errata do książki Multisim. Technika cyfrowa w przykładach.

Errata do książki Multisim. Technika cyfrowa w przykładach. . 3. 24 r. rrata do książki Multisim. Technika cyfrowa w przykładach.. str.5, źle jest zapisana postać funkcji wyjściowej równoważność (xclusive NOR, XNOR, NOR, XNOR), y 7 = a b + a b = a Ä b = a Å b 2.

Bardziej szczegółowo

Projekt z przedmiotu Systemy akwizycji i przesyłania informacji. Temat pracy: Licznik binarny zliczający do 10.

Projekt z przedmiotu Systemy akwizycji i przesyłania informacji. Temat pracy: Licznik binarny zliczający do 10. Projekt z przedmiotu Systemy akwizycji i przesyłania informacji Temat pracy: Licznik binarny zliczający do 10. Andrzej Kuś Aleksander Matusz Prowadzący: dr inż. Adam Stadler Układy cyfrowe przetwarzają

Bardziej szczegółowo

Temat 3. Synteza układów sekwencyjnych z bramek logicznych

Temat 3. Synteza układów sekwencyjnych z bramek logicznych Temat 3. Synteza układów sekwencyjnych z bramek logicznych Spis treści do tematu 3 3.1. Wprowadzenie 3.2. Projektowanie asynchronicznych układów sekwencyjnych metodą tablic przejść/wyjść (Huffmana). 3.3.

Bardziej szczegółowo

Przerzutniki RS i JK-MS lab. 04 Układy sekwencyjne cz. 1

Przerzutniki RS i JK-MS lab. 04 Układy sekwencyjne cz. 1 Przerzutniki RS i JK-MS lab. 04 Układy sekwencyjne cz. 1 PODSTAWY TECHNIKI MIKROPROCESOROWEJ 3EB KATEDRA ENERGOELEKTRONIKI I AUTOMATYKI SYSTEMÓW PRZETWARZANIA ENERGII WWW.KEIASPE.AGH.EDU.PL AKADEMIA GÓRNICZO-HUTNICZA

Bardziej szczegółowo

Teoria układów logicznych

Teoria układów logicznych Automat Moore a Automatem Moore a nazywamy uporządkowaną piątkę ( Q, X,,, ) gdzie Q jest skończonym zbiorem niepustym, nazwanym zbiorem stanów automatu, X jest skończonym zbiorem niepustym, nazwanym alfabetem

Bardziej szczegółowo

Definicja układu kombinacyjnego była stosunkowo prosta -tabela prawdy. Opis układu sekwencyjnego jest zadaniem bardziej złożonym.

Definicja układu kombinacyjnego była stosunkowo prosta -tabela prawdy. Opis układu sekwencyjnego jest zadaniem bardziej złożonym. 3.4. GRF UTOMTU, TBELE PRZEJŚĆ / WYJŚĆ Definicja układu kombinacyjnego była stosunkowo prosta -tabela prawdy. Opis układu sekwencyjnego jest zadaniem bardziej złożonym. Proste przypadki: Opis słowny, np.:

Bardziej szczegółowo

PAMIĘĆ RAM. Rysunek 1. Blokowy schemat pamięci

PAMIĘĆ RAM. Rysunek 1. Blokowy schemat pamięci PAMIĘĆ RAM Pamięć służy do przechowania bitów. Do pamięci musi istnieć możliwość wpisania i odczytania danych. Bity, które są przechowywane pamięci pogrupowane są na komórki, z których każda przechowuje

Bardziej szczegółowo

UKŁADY MIKROPROGRAMOWALNE

UKŁADY MIKROPROGRAMOWALNE UKŁAD MIKROPROGRAMOWALNE Układy sterujące mogą pracować samodzielnie, jednakże w przypadku bardziej złożonych układów (zwanych zespołami funkcjonalnymi) układ sterujący jest tylko jednym z układów drugim

Bardziej szczegółowo

Podstawy Elektroniki dla Elektrotechniki. Liczniki synchroniczne na przerzutnikach typu D

Podstawy Elektroniki dla Elektrotechniki. Liczniki synchroniczne na przerzutnikach typu D AGH Katedra Elektroniki Podstawy Elektroniki dla Elektrotechniki Liczniki synchroniczne na przerzutnikach typu D Ćwiczenie 7 Instrukcja do ćwiczeń symulacyjnych 2016 r. 1 1. Wstęp Celem ćwiczenia jest

