IV. Wyznaczenie parametrów ogniwa słonecznego

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "IV. Wyznaczenie parametrów ogniwa słonecznego"

Transkrypt

1 1 V. Wyznaczenie parametrów ogniwa słonecznego Cel ćwiczenia: 1.Zbadanie zależności fotoprądu zwarcia i fotonapięcia zwarcia od natężenia oświetlenia. 2. Wyznaczenie sprawności energetycznej baterii słonecznej. Opis stanowiska: 1.Zasilacz halogenowy 3.Źródło światła - lampa halogenowa LH Badana bateria słoneczna o powierzchni światłoczułej 85 mm 2 i powierzchni przedniej 100mm 2. 5.Fotodioda BPDP o czułości 0.04 A/W i średniej powierzchni światłoczułej 5.8 mm 2. Fotodioda ta służy do pomiaru natężenia oświetlenia padającego na baterię słoneczną promieniowania (promieniowanie ze źródła LH100 pada jednocześnie na kalibrowaną diodę BPDP i badaną baterię słoneczną). 6. METEX - miernik służący do pomiaru prądu fotodiody BPDP BRYMEN mierniki cyfrowe do pomiaru prądu płynącego przez baterię oraz napięcia na baterii. Mierniki współpracują z komputerem umożliwiającym akwizycję danych pomiarowych. 8. Filtr szary

2 2 Przebieg ćwiczenia: 1. Połączyć układ wg schematu przedstawionego na rys. 1. Rys Wyznaczenie oporności różniczkowej upływu baterii słonecznej. Po sprawdzeniu układu przez prowadzącego zmierzyć charakterystykę prądowonapięciową nieoświetlonej baterii słonecznej w zakresie napięć od 10mV do +10mV. Ten pomiar lepiej jest wykonać bez użycia komputera. 3. Zmierzyć charakterystykę prądowo-napięciową nieoświetlonej i oświetlonej baterii w zakresie : do 15mA w kierunku przewodzenia i do 2V w kierunku zaporowym. Oświetlenie dobrać tak, aby prąd fotodiody BPDP 35 wynosił około 20 A, przy odległości między źródłem światła a baterią rzędu 30 cm. Należy zwrócić uwagę, że optymalne oświetlenie baterii nie jest jednoznaczne z optymalnym oświetleniem fotodiody. Dlatego w celu wyznaczenia prawidłowej wartości prądu fotodiody, należy ją ustawić tak aby była na tej samej wysokości co bateria podczas pomiaru charakterystyki przy oświetleniu. 4. Na ławie optycznej przed fotodiodą BPDP wstawić filtr szary. Zmierzyć natężenie oświetlenia E dla wszystkich możliwych pozycji filtra szarego. Natężenie oświetlenia wyznacza się na podstawie pomiaru prądu fotodiody f o znanej czułości prądowej (wzór (7)). 5.Zmierzyć zależności : a) prądu zwarcia sc = f (E) ( E-natężenie oświetlenia), tzn. prądu płynącego przez baterią przy zerowej polaryzacji; b) napięcia rozwarcia U oc = f (E) przy braku prądu płynącego przez baterię.

3 3 Pomiar ten można wykonać przy pomocy komputera, mierząc charakterystyki prądowonapięciowe dla różnych natężeń oświetlenia baterii w węższym zakresie prądów w kierunku przewodzenia do ok.0.2ma i w kierunku zaporowym do ok. 0.2V. Opracowanie wyników: 1. Na podstawie pomiarów charakterystyki prądowo-napięciowej nieoświetlonej baterii słonecznej wyznaczyć: - rezystancję szeregową baterii ze wzoru (5); - rezystancję różniczkową upływu korzystając ze wzoru (6). - współczynnik idealności baterii n (wzór (3)). 2.Narysować charakterystykę -V dla oświetlonej baterii w układzie = f (+V) dla maksymalnego oświetlenia - zaznaczyć prąd zwarcia i napięcie rozwarcia. - wyznaczyć współczynnik wypełnienia FF korzystając ze wzoru (8). - obliczyć sprawność energetyczną baterii (wzór (9)). 3.Wykreślić zależność fotoprądu zwarcia i fotonapięcia rozwarcia badanej baterii słonecznej od natężenia oświetlenia. Natężenie oświetlenia wyznaczyć ze wzoru (7). 4.Przedyskutować otrzymane wyniki i porównać je z danymi literaturowymi dla ogniw krzemowych i innych (wykład (7)).W szczególności sprawdzić, czy zależność prądu zwarcia sc i napięcia rozwarcia U oc od oświetlenia są zgodne z przewidywaniami teoretycznymi ( wykład 7). Literatura: 1. Wstęp teoretyczny do cw.5 2. Wykład 6 i 7 3. Z.M. Jarzębski : Energia słoneczna

