Ćwiczenie Nr 2 Dopasowanie modeli symulacyjnych ogniw słonecznych do ich charakterystyk rzeczywistych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Ćwiczenie Nr 2 Dopasowanie modeli symulacyjnych ogniw słonecznych do ich charakterystyk rzeczywistych"

Transkrypt

1 Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych Laboratorium Fotowoltaiki Ćwiczenie Nr 2 Dopasowanie modeli symulacyjnych ogniw słonecznych do ich charakterystyk rzeczywistych Wstęp teoretyczny. Schematy zastępcze tworzymy w celu opisania danego elementu, urządzenia tak aby uzyskany model umożliwiał matematyczny opis odwzorowujący cechy modelowanego obiektu. Idealną komórkę ogniwo można przedstawić za pomocą następującego schematu zastępczego: Modelem bliżej odwzorowującym rzeczywistą komórkę jest układ uwzględniający rezystancję szeregową oraz równoległą ogniwa:

2 W praktyce stosuję się modele w zależności od potrzeb mniej dokładne ale podlegającej łatwiejszej analizie lub lub bardziej skomplikowane, wierniej odzwierciedlające cechy modelowanego obiektu ale wymagające bardziej skomplikowanych i długotrwałych obliczeń numerycznych. Dla ogniw stosuję się następujące modele: Single Exponential Model (SEM) opisany pojedynczym równaniem wykładniczym z czterema lub pięcioma parametrami. Double Exponential Model (DEM) model opisany równaniem wykładniczym z siedmioma parametrami. One Variable Exponential Model (VDEM) różniący się od drugiego sposobem kalkulacji parametrów z iteracji. Poniższa tabela pokazuje przedział wartości parametrów dla dwóch pierwszych modeli: Charakterystyka prądowo-napięciowa ogniwa słonecznego jest jednym z ważniejszych czynników, które decydują o jego właściwościach. Jej znajomość jest niezbędna przy analizowaniu różnych konfiguracji systemów fotowoltaicznych. Właściwości elektryczne rzeczywistego ogniwa słonecznego najlepiej odwzorowuje model z siedmioma parametrami, przedstawiony poniżej.

3 Schemat zastępczy ogniwa słonecznego dla modelu z siedmioma parametrami. Schemat zastępczy ogniwa słonecznego dla modelu z pięcioma parametrami. Model z pięcioma elementami pozwala uwzględnić rezystancję wewnętrzną ogniwa i rezystancję szeregową, co zapewnia wystarczającą dokładność obliczeń. Inny schemat zastępczy ogniwa słonecznego przedstawia rys. 2.10, na którym Rcc jest oporem obciążenia, Rws szeregowym oporem wewnętrznym diody p-n. Kwanty promieniowania hν, absorbowane w zasięgu drogi dyfuzji od złącza, generują prąd zwarcia Is. Prąd ten rozdziela się na dwie składowe: część Icc, płynącą przez obciążenie i część I0, płynącą bezpośrednio przez Rysunek Schemat zastępczy ogniwa słonecznego

4 Rysunek Przykładowe charakterystyki prądowo - napięciowe krzemowej baterii słonecznej o powierzchni 1.7 cm2. Punkty oznaczają dane eksperymentalne, linie ciągłe otrzymano z równania (2.12) złącze. Napięcie Ucc odkładające się na rezystancji obciążenia Rcc jest więc niższe niż napięcie fotoelektryczne U generowane na złączu: Ucc = U IccRcc. (2.12) Porównując powyższe równanie z równaniem (2.9), otrzymamy związek Nie ulega wątpliwości, że opór wewnętrzny ogniwa wpływa na jego pracę. Rysunek 2.11 przedstawia charakterystyki prądowo - napięciowe krzemowego ogniwa słonecznego w przypadku idealnym (Rws = 0) i rzeczywistym (Rws > 0). Na wykresie przedstawiono także tzw. prostokąt maksymalnej mocy, rozpięty pomiędzy osiami układu współrzędnych a punktem, odpowiadającym maksymalnej mocy wyjściowej MPP7. Ze względu na istnienie oporu wewnętrznego ogniwa, MPP leży na zakrzywieniu krzywej straty na oporze Rcc obniżają maksymalną moc wyjściową i całkowitą sprawność ogniwa.

5 Cel ćwiczenia. Celem ćwiczenia jest określenie odpowiednich parametrów modeli mogących opisywać badane ogniwa. Są to proste modele obwodowe złożone z niewielkiej ilości elementów, które mogą być wykorzystywane przy opisywaniu całego ogniwa np. przy analizie programami typu Spice. Dostępne modele. Single Exponential Model (SEM) opisany pojedynczym równaniem wykładniczym z czteroma lub pięcioma parametrami. Double Exponential Model (DEM) model opisany równaniem wykładniczym z siedmioma parametrami. One Variable Exponential Model (VDEM) różniący się od drugiego sposobem kalkulacji parametrów z iteracji. Dobór odpowiednich parametrów odbywa się poprzez wybranie jednego z modelu aproksymacji i na jego podstawie dopasowaniu do istniejącej krzywej o znanych parametrach. Program wykonuje wiele iteracji jednak już po kilkudziesięciu można przerwać dopasowywanie gdyż krzywa dopasowania jest dość zbieżna z aproksymowaną już w dość szybkim czasie. Przebieg ćwiczenia. -Poproś prowadzącego o badane ogniwa. -Policz powierzchnię badanych ogniw. Uwaga! Nie dotykaj dłońmi badanej powierzchni ogniwa, trzymaj ogniwo za krawędzie. -Starannie ułóż badane ogniwo na stole pomiarowym. -Zamieść sondy pomiarowe na badanym ogniwie, pamiętaj o umieszczeniu końcówek na

6 kontaktach ogniwa. -Pierwszą czynnością po uruchomieniu programu którą należy wykonać jest justowanie (kalibracja) lampy. Po naciśnięciu przycisku autokalibracja wyświetli się komunikat obiniż lampę lub podnieść lampę. Z prawej strony uchwytu lampy zanjduje się pokrętło którym regulowana jest wysokość lampy dokonuj korekt do momentu w którym odchyłka będzie na zielonym tle, można przystąpić do pomiaru. Pamiętaj o zapisaniu ustawień. -Ustaw parametry ogniwa jak na poniższym rysunku. -Wykonaj pomiary dostępnych ogniw wyniki zapisz w tabeli 1.(wzór na końcu instrukcji) -Dla każdego ogniwa wykonaj dopasowanie parametrów każdego z trzech dostępnych modeli. -Zapisz parametry modeli w tabeli 2 (wzór na końcu instrukcji).