Bardziej szczegółowo

Laboratorium przedmiotu Technika Cyfrowa

Laboratorium przedmiotu Technika Cyfrowa Laboratorium przedmiotu Technika Cyfrowa ćw.3 i 4: Asynchroniczne i synchroniczne automaty sekwencyjne 1. Implementacja asynchronicznych i synchronicznych maszyn stanu w języku VERILOG: Maszyny stanu w

Bardziej szczegółowo

xx + x = 1, to y = Jeśli x = 0, to y = 0 Przykładowy układ Funkcja przykładowego układu Metody poszukiwania testów Porównanie tabel prawdy

xx + x = 1, to y = Jeśli x = 0, to y = 0 Przykładowy układ Funkcja przykładowego układu Metody poszukiwania testów Porównanie tabel prawdy Testowanie układów kombinacyjnych Przykładowy układ Wykrywanie błędów: 1. Sklejenie z 0 2. Sklejenie z 1 Testem danego uszkodzenia nazywa się takie wzbudzenie funkcji (wektor wejściowy), które daje błędną

Bardziej szczegółowo

Ćwiczenie nr 1 Temat: Ćwiczenie wprowadzające w problematykę laboratorium.

Ćwiczenie nr 1 Temat: Ćwiczenie wprowadzające w problematykę laboratorium. Ćwiczenie nr 1 Temat: Ćwiczenie wprowadzające w problematykę laboratorium. Zagadnienia do samodzielnego opracowania: rola sygnału taktującego (zegara) w układach synchronicznych; co robi sygnał CLEAR (w

Bardziej szczegółowo

Cyfrowe Elementy Automatyki. Bramki logiczne, przerzutniki, liczniki, sterowanie wyświetlaczem

Cyfrowe Elementy Automatyki. Bramki logiczne, przerzutniki, liczniki, sterowanie wyświetlaczem Cyfrowe Elementy Automatyki Bramki logiczne, przerzutniki, liczniki, sterowanie wyświetlaczem Układy cyfrowe W układach cyfrowych sygnały napięciowe (lub prądowe) przyjmują tylko określoną liczbę poziomów,

Bardziej szczegółowo

Architektura komputerów Wykład 2

Architektura komputerów Wykład 2 Architektura komputerów Wykład 2 Jan Kazimirski 1 Elementy techniki cyfrowej 2 Plan wykładu Algebra Boole'a Podstawowe układy cyfrowe bramki Układy kombinacyjne Układy sekwencyjne 3 Algebra Boole'a Stosowana

Bardziej szczegółowo

Metoda Karnaugh. B A BC A

Metoda Karnaugh. B A BC A Metoda Karnaugh. Powszechnie uważa się, iż układ o mniejszej liczbie elementów jest tańszy i bardziej niezawodny, a spośród dwóch układów o takiej samej liczbie elementów logicznych lepszy jest ten, który

Bardziej szczegółowo

Temat: Zastosowanie wyrażeń regularnych do syntezy i analizy automatów skończonych

Temat: Zastosowanie wyrażeń regularnych do syntezy i analizy automatów skończonych Opracował: dr inż. Zbigniew Buchalski KATEDRA INFORMATYKI TECHNICZNEJ Ćwiczenia laboratoryjne z Logiki Układów Cyfrowych ćwiczenie Temat: Zastosowanie wyrażeń regularnych do syntezy i analizy automatów

Bardziej szczegółowo

Wykład nr 3 Techniki Mikroprocesorowe. dr inż. Artur Cichowski

Wykład nr 3 Techniki Mikroprocesorowe. dr inż. Artur Cichowski Wykład nr 3 Techniki Mikroprocesorowe dr inż. Artur Cichowski Automat skończony jest przetwornikiem ciągu symboli wejściowych na ciąg symboli wyjściowych. Zbiory symboli wejściowych x X i wyjściowych y

Bardziej szczegółowo

W jakim celu to robimy? Tablica Karnaugh. Minimalizacja

W jakim celu to robimy? Tablica Karnaugh. Minimalizacja W jakim celu to robimy? W projektowaniu układów cyfrowych istotne jest aby budować je jak najmniejszym kosztem. To znaczy wykorzystanie dwóch bramek jest tańsze niż konieczność wykorzystania trzech dla

Bardziej szczegółowo

Materiały pomocnicze do ćwiczeń z podstaw techniki cyfrowej (przygotował R.Walkowiak) Dla studiów niestacjonarnych rok AK 2017/18