4 4 WZORY KONECZNE DO WYKONANA SPRAWOZDANA 1.Wyznaczenie oporności szeregowej złącza półprzewodnikowego i współczynnika idealności dla rzeczywistego złącza p-n. Obwód zastępczy dla rzeczywistego złącza p-n z opornością szeregową przedstawia rys. 2. V D Rys.2 Obwód zastępczy dla rzeczywistego złącza p-n. Część napięcia polaryzującego diodę odkłada się na oporności szeregowej złącza: V V D R S. (1) Wówczas prąd płynący przez złącze : q( V RS ) S 0[exp 1], (2) nkt gdzie n - współczynnik idealności złącza, so prąd nasycenia. Współczynnik n obliczamy korzystając z wykresu ln=f(v) (dla V>3kT/q): lub jeśli rysujemy wykres log=f(v): n q d ln kt dv, (3)

5 5 (4) q n d log. 2.3 kt dv Oporność szeregową obliczamy korzystając z wykresu ln=f(v) lub log=f(v) dla dużych napięć w kierunku przewodzenia. Z odchylenia tego wykresu od linii prostej dla dużego prądu 0 otrzymujemy (patrz rys. 3): V R S (5) 0 Rys. 3. Sposób wyznaczenia oporności szeregowej z charakterystyki -V. 2.R- rezystancja różniczkowa (oporność upływu) złącza półprzewodnikowego : 1 1 d R du U U 0 U 0 (6) lub - dla baterii: U oc R (7) sc 3.Współczynnik wypełnienia FF = m sc U U m sc (8)

6 6 m i U m prąd i napięcie odpowiadające punktowi o maksymalnej mocy, sc i U sc prąd zwarcia i napięcie rozwarcia. 4. Sprawność energetyczna baterii J mu m Acb 100[%] (9) A E pb gdzie A cb powierzchnia czynna baterii, A pb - powierzchnia przednia baterii; E natężenie oświetlenia baterii [W/m 2 ], J m. gęstość prądu (odpowiadającemu punktowi przegięcia na charakterystyce -U) płynącego przez baterię [A/m 2 ]. (J m A cb = m ). 3. Natężenie oświetlania baterii mierzy się przy pomocy kalibrowanej fotodiody o znanej czułości prądowej S f. Jeśli bateria i fotodioda są ustawione w tej samej odległości od źródła i fotodioda jest oświetlona w takim samym stopniu co bateria to natężenia oświetlenia obydwu są takie same i spełniają równość: E f b (10) Af Acb gdzie f i b to strumienie promieniowania padające odpowiednio na fotodiodę i na baterię. Z drugiej strony strumień promieniowania padający na fotodiodę można wyznaczyć znając jej czułość napięciową: / S (11) f f f gdzie f jest prądem płynącym przez fotodiodę. Po podstawieniu wzoru (11) do wzoru (10) otrzymuje się wzór na natężenie oświetlenia baterii w postaci: E f AS (12) f f Po podstawieniu tego wzoru do wzoru (9) otrzymuje się ostatecznie:

7 7 JmU macb Af S f mu ms f Af 100[%] 100[%] A A pb f pb f (13) 5. Wyznaczenie oporności szeregowej baterii słonecznej sposób drugi. W przypadku baterii słonecznej istnieje możliwość wyznaczenia oporności szeregowej przy wykorzystaniu charakterystyk prądowo - napięciowych zmierzonych przy różnych oświetleniach. Różnemu oświetleniu odpowiadają różne wartości prądów zwarcia (rys. 4). Na charakterystykach -V zaznacza się punkty które odpowiadają wartościom prądu zwarcia pomniejszonemu o pewną stałą wartość : 1 sc1 oraz 2 sc2. Następnie oporność szeregową wyznacza się z zależności: r V V V V s (14) 2 1 sc2 sc1 Rys. 3. Pytania kontrolne 1. Złącze p-n. Charakterystyka prądowo-napięciowa dla złącza idealnego i rzeczywistego. 2. Efekt fotowoltaiczny. 3. Zasada działania i parametry charakteryzujące baterię słoneczną..