7 -Zwróc uwagę który model najlepiej odwzorowuje badane ogniwo. -Zaobserwuj jakie odchyłki występują dla każdego modelu w porównaniu z rzeczywistym ogniwem. -Zaobserwuj jaki wpływ ma złożoność matematyczna modelu na czas obliczeń pojedynczej iteracji. Wnioski zamieść w sprawozdaniu. *Policz różnice (odchylenia) parametrów między ogniwem rzeczywistym a modelami. * - Dla chętnych Wykonanie sprawozdania. 1. Zamieść wykresy uzyskane przy dopasowaniu modelu do danego ogniwa. 2. Porównaj parametry pomierzone na rzeczywistym ogniwie do modelu. 3. Sprawdż który model najlepiej odwzorowuje dostępne ogniwa. 4. Wnioski z wykonanych ćwiczeń. Literatura 1. Zdzisław M. Jarzębski Energia słoneczna. Konwersja fotowoltaiczna, PWN, W-wa Jan Karniewicz, Telesfor Sokołowski Podstawy fizyki laboratoryjnej, Wydawnictwo Politechniki Łódzkiej, Łódź UZUPEŁNIENIE A do laboratorium z fizyki ciała stałego dostępne na 4. Jacek Ulański wykład 18. Fizyka ciała stałego dostępny na 5. Czesław Bobrowski Fizyka krótki kurs, WNT, W-wa Roman Śledziewski Elektronika dla fizyków, PWN, W-wa Centrum Fotowoltaiki w Polsce

8 Tabela 1. Tabela 2.

Sprawozdanie z laboratorium proekologicznych źródeł energii

Sprawozdanie z laboratorium proekologicznych źródeł energii P O L I T E C H N I K A G D A Ń S K A Sprawozdanie z laboratorium proekologicznych źródeł energii Temat: Wyznaczanie charakterystyk prądowo-napięciowych modułu ogniw fotowoltaicznych i sprawności konwersji

Bardziej szczegółowo

Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych.

Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych. Politechnika Łódzka Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych Niekonwencjonalne źródła energii Laboratorium Ćwiczenie 1

Bardziej szczegółowo

Ćwiczenie Nr 1. Pomiar charkterystyk jasnych i ciemnych ogniw słonecznych różnych typów

Ćwiczenie Nr 1. Pomiar charkterystyk jasnych i ciemnych ogniw słonecznych różnych typów Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych Laboratorium Fotowoltaiki Ćwiczenie Nr 1 Pomiar charkterystyk jasnych i ciemnych ogniw słonecznych różnych typów Wstęp teoretyczny Ogniwo fotowoltaiczne

Bardziej szczegółowo

BADANIA MODELOWE OGNIW SŁONECZNYCH

BADANIA MODELOWE OGNIW SŁONECZNYCH POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 70 Electrical Engineering 2012 Bartosz CERAN* BADANIA MODELOWE OGNIW SŁONECZNYCH W artykule przedstawiono model matematyczny modułu fotowoltaicznego.

Bardziej szczegółowo

Ćwiczenie 1 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH

Ćwiczenie 1 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH LABORAORUM ELEKRONK Ćwiczenie 1 Parametry statyczne diod półprzewodnikowych Cel ćwiczenia Celem ćwiczenia jest poznanie statycznych charakterystyk podstawowych typów diod półprzewodnikowych oraz zapoznanie

Bardziej szczegółowo

E12. Wyznaczanie parametrów użytkowych fotoogniwa

E12. Wyznaczanie parametrów użytkowych fotoogniwa 1/5 E12. Wyznaczanie parametrów użytkowych fotoogniwa Celem ćwiczenia jest poznanie podstaw zjawiska konwersji energii świetlnej na elektryczną, zasad działania fotoogniwa oraz wyznaczenie jego podstawowych

Bardziej szczegółowo

IV. Wyznaczenie parametrów ogniwa słonecznego

IV. Wyznaczenie parametrów ogniwa słonecznego 1 V. Wyznaczenie parametrów ogniwa słonecznego Cel ćwiczenia: 1.Zbadanie zależności fotoprądu zwarcia i fotonapięcia zwarcia od natężenia oświetlenia. 2. Wyznaczenie sprawności energetycznej baterii słonecznej.

Bardziej szczegółowo

Akademia Górniczo Hutnicza im. Stanisława Staszica w Krakowie Wydział IEiT. Ćwiczenie laboratoryjne Badanie modułu fotowoltaicznego

Akademia Górniczo Hutnicza im. Stanisława Staszica w Krakowie Wydział IEiT. Ćwiczenie laboratoryjne Badanie modułu fotowoltaicznego Akademia Górniczo Hutnicza im. Stanisława Staszica w Krakowie Wydział IEiT Katedra Elektroniki Alternatywne Źródła Energii Ćwiczenie laboratoryjne Badanie modułu fotowoltaicznego Opracowanie instrukcji:

Bardziej szczegółowo

Badanie baterii słonecznych w zależności od natężenia światła

Badanie baterii słonecznych w zależności od natężenia światła POLITECHNIKA WARSZAWSKA Instytut Elektroenergetyki, Zakład Elektrowni i Gospodarki Elektroenergetycznej Przemiany energii laboratorium Ćwiczenie Badanie baterii słonecznych w zależności od natężenia światła

Bardziej szczegółowo

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Zagadnienia do opracowania. 1. Struktura pasmowa ciał stałych. 2. Klasyfikacja ciał stałych w oparciu o teorię

Bardziej szczegółowo

INSTRUKCJA LABORATORYJNA NR 10-PV MODUŁ FOTOWOLTAICZNY

INSTRUKCJA LABORATORYJNA NR 10-PV MODUŁ FOTOWOLTAICZNY LABORATORIUM ODNAWIALNYCH ŹRÓDEŁ ENERGII Katedra Aparatury i Maszynoznawstwa Chemicznego Wydział Chemiczny Politechniki Gdańskiej INSTRUKCJA LABORATORYJNA NR 10-PV MODUŁ FOTOWOLTAICZNY 1. Cel i zakres

Bardziej szczegółowo

Ćwiczenie M2 POMIARY STATYSTYCZNE SERII OPORNIKÓW

Ćwiczenie M2 POMIARY STATYSTYCZNE SERII OPORNIKÓW Laboratorium Podstaw Miernictwa Wiaczesław Szamow Ćwiczenie M2 POMIARY STATYSTYCZNE SERII OPORNIKÓW opr. tech. Mirosław Maś Uniwersytet Przyrodniczo - Humanistyczny Siedlce 2011 1. Wstęp Celem ćwiczenia