Materiały pomocnicze do ćwiczeń z podstaw techniki cyfrowej (przygotował R.Walkowiak) Dla studiów niestacjonarnych rok AK 2017/18 Materiały pomocnicze do ćwiczeń z podstaw techniki cyfrowej (przygotował R.Walkowiak) Dla studiów niestacjonarnych rok AK 2017/18 ZADANIE 1 Komparator szeregowy 2 liczb Specyfikacja wymagań dla układu

Bardziej szczegółowo

WFiIS CEL ĆWICZENIA WSTĘP TEORETYCZNY

WFiIS CEL ĆWICZENIA WSTĘP TEORETYCZNY WFiIS LABORATORIUM Z ELEKTRONIKI Imię i nazwisko: 1. 2. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA CEL ĆWICZENIA Ćwiczenie

Bardziej szczegółowo

Proste układy sekwencyjne

Proste układy sekwencyjne Proste układy sekwencyjne Układy sekwencyjne to takie w których niektóre wejścia są sterowany przez wyjściaukładu( zawierają sprzężenie zwrotne ). Układy sekwencyjne muszą zawierać elementy pamiętające

Bardziej szczegółowo

PRZERZUTNIKI: 1. Należą do grupy bloków sekwencyjnych, 2. podstawowe układy pamiętające

PRZERZUTNIKI: 1. Należą do grupy bloków sekwencyjnych, 2. podstawowe układy pamiętające PRZERZUTNIKI: 1. Należą do grupy bloków sekwencyjnych, 2. podstawowe układy pamiętające Zapamiętywanie wartości wybranych zmiennych binarnych, jak również sekwencji tych wartości odbywa się w układach

Bardziej szczegółowo

UKŁADY CYFROWE. Układ kombinacyjny

UKŁADY CYFROWE. Układ kombinacyjny UKŁADY CYFROWE Układ kombinacyjny Układów kombinacyjnych są bramki. Jedną z cech układów kombinacyjnych jest możliwość przedstawienia ich działania (opisu) w postaci tabeli prawdy. Tabela prawdy podaje

Bardziej szczegółowo

Podstawowe układy cyfrowe

Podstawowe układy cyfrowe ELEKTRONIKA CYFROWA SPRAWOZDANIE NR 4 Podstawowe układy cyfrowe Grupa 6 Prowadzący: Roman Płaneta Aleksandra Gierut CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się z podstawowymi bramkami logicznymi,

Bardziej szczegółowo

Układy logiczne sekwencyjne

Układy logiczne sekwencyjne Opracował: G. Wasilewski 26.XI.2007 Katedra Automatyki i Biomechaniki P.Ł. LABORATORIUM PODSTAW AUTOMATYKI Ćwiczenie G: Układy logiczne sekwencyjne Cel ćwiczenia: Zapoznanie się z zasadą działania przerzutników

Bardziej szczegółowo

Synteza układów kombinacyjnych

Synteza układów kombinacyjnych Sławomir Kulesza Technika cyfrowa Synteza układów kombinacyjnych Wykład dla studentów III roku Informatyki Wersja 4.0, 23/10/2014 Bramki logiczne Bramki logiczne to podstawowe elementy logiczne realizujące

Bardziej szczegółowo

W ujęciu abstrakcyjnym automat parametryczny <A> można wyrazić następującą "ósemką":

W ujęciu abstrakcyjnym automat parametryczny <A> można wyrazić następującą ósemką: KATEDRA INFORMATYKI TECHNICZNEJ Ćwiczenia laboratoryjne z Logiki Układów Cyfrowych ćwiczenie 206 Temat: Automat parametryczny. Wiadomości podstawowe Automat parametryczny jest automatem skończonym

Bardziej szczegółowo

Statyczne i dynamiczne badanie przerzutników - ćwiczenie 2

Statyczne i dynamiczne badanie przerzutników - ćwiczenie 2 tatyczne i dynamiczne badanie przerzutników - ćwiczenie 2. Cel ćwiczenia Zapoznanie się z podstawowymi strukturami przerzutników w wersji TTL realizowanymi przy wykorzystaniu bramek logicznych NAND oraz

Bardziej szczegółowo

Literatura. adów w cyfrowych. Projektowanie układ. Technika cyfrowa. Technika cyfrowa. Bramki logiczne i przerzutniki.