8 8

IA. Fotodioda. Cel ćwiczenia: Pomiar charakterystyk prądowo - napięciowych fotodiody.

IA. Fotodioda. Cel ćwiczenia: Pomiar charakterystyk prądowo - napięciowych fotodiody. 1 A. Fotodioda Cel ćwiczenia: Pomiar charakterystyk prądowo - napięciowych fotodiody. Zagadnienia: Efekt fotowoltaiczny, złącze p-n Wprowadzenie Fotodioda jest urządzeniem półprzewodnikowym w którym zachodzi

Bardziej szczegółowo

I B. EFEKT FOTOWOLTAICZNY. BATERIA SŁONECZNA

I B. EFEKT FOTOWOLTAICZNY. BATERIA SŁONECZNA 1 OPTOELEKTRONKA B. EFEKT FOTOWOLTACZNY. BATERA SŁONECZNA Cel ćwiczenia: 1.Zbadanie zależności otoprądu zwarcia i otonapięcia zwarcia od natężenia oświetlenia. 2. Wyznaczenie sprawności energetycznej baterii

Bardziej szczegółowo

EFEKT FOTOWOLTAICZNY OGNIWO SŁONECZNE

EFEKT FOTOWOLTAICZNY OGNIWO SŁONECZNE ĆWICZENIE 104 EFEKT FOTOWOLTAICZNY OGNIWO SŁONECZNE Instrukcja wykonawcza 1. Wykaz przyrządów 1. Panel z ogniwami 5. Zasilacz stabilizowany oświetlacza 2. Oświetlacz 3. Woltomierz napięcia stałego 4. Miliamperomierz

Bardziej szczegółowo

E12. Wyznaczanie parametrów użytkowych fotoogniwa

E12. Wyznaczanie parametrów użytkowych fotoogniwa 1/5 E12. Wyznaczanie parametrów użytkowych fotoogniwa Celem ćwiczenia jest poznanie podstaw zjawiska konwersji energii świetlnej na elektryczną, zasad działania fotoogniwa oraz wyznaczenie jego podstawowych

Bardziej szczegółowo

Sprawozdanie z laboratorium proekologicznych źródeł energii

Sprawozdanie z laboratorium proekologicznych źródeł energii P O L I T E C H N I K A G D A Ń S K A Sprawozdanie z laboratorium proekologicznych źródeł energii Temat: Wyznaczanie charakterystyk prądowo-napięciowych modułu ogniw fotowoltaicznych i sprawności konwersji

Bardziej szczegółowo

Laboratorium fizyki CMF PŁ

Laboratorium fizyki CMF PŁ Laboratorium fizyki CMF PŁ dzień godzina _ grupa wydział semestr rok akademicki O2 kod ćwiczenia Badanie charakterystyk baterii słonecznych _ tytuł ćwiczenia _ imię i nazwisko _ imię i nazwisko _ imię

Bardziej szczegółowo

Badanie własności fotodiody

Badanie własności fotodiody Badanie własności fotodiody Ryszard Kostecki 13 maja 22 Wstęp Celem tego doświadczenia było wykonanie charakterystyki prądowo-napięciowej fotodiody dla różnych wartości natężenia padającego światła, a

Bardziej szczegółowo

OPTOELEKTRONIKA IV. ZJAWISKO FOTOELEKTRYCZNE WEWNĘTRZNE W PÓŁPRZEWODNIKACH.