Bardziej szczegółowo

Ćwiczenie E17 BADANIE CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH MODUŁU OGNIW FOTOWOLTAICZNYCH I SPRAWNOŚCI KONWERSJI ENERGII PADAJĄCEGO PROMIENIOWANIA

Ćwiczenie E17 BADANIE CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH MODUŁU OGNIW FOTOWOLTAICZNYCH I SPRAWNOŚCI KONWERSJI ENERGII PADAJĄCEGO PROMIENIOWANIA Ćwiczenie E17 BADANIE CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH MODUŁU OGNIW FOTOWOLTAICZNYCH I SPRAWNOŚCI KONWERSJI ENERGII PADAJĄCEGO PROMIENIOWANIA Cel: Celem ćwiczenia jest zbadanie charakterystyk prądowo

Bardziej szczegółowo

Termodynamika. Wydział Inżynierii Mechanicznej i Robotyki II rok inż. Pomiar temperatury Instrukcja do ćwiczenia

Termodynamika. Wydział Inżynierii Mechanicznej i Robotyki II rok inż. Pomiar temperatury Instrukcja do ćwiczenia Termodynamika Wydział Inżynierii Mechanicznej i Robotyki II rok inż. Pomiar temperatury Instrukcja do ćwiczenia Katedra Systemów Energetycznych i Urządzeń Ochrony Środowiska AGH Kraków 2016 1. INSTRUKCJA

Bardziej szczegółowo

Ćwiczenie Nr 5. Badanie różnych konfiguracji modułów fotowoltaicznych

Ćwiczenie Nr 5. Badanie różnych konfiguracji modułów fotowoltaicznych Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych Laboratorium Fotowoltaiki Ćwiczenie Nr 5 Badanie różnych konfiguracji modułów fotowoltaicznych I. Cel ćwiczenia Celem ćwiczenia jest zapoznanie

Bardziej szczegółowo

Ćwiczenie 2a. Pomiar napięcia z izolacją galwaniczną Doświadczalne badania charakterystyk układów pomiarowych CZUJNIKI POMIAROWE I ELEMENTY WYKONAWCZE

Ćwiczenie 2a. Pomiar napięcia z izolacją galwaniczną Doświadczalne badania charakterystyk układów pomiarowych CZUJNIKI POMIAROWE I ELEMENTY WYKONAWCZE Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych 90-924 Łódź, ul. Wólczańska 221/223, bud. B18 tel. 42 631 26 28 faks 42 636 03 27 e-mail secretary@dmcs.p.lodz.pl http://www.dmcs.p.lodz.pl

Bardziej szczegółowo

E1. OBWODY PRĄDU STAŁEGO WYZNACZANIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁA

E1. OBWODY PRĄDU STAŁEGO WYZNACZANIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁA E1. OBWODY PRĄDU STŁEGO WYZNCZNIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁ tekst opracowała: Bożena Janowska-Dmoch Prądem elektrycznym nazywamy uporządkowany ruch ładunków elektrycznych wywołany

Bardziej szczegółowo

Ćwiczenie 3 WPŁYW NASŁONECZNIENIA I TECHNOLOGII PRODUKCJI KRZEMOWYCH OGNIW FOTOWOLTAICZNYCH NA ICH WŁASNOŚCI EKSPLOATACYJNE

Ćwiczenie 3 WPŁYW NASŁONECZNIENIA I TECHNOLOGII PRODUKCJI KRZEMOWYCH OGNIW FOTOWOLTAICZNYCH NA ICH WŁASNOŚCI EKSPLOATACYJNE Ćwiczenie WPŁYW NASŁONECZNIENIA I TECHNOLOGII PRODUKCJI KRZEMOWYCH OGNIW FOTOWOLTAICZNYCH NA ICH WŁASNOŚCI EKSPLOATACYJNE Opis stanowiska pomiarowego Stanowisko do wyznaczania charakterystyk prądowo napięciowych

Bardziej szczegółowo

Wyznaczanie podstawowych parametrów ogniwa paliwowego

Wyznaczanie podstawowych parametrów ogniwa paliwowego Wyznaczanie podstawowych parametrów ogniwa paliwowego Spis ćwiczeń 1. Charakterystyka IU (prądowo-napięciowa) dla zacienionego i oświetlonego modułu solarnego 2. Natężenie prądu w funkcji odległości i

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 13

Instrukcja do ćwiczenia laboratoryjnego nr 13 Instrukcja do ćwiczenia laboratoryjnego nr 13 Temat: Charakterystyki i parametry dyskretnych półprzewodnikowych przyrządów optoelektronicznych Cel ćwiczenia. Celem ćwiczenia jest poznanie budowy, zasady

Bardziej szczegółowo

Laboratorium fizyki CMF PŁ

Laboratorium fizyki CMF PŁ Laboratorium fizyki CMF PŁ dzień godzina _ grupa wydział semestr rok akademicki O2 kod ćwiczenia Badanie charakterystyk baterii słonecznych _ tytuł ćwiczenia _ imię i nazwisko _ imię i nazwisko _ imię

Bardziej szczegółowo

Zakład Zastosowań Elektroniki i Elektrotechniki

Zakład Zastosowań Elektroniki i Elektrotechniki Zakład Zastosowań Elektroniki i Elektrotechniki Laboratorium Wytwarzania energii elektrycznej Temat ćwiczenia: Badanie alternatora 52 BADANIE CHARAKTERYSTYK EKSPLOATACYJNYCH ALTERNATORÓW SAMO- CHODOWYCH

Bardziej szczegółowo

Laboratorium Metrologii

Laboratorium Metrologii Laboratorium Metrologii Ćwiczenie nr 3 Oddziaływanie przyrządów na badany obiekt I Zagadnienia do przygotowania na kartkówkę: 1 Zdefiniować pojęcie: prąd elektryczny Podać odpowiednią zależność fizyczną

Bardziej szczegółowo

ELEKTROTECHNIKA I ELEKTRONIKA

ELEKTROTECHNIKA I ELEKTRONIKA UNIERSYTET TECHNOLOGICZNO-PRZYRODNICZY BYDGOSZCZY YDZIAŁ INŻYNIERII MECHANICZNEJ INSTYTUT EKSPLOATACJI MASZYN I TRANSPORTU ZAKŁAD STEROANIA ELEKTROTECHNIKA I ELEKTRONIKA ĆICZENIE: E3 BADANIE ŁAŚCIOŚCI