Literatura. adów w cyfrowych. Projektowanie układ. Technika cyfrowa. Technika cyfrowa. Bramki logiczne i przerzutniki. Literatura 1. D. Gajski, Principles of Digital Design, Prentice- Hall, 1997 2. C. Zieliński, Podstawy projektowania układów cyfrowych, PWN, Warszawa 2003 3. G. de Micheli, Synteza i optymalizacja układów

Bardziej szczegółowo

Systemy wbudowane. Wprowadzenie. Nazwa. Oznaczenia. Zygmunt Kubiak. Sterowniki PLC - Wprowadzenie do programowania (1)

Systemy wbudowane. Wprowadzenie. Nazwa. Oznaczenia. Zygmunt Kubiak. Sterowniki PLC - Wprowadzenie do programowania (1) ybrane funkcje logiczne prowadzenie L L2 Y Nazwa Oznaczenia Y Sterowniki PLC - prowadzenie do programowania () Proste przykłady Załączenie jednego z dwóch (lub obu) przełączników lub powoduje zapalenie

Bardziej szczegółowo

Ćw. 9 Przerzutniki. 1. Cel ćwiczenia. 2. Wymagane informacje. 3. Wprowadzenie teoretyczne PODSTAWY ELEKTRONIKI MSIB

Ćw. 9 Przerzutniki. 1. Cel ćwiczenia. 2. Wymagane informacje. 3. Wprowadzenie teoretyczne PODSTAWY ELEKTRONIKI MSIB Ćw. 9 Przerzutniki 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi elementami sekwencyjnymi, czyli przerzutnikami. Zostanie przedstawiona zasada działania przerzutników oraz sposoby

Bardziej szczegółowo

Układy sekwencyjne przerzutniki 2/18. Przerzutnikiem nazywamy elementarny układ sekwencyjny, wyposaŝony w n wejść informacyjnych (x 1.

Układy sekwencyjne przerzutniki 2/18. Przerzutnikiem nazywamy elementarny układ sekwencyjny, wyposaŝony w n wejść informacyjnych (x 1. Przerzutniki Układy sekwencyjne przerzutniki 2/18 Pojęcie przerzutnika Przerzutnikiem nazywamy elementarny układ sekwencyjny, wyposaŝony w n wejść informacyjnych (x 1... x n ), 1-bitową pamięć oraz 1 wyjście

Bardziej szczegółowo

KATEDRA INFORMATYKI TECHNICZNEJ. Ćwiczenia laboratoryjne z Logiki Układów Cyfrowych. ćwiczenie 204

KATEDRA INFORMATYKI TECHNICZNEJ. Ćwiczenia laboratoryjne z Logiki Układów Cyfrowych. ćwiczenie 204 Opracował: prof. dr hab. inż. Jan Kazimierczak KATEDA INFOMATYKI TECHNICZNEJ Ćwiczenia laboratoryjne z Logiki Układów Cyfrowych ćwiczenie 204 Temat: Hardware'owa implementacja automatu skończonego pełniącego

Bardziej szczegółowo

Definicja 2. Twierdzenie 1. Definicja 3

Definicja 2. Twierdzenie 1. Definicja 3 INSTYTUT CYBERNETYKI TECHNICZNEJ POLITECHNIKI WROCŁAWSKIEJ ZAKŁAD SZTUCZNEJ INTELIGENCJI I AUTOMATÓW Ćwiczenia laboratoryjne z Logiki Układów Cyfrowych ćwiczenie 205 temat: ZASTOSOWANIE JĘZYKA WYRAŻEŃ

Bardziej szczegółowo

PLC - język tekstu strukturalnego ST

PLC - język tekstu strukturalnego ST PLC - język tekstu strukturalnego ST Język tekstu strukturalnego ST jest odpowiednikiem języka wysokiego poziomu, zawiera podobny zestaw instrukcji jak Pascal czy C. Podstawowymi elementami języka są wyrażenia

Bardziej szczegółowo

UKŁADY SEKWENCYJNE Opracował: Andrzej Nowak

UKŁADY SEKWENCYJNE Opracował: Andrzej Nowak PODSTAWY TEORII UKŁADÓW CYFROWYCH UKŁADY SEKWENCYJNE Opracował: Andrzej Nowak Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz http://pl.wikipedia.org/ Układem sekwencyjnym nazywamy układ

Bardziej szczegółowo

Bramki logiczne Podstawowe składniki wszystkich układów logicznych

Bramki logiczne Podstawowe składniki wszystkich układów logicznych Układy logiczne Bramki logiczne A B A B AND NAND A B A B OR NOR A NOT A B A B XOR NXOR A NOT A B AND NAND A B OR NOR A B XOR NXOR Podstawowe składniki wszystkich układów logicznych 2 Podstawowe tożsamości