Bardziej szczegółowo

CEL ĆWICZENIA: Celem ćwiczenia jest zapoznanie się z zastosowaniem diod i wzmacniacza operacyjnego

CEL ĆWICZENIA: Celem ćwiczenia jest zapoznanie się z zastosowaniem diod i wzmacniacza operacyjnego WFiIS LABORATORIUM Z ELEKTRONIKI Imię i nazwisko: 1.. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA CEL ĆWICZENIA: Celem ćwiczenia

Bardziej szczegółowo

Ćwiczenie 2 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH

Ćwiczenie 2 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH LABORATORIUM LKTRONIKI Ćwiczenie Parametry statyczne tranzystorów bipolarnych el ćwiczenia Podstawowym celem ćwiczenia jest poznanie statycznych charakterystyk tranzystorów bipolarnych oraz metod identyfikacji

Bardziej szczegółowo

Tranzystory bipolarne. Małosygnałowe parametry tranzystorów.

Tranzystory bipolarne. Małosygnałowe parametry tranzystorów. ĆWICZENIE 3 Tranzystory bipolarne. Małosygnałowe parametry tranzystorów. I. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie małosygnałowych parametrów tranzystorów bipolarnych na podstawie ich charakterystyk

Bardziej szczegółowo

Badanie wzmacniacza operacyjnego

Badanie wzmacniacza operacyjnego Badanie wzmacniacza operacyjnego CEL: Celem ćwiczenia jest poznanie właściwości wzmacniaczy operacyjnych i komparatorów oraz możliwości wykorzystania ich do realizacji bloków funkcjonalnych poprzez dobór

Bardziej szczegółowo

PRZEŁĄCZANIE DIOD I TRANZYSTORÓW

PRZEŁĄCZANIE DIOD I TRANZYSTORÓW L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE PRZEŁĄCZANIE DIOD I TRANZYSTORÓW REV. 1.1 1. CEL ĆWICZENIA - obserwacja pracy diod i tranzystorów podczas przełączania, - pomiary charakterystycznych czasów

Bardziej szczegółowo

BADANIE ELEMENTÓW RLC

BADANIE ELEMENTÓW RLC KATEDRA ELEKTRONIKI AGH L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE BADANIE ELEMENTÓW RLC REV. 1.0 1. CEL ĆWICZENIA - zapoznanie się z systemem laboratoryjnym NI ELVIS II, - zapoznanie się z podstawowymi

Bardziej szczegółowo

POLITECHNIKA WROCŁAWSKA, WYDZIAŁ PPT I-21 LABORATORIUM Z PODSTAW ELEKTROTECHNIKI I ELEKTRONIKI 2 Ćwiczenie nr 5. Źródła napięć i prądów stałych

POLITECHNIKA WROCŁAWSKA, WYDZIAŁ PPT I-21 LABORATORIUM Z PODSTAW ELEKTROTECHNIKI I ELEKTRONIKI 2 Ćwiczenie nr 5. Źródła napięć i prądów stałych POLITCHNIKA WROCŁAWSKA, WYDZIAŁ PPT I-2 Cel ćwiczenia: Celem ćwiczenia jest zapoznanie studentów wykonujących ćwiczenie ze źródłami sygnałów stałoprądowych stosowanych w elektronice, jak również z podstawowymi

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 13

Instrukcja do ćwiczenia laboratoryjnego nr 13 Instrukcja do ćwiczenia laboratoryjnego nr 13 Temat: Charakterystyki i parametry dyskretnych półprzewodnikowych przyrządów optoelektronicznych Cel ćwiczenia. Celem ćwiczenia jest poznanie budowy, zasady

Bardziej szczegółowo

PODSTAWY METROLOGII ĆWICZENIE 7 TEMPERATURA Międzywydziałowa Szkoła Inżynierii Biomedycznej 2009/2010 SEMESTR 3

PODSTAWY METROLOGII ĆWICZENIE 7 TEMPERATURA Międzywydziałowa Szkoła Inżynierii Biomedycznej 2009/2010 SEMESTR 3 PODSTAWY METROLOGII ĆWICZENIE 7 TEMPERATURA Międzywydziałowa Szkoła Inżynierii Biomedycznej 2009/2010 SEMESTR 3 Rozwiązania zadań nie były w żaden sposób konsultowane z żadnym wiarygodnym źródłem informacji!!!

Bardziej szczegółowo

Elektronika. Wzmacniacz tranzystorowy

Elektronika. Wzmacniacz tranzystorowy LABORATORIUM Elektronika Wzmacniacz tranzystorowy Opracował: mgr inż. Andrzej Biedka Wymagania, znajomość zagadnień: 1. Podstawowych parametrów elektrycznych i charakterystyk graficznych tranzystorów bipolarnych.

Bardziej szczegółowo

Ćwiczenie: "Właściwości wybranych elementów układów elektronicznych"

Ćwiczenie: Właściwości wybranych elementów układów elektronicznych Ćwiczenie: "Właściwości wybranych elementów układów elektronicznych" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki.

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA ENS1C300 022 BADANIE TRANZYSTORÓW BIAŁYSTOK 2013 1. CEL I ZAKRES

Bardziej szczegółowo

Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu

Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Laboratorium Elektryczne Montaż Maszyn i Urządzeń Elektrycznych Instrukcja Laboratoryjna: Badanie ogniwa galwanicznego. Opracował: mgr inż.

Bardziej szczegółowo

METROLOGIA EZ1C

METROLOGIA EZ1C Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do zajęć laboratoryjnych z przedmiotu METOLOGI Kod przedmiotu: EZ1C 300 016 POMI EZYSTNCJI METODĄ

Bardziej szczegółowo

EUROELEKTRA. Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej. Rok szkolny 2012/2013. Zadania dla grupy elektronicznej na zawody II stopnia

EUROELEKTRA. Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej. Rok szkolny 2012/2013. Zadania dla grupy elektronicznej na zawody II stopnia EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2012/2013 Zadania dla grupy elektronicznej na zawody II stopnia 1. Wykorzystując rachunek liczb zespolonych wyznacz impedancję

Bardziej szczegółowo

Źródła zasilania i parametry przebiegu zmiennego

Źródła zasilania i parametry przebiegu zmiennego POLIECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGEYKI INSYU MASZYN I URZĄDZEŃ ENERGEYCZNYCH LABORAORIUM ELEKRYCZNE Źródła zasilania i parametry przebiegu zmiennego (E 1) Opracował: Dr inż. Włodzimierz