Bardziej szczegółowo

Laboratorium elektroniki. Ćwiczenie E54. Realizacja asynchronicznych układów sekwencyjnych z bramek NOR. Wersja 1.0 (11 stycznia 2016)

Laboratorium elektroniki. Ćwiczenie E54. Realizacja asynchronicznych układów sekwencyjnych z bramek NOR. Wersja 1.0 (11 stycznia 2016) Laboratorium elektroniki Ćwiczenie E54 Realizacja asynchronicznych układów sekwencyjnych z bramek NOR Wersja 1.0 (11 stycznia 2016) Spis treści: 1. Cel ćwiczenia... 3 2. Zagrożenia... 3 3. Wprowadzenie

Bardziej szczegółowo

ĆWICZENIE 7. Wprowadzenie do funkcji specjalnych sterownika LOGO!

ĆWICZENIE 7. Wprowadzenie do funkcji specjalnych sterownika LOGO! ćwiczenie nr 7 str.1/1 ĆWICZENIE 7 Wprowadzenie do funkcji specjalnych sterownika LOGO! 1. CEL ĆWICZENIA: zapoznanie się z zaawansowanymi możliwościami mikroprocesorowych sterowników programowalnych na

Bardziej szczegółowo

1. Poznanie właściwości i zasady działania rejestrów przesuwnych. 2. Poznanie właściwości i zasady działania liczników pierścieniowych.

1. Poznanie właściwości i zasady działania rejestrów przesuwnych. 2. Poznanie właściwości i zasady działania liczników pierścieniowych. Ćwiczenie 9 Rejestry przesuwne i liczniki pierścieniowe. Cel. Poznanie właściwości i zasady działania rejestrów przesuwnych.. Poznanie właściwości i zasady działania liczników pierścieniowych. Wprowadzenie.

Bardziej szczegółowo

Nazwa kwalifikacji: Projektowanie i programowanie urządzeń i systemów mechatronicznych Oznaczenie kwalifikacji: E.19 Numer zadania: 01

Nazwa kwalifikacji: Projektowanie i programowanie urządzeń i systemów mechatronicznych Oznaczenie kwalifikacji: E.19 Numer zadania: 01 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu Układ graficzny CKE 2017 Nazwa kwalifikacji: Projektowanie i programowanie urządzeń i systemów mechatronicznych Oznaczenie kwalifikacji:

Bardziej szczegółowo

Teoria przetwarzania A/C i C/A.

Teoria przetwarzania A/C i C/A. Teoria przetwarzania A/C i C/A. Autor: Bartłomiej Gorczyński Cyfrowe metody przetwarzania sygnałów polegają na przetworzeniu badanego sygnału analogowego w sygnał cyfrowy reprezentowany ciągiem słów binarnych

Bardziej szczegółowo

3. SYNTEZA UKŁADÓW KOMBINACYJNYCH

3. SYNTEZA UKŁADÓW KOMBINACYJNYCH 3. SYNTEZA UKŁADÓW KOMBINACYJNYCH 3.. ZASADY OGÓLNE 3... ZAPIS FUNKCJI Synteza układów przełączających to zespól czynności, które n-i podstawie założeń dotyczących działania układów doprowadza ją do schematu

Bardziej szczegółowo

Przerzutnik (z ang. flip-flop) jest to podstawowy element pamiętający każdego układu

Przerzutnik (z ang. flip-flop) jest to podstawowy element pamiętający każdego układu Temat: Sprawdzenie poprawności działania przerzutników. Wstęp: Przerzutnik (z ang. flip-flop) jest to podstawowy element pamiętający każdego układu cyfrowego, przeznaczonego do przechowywania i ewentualnego

Bardziej szczegółowo

BADANIE PRZERZUTNIKÓW ASTABILNEGO, MONOSTABILNEGO I BISTABILNEGO

BADANIE PRZERZUTNIKÓW ASTABILNEGO, MONOSTABILNEGO I BISTABILNEGO Ćwiczenie 11 BADANIE PRZERZUTNIKÓW ASTABILNEGO, MONOSTABILNEGO I BISTABILNEGO 11.1 Cel ćwiczenia Celem ćwiczenia jest poznanie rodzajów, budowy i właściwości przerzutników astabilnych, monostabilnych oraz