Bardziej szczegółowo

O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego msg M 7-1 - Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Zagadnienia: prawa dynamiki Newtona, moment sił, moment bezwładności, dynamiczne równania ruchu wahadła fizycznego,

Bardziej szczegółowo

Laboratorium Podstaw Elektrotechniki i Elektroniki

Laboratorium Podstaw Elektrotechniki i Elektroniki Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1) Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDLNEGO

Bardziej szczegółowo

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 1. Połączenia szeregowe oraz równoległe elementów RC

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 1. Połączenia szeregowe oraz równoległe elementów RC Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie ĆWICZENIE Połączenia szeregowe oraz równoległe elementów C. CEL ĆWICZENIA Celem ćwiczenia jest praktyczno-analityczna ocena wartości

Bardziej szczegółowo

Lekcja 14. Obliczanie rozpływu prądów w obwodzie

Lekcja 14. Obliczanie rozpływu prądów w obwodzie Lekcja 14. Obliczanie rozpływu prądów w obwodzie Zad 1.Oblicz wartość rezystancji zastępczej obwodu z rysunku. Dane: R1= 10k, R2= 20k. Zad 2. Zapisz równanie I prawa Kirchhoffa dla węzła obwodu elektrycznego

Bardziej szczegółowo

Ćwiczenie 1b. Silnik prądu stałego jako element wykonawczy Modelowanie i symulacja napędu CZUJNIKI POMIAROWE I ELEMENTY WYKONAWCZE

Ćwiczenie 1b. Silnik prądu stałego jako element wykonawczy Modelowanie i symulacja napędu CZUJNIKI POMIAROWE I ELEMENTY WYKONAWCZE Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych 90-924 Łódź, ul. Wólczańska 221/223, bud. B18 tel. 42 631 26 28 faks 42 636 03 27 e-mail secretary@dmcs.p.lodz.pl http://www.dmcs.p.lodz.pl

Bardziej szczegółowo

WIECZOROWE STUDIA ZAWODOWE LABORATORIUM OBWODÓW I SYGNAŁÓW

WIECZOROWE STUDIA ZAWODOWE LABORATORIUM OBWODÓW I SYGNAŁÓW POLTECHNKA WARSZAWSKA NSTYTUT RADOELEKTRONK ZAKŁAD RADOKOMUNKACJ WECZOROWE STUDA ZAWODOWE LABORATORUM OBWODÓW SYGNAŁÓW Ćwiczenie 1 Temat: OBWODY PRĄDU STAŁEGO Opracował: mgr inż. Henryk Chaciński Warszawa

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 6a

Instrukcja do ćwiczenia laboratoryjnego nr 6a Instrukcja do ćwiczenia laboratoryjnego nr 6a Temat: Charakterystyki i parametry półprzewodnikowych przyrządów optoelektronicznych. Cel ćwiczenia: Zapoznać z budową, zasadą działania, charakterystykami

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA 2 Kod: ES1C400 026 BADANIE WYBRANYCH DIOD I TRANZYSTORÓW BIAŁYSTOK

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra utomatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIK ENS1C300 022 WYBRNE ZSTOSOWNI DIOD PÓŁPRZEWODNIKOWYCH BIŁYSTOK

Bardziej szczegółowo

Uniwersytet Pedagogiczny

Uniwersytet Pedagogiczny Uniwersytet Pedagogiczny im. Komisji Edukacji Narodowej w Krakowie Laboratorium elektroniki Ćwiczenie nr 5 Temat: STABILIZATORY NAPIĘCIA Rok studiów Grupa Imię i nazwisko Data Podpis Ocena 1. Cel ćwiczenia

Bardziej szczegółowo

Laboratorum 4 Dioda półprzewodnikowa

Laboratorum 4 Dioda półprzewodnikowa Laboratorum 4 Dioda półprzewodnikowa Marcin Polkowski (251328) 19 kwietnia 2007 r. Spis treści 1 Cel ćwiczenia 2 2 Opis ćwiczenia 2 3 Wykonane pomiary 3 3.1 Dioda krzemowa...............................................

Bardziej szczegółowo

Termodynamika. Wydział Inżynierii Mechanicznej i Robotyki I rok inż. Pomiary temperatury Instrukcja do ćwiczenia

Termodynamika. Wydział Inżynierii Mechanicznej i Robotyki I rok inż. Pomiary temperatury Instrukcja do ćwiczenia Termodynamika Wydział Inżynierii Mechanicznej i Robotyki I rok inż. Pomiary temperatury Instrukcja do ćwiczenia Katedra Systemów Energetycznych i Urządzeń Ochrony Środowiska AGH Kraków 2013 1. INSTRUKCJA

Bardziej szczegółowo

Badanie elementów składowych monolitycznych układów scalonych II

Badanie elementów składowych monolitycznych układów scalonych II 1 Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE Ćwiczenie nr 14 LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH Badanie elementów składowych monolitycznych układów scalonych

Bardziej szczegółowo

ĆWICZENIE nr 5. Pomiary rezystancji, pojemności, indukcyjności, impedancji

ĆWICZENIE nr 5. Pomiary rezystancji, pojemności, indukcyjności, impedancji Politechnika Łódzka Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych WWW.DSOD.PL LABORATORIUM METROLOGII ELEKTRONICZNEJ ĆWICZENIE nr 5 Pomiary rezystancji, pojemności, indukcyjności, impedancji

Bardziej szczegółowo

Elementy i obwody nieliniowe

Elementy i obwody nieliniowe POLTCHNKA ŚLĄSKA WYDZAŁ NŻYNR ŚRODOWSKA NRGTYK NSTYTT MASZYN RZĄDZŃ NRGTYCZNYCH LABORATORM LKTRYCZN lementy i obwody nieliniowe ( 3) Opracował: Dr inż. Włodzimierz OGLWCZ 3 1. Cel ćwiczenia Celem ćwiczenia

Bardziej szczegółowo

Laboratorium Przyrządów Półprzewodnikowych Laboratorium 1

Laboratorium Przyrządów Półprzewodnikowych Laboratorium 1 Laboratorium Przyrządów Półprzewodnikowych Laboratorium 1 1/10 2/10 PODSTAWOWE WIADOMOŚCI W trakcie zajęć wykorzystywane będą następujące urządzenia: oscyloskop, generator, zasilacz, multimetr. Instrukcje

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 7

Instrukcja do ćwiczenia laboratoryjnego nr 7 Instrukcja do ćwiczenia laboratoryjnego nr 7 Temat: Badanie właściwości elektrycznych półprzewodnikowych przyrządów optoelektronicznych.. Cel ćwiczenia: Poznanie budowy, zasady działania, charakterystyk

Bardziej szczegółowo

Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych.

Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych. Politechnika Łódzka Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych Niekonwencjonalne źródła energii Laboratorium Ćwiczenie 3

Bardziej szczegółowo

Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego"

Ćwiczenie: Obwody prądu sinusoidalnego jednofazowego Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres

Bardziej szczegółowo

Tranzystory bipolarne. Podstawowe układy pracy tranzystorów.

Tranzystory bipolarne. Podstawowe układy pracy tranzystorów. ĆWICZENIE 4 Tranzystory bipolarne. Podstawowe układy pracy tranzystorów. I. Cel ćwiczenia Zapoznanie się z układami zasilania tranzystorów. Wybór punktu pracy tranzystora. Statyczna prosta pracy. II. Układ

Bardziej szczegółowo

kierunek: Automatyka i Robotyka Zadania uzupełniające do wykładu i ćwiczeń laboratoryjnych z Elektroniki sem. II

kierunek: Automatyka i Robotyka Zadania uzupełniające do wykładu i ćwiczeń laboratoryjnych z Elektroniki sem. II kierunek: Automatyka i Robotyka Zadania uzupełniające do wykładu i ćwiczeń laboratoryjnych z Elektroniki sem. II iody prostownicze i diody Zenera Zadanie Podać schematy zastępcze zlinearyzowane dla diody

Bardziej szczegółowo

DOKŁADNOŚĆ POMIARU DŁUGOŚCI 1

DOKŁADNOŚĆ POMIARU DŁUGOŚCI 1 DOKŁADNOŚĆ POMIARU DŁUGOŚCI 1 I. ZAGADNIENIA TEORETYCZNE Niepewności pomiaru standardowa niepewność wyniku pomiaru wielkości mierzonej bezpośrednio i złożona niepewność standardowa. Przedstawianie wyników

Bardziej szczegółowo

UKŁADY PROSTOWNICZE 0.47 / 5W 0.47 / 5W D2 C / 5W

UKŁADY PROSTOWNICZE 0.47 / 5W 0.47 / 5W D2 C / 5W UKŁADY PROSTOWNICZE. Cel ćwiczenia. Celem ćwiczenia jest zapoznanie się z budową i właściwościami podstawowych układów prostowniczych: prostownika jednopołówkowego, dwupołówkowego z dzielonym uzwojeniem

Bardziej szczegółowo

IA. Fotodioda. Cel ćwiczenia: Pomiar charakterystyk prądowo - napięciowych fotodiody.

IA. Fotodioda. Cel ćwiczenia: Pomiar charakterystyk prądowo - napięciowych fotodiody. 1 A. Fotodioda Cel ćwiczenia: Pomiar charakterystyk prądowo - napięciowych fotodiody. Zagadnienia: Efekt fotowoltaiczny, złącze p-n Wprowadzenie Fotodioda jest urządzeniem półprzewodnikowym w którym zachodzi

Bardziej szczegółowo

Podzespoły i układy scalone mocy część II

Podzespoły i układy scalone mocy część II Podzespoły i układy scalone mocy część II dr inż. Łukasz Starzak Katedra Mikroelektroniki Technik Informatycznych ul. Wólczańska 221/223 bud. B18 pok. 51 http://neo.dmcs.p.lodz.pl/~starzak http://neo.dmcs.p.lodz.pl/uep

Bardziej szczegółowo

Grupa: Zespół: wykonał: 1 Mariusz Kozakowski Data: 3/11/2013 111B. Podpis prowadzącego:

Grupa: Zespół: wykonał: 1 Mariusz Kozakowski Data: 3/11/2013 111B. Podpis prowadzącego: Sprawozdanie z laboratorium elektroniki w Zakładzie Systemów i Sieci Komputerowych Temat ćwiczenia: Pomiary podstawowych wielkości elektrycznych: prawa Ohma i Kirchhoffa Sprawozdanie Rok: Grupa: Zespół:

Bardziej szczegółowo

EFEKT FOTOWOLTAICZNY OGNIWO SŁONECZNE

EFEKT FOTOWOLTAICZNY OGNIWO SŁONECZNE ĆWICZENIE 104 EFEKT FOTOWOLTAICZNY OGNIWO SŁONECZNE Instrukcja wykonawcza 1. Wykaz przyrządów 1. Panel z ogniwami 5. Zasilacz stabilizowany oświetlacza 2. Oświetlacz 3. Woltomierz napięcia stałego 4. Miliamperomierz

Bardziej szczegółowo

1 Badanie aplikacji timera 555

1 Badanie aplikacji timera 555 1 Badanie aplikacji timera 555 Celem ćwiczenia jest zapoznanie studenta z podstawowymi aplikacjami układu 555 oraz jego działaniem i właściwościami. Do badania wybrane zostały trzy podstawowe aplikacje

Bardziej szczegółowo

Konfiguracja modułu fotowoltaicznego

Konfiguracja modułu fotowoltaicznego LABORATORIUM OPTOELEKTRONIKI Ćwiczenie 8 Konfiguracja modułu fotowoltaicznego Cel ćwiczenia: Zapoznanie studentów z działaniem modułów fotowoltaicznych, oraz różnymi konfiguracjami połączeń tych modułów.

Bardziej szczegółowo

POLITECHNIKA WARSZAWSKA Wydział Elektryczny Instytut Elektroenergetyki Zakład Elektrowni i Gospodarki Elektroenergetycznej

POLITECHNIKA WARSZAWSKA Wydział Elektryczny Instytut Elektroenergetyki Zakład Elektrowni i Gospodarki Elektroenergetycznej POLITECHNIKA WARSZAWSKA Wydział Elektryczny Instytut Elektroenergetyki Zakład Elektrowni i Gospodarki Elektroenergetycznej INSTRUKCJA DO ĆWICZENIA: BADANIE BATERII SŁONECZNYCH W ZALEśNOŚCI OD NATĘśENIA

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 4

Instrukcja do ćwiczenia laboratoryjnego nr 4 Instrukcja do ćwiczenia laboratoryjnego nr 4 Temat: Badanie własności przełączających diod półprzewodnikowych Cel ćwiczenia. Celem ćwiczenia jest poznanie własności przełączających złącza p - n oraz wybranych

Bardziej szczegółowo

Ćwiczenie 3 Sporządzanie Charakterystyk Triody

Ćwiczenie 3 Sporządzanie Charakterystyk Triody WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ Instytut Fizyki LABORATORIUM PODSTAW ELEKTROTECHNIKI, ELEKTRONIKI I MIERNICTWA Ćwiczenie 3 Sporządzanie Charakterystyk Triody POJĘCIA I

Bardziej szczegółowo

PROTOKÓŁ POMIARY W OBWODACH PRĄDU PRZEMIENNEGO

PROTOKÓŁ POMIARY W OBWODACH PRĄDU PRZEMIENNEGO PROTOKÓŁ POMIAROWY LABORATORIUM OBWODÓW I SYGNAŁÓW ELEKTRYCZNYCH Grupa Podgrupa Numer ćwiczenia 4 Lp. Nazwisko i imię Data wykonania ćwiczenia Prowadzący ćwiczenie Podpis Data oddania sprawozdania Temat

Bardziej szczegółowo

Wyznaczanie krzywej ładowania kondensatora

Wyznaczanie krzywej ładowania kondensatora Ćwiczenie E10 Wyznaczanie krzywej ładowania kondensatora E10.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie przebiegu procesu ładowania kondensatora oraz wyznaczenie stałej czasowej szeregowego układu.

Bardziej szczegółowo

Część 1. Wprowadzenie. Przegląd funkcji, układów i zagadnień

Część 1. Wprowadzenie. Przegląd funkcji, układów i zagadnień Część 1 Wprowadzenie Przegląd funkcji, układów i zagadnień Źródło energii w systemie fotowoltaicznym Ogniwo fotowoltaiczne / słoneczne photovoltaic / solar cell pojedynczy przyrząd półprzewodnikowy U 0,5

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA EKS1A300024 BADANIE TRANZYSTORÓW BIAŁYSTOK 2015 1. CEL I ZAKRES

Bardziej szczegółowo

POMIARY TEMPERATURY I

POMIARY TEMPERATURY I Cel ćwiczenia Ćwiczenie 5 POMIARY TEMPERATURY I Celem ćwiczenia jest poznanie budowy i zasady działania rezystancyjnych czujników temperatury, układów połączeń czujnika z elektrycznymi układami przetwarzającymi

Bardziej szczegółowo

Ć w i c z e n i e 1 POMIARY W OBWODACH PRĄDU STAŁEGO

Ć w i c z e n i e 1 POMIARY W OBWODACH PRĄDU STAŁEGO Ć w i c z e n i e POMIAY W OBWODACH PĄDU STAŁEGO. Wiadomości ogólne.. Obwód elektryczny Obwód elektryczny jest to układ odpowiednio połączonych elementów przewodzących prąd i źródeł energii elektrycznej.

Bardziej szczegółowo

ARKUSZ EGZAMINACYJNY

ARKUSZ EGZAMINACYJNY Zawód: technik elektronik Symbol cyfrowy: 311[07] 311[07]-01-062 Numer zadania: 1 Czas trwania egzaminu: 240 minut ARKUSZ EGZAMINACYJNY ETAP PRAKTYCZNY EGZAMINU POTWIERDZAJĄCEGO KWALIFIKACJE ZAWODOWE CZERWIEC

Bardziej szczegółowo

Ćwiczenie 1. Parametry statyczne diod LED

Ćwiczenie 1. Parametry statyczne diod LED Ćwiczenie. Parametry statyczne diod LED. Cel ćwiczenia. Celem ćwiczenia jest zapoznanie się z podstawowymi właściwościami i charakterystykami diod LED. Poznanie ograniczeń i sposobu zasilania tego typu

Bardziej szczegółowo

BADANIE TRANZYSTORA BIPOLARNEGO

BADANIE TRANZYSTORA BIPOLARNEGO BADANIE TRANZYSTORA BIPOLARNEGO CEL poznanie charakterystyk tranzystora bipolarnego w układzie WE poznanie wybranych parametrów statycznych tranzystora bipolarnego w układzie WE PRZEBIEG ĆWICZENIA: 1.

Bardziej szczegółowo

STABILIZATORY NAPIĘCIA STAŁEGO. 1. Wiadomości wstępne

STABILIZATORY NAPIĘCIA STAŁEGO. 1. Wiadomości wstępne STABILIZATORY NAPIĘCIA STAŁEGO 1. Wiadomości wstępne Stabilizatory napięcia stałego są to układy elektryczne dostarczające do odbiornika napięcie o stałej wartości niezależnie od zmian w określonych granicach:

Bardziej szczegółowo

ĆWICZENIE LABORATORYJNE. TEMAT: Wyznaczanie parametrów diod i tranzystorów

ĆWICZENIE LABORATORYJNE. TEMAT: Wyznaczanie parametrów diod i tranzystorów ĆWICZENIE LBORTORYJNE TEMT: Wyznaczanie parametrów diod i tranzystorów 1. WPROWDZENIE Przedmiotem ćwiczenia jest zapoznanie się z budową i zasadą działania podstawowych rodzajów diod półprzewodnikowych

Bardziej szczegółowo

1 Źródła i detektory. I. Badanie charakterystyki spektralnej nietermicznych źródeł promieniowania elektromagnetycznego

1 Źródła i detektory. I. Badanie charakterystyki spektralnej nietermicznych źródeł promieniowania elektromagnetycznego 1 I. Badanie charakterystyki spektralnej nietermicznych źródeł promieniowania elektromagnetycznego Cel ćwiczenia: Wyznaczenie charakterystyki spektralnej nietermicznego źródła promieniowania (dioda LD

Bardziej szczegółowo

WYDZIAŁ PPT LABORATORIUM Z ELEKTROTECHNIKI I ELEKTRONIKI Ćwiczenie nr 5. Źródła napięciowe, prądowe (chemiczne, elektroniczne), pomiary parametrów.