Bardziej szczegółowo

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2018 CZĘŚĆ PRAKTYCZNA

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2018 CZĘŚĆ PRAKTYCZNA Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu Układ graficzny CKE 27 Nazwa kwalifikacji: Projektowanie i programowanie urządzeń i systemów mechatronicznych Oznaczenie kwalifikacji:

Bardziej szczegółowo

f we DZIELNIKI I PODZIELNIKI CZĘSTOTLIWOŚCI Dzielnik częstotliwości: układ dający impuls na wyjściu co P impulsów na wejściu

f we DZIELNIKI I PODZIELNIKI CZĘSTOTLIWOŚCI Dzielnik częstotliwości: układ dający impuls na wyjściu co P impulsów na wejściu DZIELNIKI I PODZIELNIKI CZĘSTOTLIWOŚCI Dzielnik częstotliwości: układ dający impuls na wyjściu co P impulsów na wejściu f wy f P Podzielnik częstotliwości: układ, który na każde p impulsów na wejściu daje

Bardziej szczegółowo

Cyfrowe układy sekwencyjne. 5 grudnia 2013 Wojciech Kucewicz 2

Cyfrowe układy sekwencyjne. 5 grudnia 2013 Wojciech Kucewicz 2 Cyfrowe układy sekwencyjne 5 grudnia 2013 Wojciech Kucewicz 2 Układy sekwencyjne Układy sekwencyjne to takie układy logiczne, których stan wyjść zależy nie tylko od aktualnego stanu wejść, lecz również

Bardziej szczegółowo

Podstawowe elementy układów cyfrowych układy sekwencyjne Rafał Walkowiak Wersja

Podstawowe elementy układów cyfrowych układy sekwencyjne Rafał Walkowiak Wersja Podstawowe elementy układów cyfrowych układy sekwencyjne Rafał Walkowiak Wersja 0.1 29.10.2013 Przypomnienie - podział układów cyfrowych Układy kombinacyjne pozbawione właściwości pamiętania stanów, realizujące

Bardziej szczegółowo

Układy kombinacyjne - przypomnienie

Układy kombinacyjne - przypomnienie SWB - Układy sekwencyjne - wiadomości podstawowe - wykład 4 asz 1 Układy kombinacyjne - przypomnienie W układzie kombinacyjnym wyjście zależy tylko od wejść, SWB - Układy sekwencyjne - wiadomości podstawowe

Bardziej szczegółowo

Wykład nr 1 Techniki Mikroprocesorowe. dr inż. Artur Cichowski

Wykład nr 1 Techniki Mikroprocesorowe. dr inż. Artur Cichowski Wykład nr 1 Techniki Mikroprocesorowe dr inż. Artur Cichowski ix jy i j {0,1} {0,1} Dla układów kombinacyjnych stan dowolnego wyjścia y i w danej chwili czasu zależy wyłącznie od aktualnej kombinacji stanów

Bardziej szczegółowo

1. SFC W PAKIECIE ISAGRAF 2. EDYCJA PROGRAMU W JĘZYKU SFC. ISaGRAF WERSJE 3.4 LUB 3.5 1

1. SFC W PAKIECIE ISAGRAF 2. EDYCJA PROGRAMU W JĘZYKU SFC. ISaGRAF WERSJE 3.4 LUB 3.5 1 ISaGRAF WERSJE 3.4 LUB 3.5 1 1. SFC W PAKIECIE ISAGRAF 1.1. Kroki W pakiecie ISaGRAF użytkownik nie ma możliwości definiowania własnych nazw dla kroków. Z każdym krokiem jest związany tzw. numer odniesienia

Bardziej szczegółowo

INSTYTUT CYBERNETYKI TECHNICZNEJ POLITECHNIKI WROCŁAWSKIEJ ZAKŁAD SZTUCZNEJ INTELIGENCJI I AUTOMATÓW

INSTYTUT CYBERNETYKI TECHNICZNEJ POLITECHNIKI WROCŁAWSKIEJ ZAKŁAD SZTUCZNEJ INTELIGENCJI I AUTOMATÓW e-version: dr inż. Tomasz apłon INTYTUT YBENETYI TEHNIZNE PLITEHNII WŁAWIE ZAŁA ZTUZNE INTELIGENI I AUTMATÓW Ćwiczenia laboratoryjne z Logiki Układów yfrowych ćwiczenie 23 temat: UŁAY EWENYNE. EL ĆWIZENIA

Bardziej szczegółowo