WYDZIAŁ PPT LABORATORIUM Z ELEKTROTECHNIKI I ELEKTRONIKI Ćwiczenie nr 5. Źródła napięciowe, prądowe (chemiczne, elektroniczne), pomiary parametrów. Cel ćwiczenia: Celem ćwiczenia jest zapoznanie studentów wykonujących ćwiczenie ze źródłami sygnałów stałoprądowych stosowanych w elektronice, jak również z podstawowymi właściwościami tych źródeł i sposobami

Bardziej szczegółowo

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Temperaturowa charakterystyka termistora typu NTC

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Temperaturowa charakterystyka termistora typu NTC Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Temperaturowa charakterystyka termistora typu NTC ćwiczenie nr 37 Opracowanie ćwiczenia: dr J. Woźnicka, dr S. elica Zakres zagadnień obowiązujących do ćwiczenia

Bardziej szczegółowo

E104. Badanie charakterystyk diod i tranzystorów

E104. Badanie charakterystyk diod i tranzystorów E104. Badanie charakterystyk diod i tranzystorów Cele: Wyznaczenie charakterystyk dla diod i tranzystorów. Dla diod określa się zależność I d =f(u d ) prądu od napięcia i napięcie progowe U p. Dla tranzystorów

Bardziej szczegółowo

Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4)

Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4) OBWODY JEDNOFAZOWE POMIAR PRĄDÓW, NAPIĘĆ. Obwody prądu stałego.. Pomiary w obwodach nierozgałęzionych wyznaczanie rezystancji metodą techniczną. Metoda techniczna pomiaru rezystancji polega na określeniu

Bardziej szczegółowo

LABORATORIUM ELEKTRONIKI ĆWICZENIE 4 POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH

LABORATORIUM ELEKTRONIKI ĆWICZENIE 4 POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH LABORATORIUM ELEKTRONIKI ĆWICZENIE 4 Parametry statyczne tranzystorów polowych złączowych Cel ćwiczenia Podstawowym celem ćwiczenia jest poznanie statycznych charakterystyk tranzystorów polowych złączowych

Bardziej szczegółowo

R w =

R w = Laboratorium Eletrotechnii i eletronii LABORATORM 6 Temat ćwiczenia: BADANE ZASLACZY ELEKTRONCZNYCH - pomiary w obwodach prądu stałego Wyznaczanie charaterysty prądowo-napięciowych i charaterysty mocy.

Bardziej szczegółowo

Dioda półprzewodnikowa

Dioda półprzewodnikowa COACH 10 Dioda półprzewodnikowa Program: Coach 6 Projekt: na MN060c CMA Coach Projects\PTSN Coach 6\ Elektronika\dioda_2.cma Przykład wyników: dioda2_2.cmr Cel ćwiczenia - Pokazanie działania diody - Wyznaczenie

Bardziej szczegółowo

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa

Bardziej szczegółowo

STABILIZATORY NAPIĘCIA I PRĄDU STAŁEGO O DZIAŁANIU CIĄGŁYM Instrukcja do ćwiczeń laboratoryjnych

STABILIZATORY NAPIĘCIA I PRĄDU STAŁEGO O DZIAŁANIU CIĄGŁYM Instrukcja do ćwiczeń laboratoryjnych STABILIZATORY NAPIĘCIA I PRĄDU STAŁEGO O DZIAŁANIU CIĄGŁYM Instrukcja do ćwiczeń laboratoryjnych Wstęp Celem ćwiczenia jest zapoznanie się z problemami związanymi z projektowaniem, realizacją i pomiarami

Bardziej szczegółowo

Wyznaczanie parametrów baterii słonecznej

Wyznaczanie parametrów baterii słonecznej Wyznaczanie parametrów baterii słonecznej Obowiązkowa znajomość zagadnień Działanie ogniwa fotowoltaicznego. Złącze p-n. Parametry charakteryzujące ogniwo fotowoltaiczne. Zastosowanie ogniw fotowoltaicznych.

Bardziej szczegółowo

Ćwiczenie nr 2 Charakterystyki I= f(u) złącza p-n.

Ćwiczenie nr 2 Charakterystyki I= f(u) złącza p-n. Wydział Elektroniki Mikrosystemów i otoniki Opracował zespół: Marek Panek, Waldemar Oleszkiewicz, wona Zborowska-Lindert, Bogdan Paszkiewicz, Małgorzata Kramkowska, Beata Ściana, Zdzisław ynowiec, Bogusław

Bardziej szczegółowo

STUDIA I STOPNIA NIESTACJONARNE ELEKTROTECHNIKA

STUDIA I STOPNIA NIESTACJONARNE ELEKTROTECHNIKA PRZEDMIOT: ROK: 3 SEMESTR: 6 (letni) RODZAJ ZAJĘĆ I LICZBA GODZIN: LICZBA PUNKTÓW ECTS: RODZAJ PRZEDMIOTU: STUDIA I STOPNIA NIESTACJONARNE ELEKTROTECHNIKA Maszyny Elektryczn Wykład 30 Ćwiczenia Laboratorium

Bardziej szczegółowo

Ćwiczenie nr 2: OPRACOWANIE SCHEMATU ELEKTRYCZNEGO UKŁADU ELEKTRONICZNEGO

Ćwiczenie nr 2: OPRACOWANIE SCHEMATU ELEKTRYCZNEGO UKŁADU ELEKTRONICZNEGO INSTYTUT SYSTEMÓW ELEKTRONICZNYCH WEL WAT ZAKŁAD EKSPLOATACJI SYSTEMÓW ELEKTRONICZNYCH Ćwiczenie nr 2: OPRACOWANIE SCHEMATU ELEKTRYCZNEGO UKŁADU ELEKTRONICZNEGO A. Cel ćwiczenia: Celem ćwiczenia jest poznanie

Bardziej szczegółowo

- 1 WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

- 1 WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI Zał. nr 4 do ZW 33/01 WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim Fizyka 3.3 Nazwa w języku angielskim Physics 3.3 Kierunek studiów: Automatyka i Robotyka Specjalność (jeśli dotyczy): Stopień

Bardziej szczegółowo

Rys.2. Schemat działania fotoogniwa.

Rys.2. Schemat działania fotoogniwa. Ćwiczenie E16 BADANIE NATĘŻENIA PRĄDU FOTOELEKTRYCZNEGO W ZALEŻNOŚCI OD ODLEGŁOŚCI ŹRÓDŁA ŚWIATŁA Cel: Celem ćwiczenia jest zbadanie zależności natężenia prądu generowanego światłem w fotoogniwie od odległości

Bardziej szczegółowo

Opis dydaktycznych stanowisk pomiarowych i przyrządów w lab. EE (paw. C-3, 302)

Opis dydaktycznych stanowisk pomiarowych i przyrządów w lab. EE (paw. C-3, 302) Opis dydaktycznych stanowisk pomiarowych i przyrządów w lab. EE (paw. C-3, 302) 1. Elementy elektroniczne stosowane w ćwiczeniach Elementy elektroniczne będące przedmiotem pomiaru, lub służące do zestawienia

Bardziej szczegółowo