OPTOELEKTRONIKA IV. ZJAWISKO FOTOELEKTRYCZNE WEWNĘTRZNE W PÓŁPRZEWODNIKACH. 1 IV. ZJAWISKO FOTOELEKTRYCZNE WEWNĘTRZNE W PÓŁPRZEWODNIKACH. Cel ćwiczenia: Wyznaczenie postawowych parametrów spektralnych fotoprzewozącego etektora poczerwieni. Opis stanowiska: Monochromator-SPM- z

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 13

Instrukcja do ćwiczenia laboratoryjnego nr 13 Instrukcja do ćwiczenia laboratoryjnego nr 13 Temat: Charakterystyki i parametry dyskretnych półprzewodnikowych przyrządów optoelektronicznych Cel ćwiczenia. Celem ćwiczenia jest poznanie budowy, zasady

Bardziej szczegółowo

1 Źródła i detektory. I. Badanie charakterystyki spektralnej nietermicznych źródeł promieniowania elektromagnetycznego

1 Źródła i detektory. I. Badanie charakterystyki spektralnej nietermicznych źródeł promieniowania elektromagnetycznego 1 I. Badanie charakterystyki spektralnej nietermicznych źródeł promieniowania elektromagnetycznego Cel ćwiczenia: Wyznaczenie charakterystyki spektralnej nietermicznego źródła promieniowania (dioda LD

Bardziej szczegółowo

1 Źródła i detektory. V. Fotodioda i diody LED Cel ćwiczenia: Pomiar charakterystyk prądowo - napięciowych fotodiody i diod LED.

1 Źródła i detektory. V. Fotodioda i diody LED Cel ćwiczenia: Pomiar charakterystyk prądowo - napięciowych fotodiody i diod LED. 1 V. Fotodioda i diody LED Cel ćwiczenia: Pomiar charakterystyk prądowo - napięciowych fotodiody i diod LED. Zagadnienia: Efekt fotowoltaiczny, złącze p-n Wprowadzenie Fotodioda jest urządzeniem półprzewodnikowym

Bardziej szczegółowo

Ćwiczenie 2 WSPÓŁPRACA JEDNAKOWYCH OGNIW FOTOWOLTAICZNYCH W RÓŻNYCH KONFIGURACJACH POŁĄCZEŃ. Opis stanowiska pomiarowego. Przebieg ćwiczenia

Ćwiczenie 2 WSPÓŁPRACA JEDNAKOWYCH OGNIW FOTOWOLTAICZNYCH W RÓŻNYCH KONFIGURACJACH POŁĄCZEŃ. Opis stanowiska pomiarowego. Przebieg ćwiczenia Ćwiczenie WSPÓŁPRACA JEDNAKOWYCH OGNIW FOTOWOLTAICZNYCH W RÓŻNYCH KONFIGURACJACH POŁĄCZEŃ Opis stanowiska pomiarowego Stanowisko do analizy współpracy jednakowych ogniw fotowoltaicznych w różnych konfiguracjach

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 13

Instrukcja do ćwiczenia laboratoryjnego nr 13 Instrukcja do ćwiczenia laboratoryjnego nr 13 Temat: Charakterystyki i parametry dyskretnych półprzewodnikowych przyrządów optoelektronicznych Cel ćwiczenia. Celem ćwiczenia jest poznanie budowy, zasady

Bardziej szczegółowo

Ćwiczenie E17 BADANIE CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH MODUŁU OGNIW FOTOWOLTAICZNYCH I SPRAWNOŚCI KONWERSJI ENERGII PADAJĄCEGO PROMIENIOWANIA

Ćwiczenie E17 BADANIE CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH MODUŁU OGNIW FOTOWOLTAICZNYCH I SPRAWNOŚCI KONWERSJI ENERGII PADAJĄCEGO PROMIENIOWANIA Ćwiczenie E17 BADANIE CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH MODUŁU OGNIW FOTOWOLTAICZNYCH I SPRAWNOŚCI KONWERSJI ENERGII PADAJĄCEGO PROMIENIOWANIA Cel: Celem ćwiczenia jest zbadanie charakterystyk prądowo

Bardziej szczegółowo

ĆWICZENIE LABORATORYJNE. TEMAT: Wyznaczanie parametrów diod i tranzystorów

ĆWICZENIE LABORATORYJNE. TEMAT: Wyznaczanie parametrów diod i tranzystorów ĆWICZENIE LBORTORYJNE TEMT: Wyznaczanie parametrów diod i tranzystorów 1. WPROWDZENIE Przedmiotem ćwiczenia jest zapoznanie się z budową i zasadą działania podstawowych rodzajów diod półprzewodnikowych

Bardziej szczegółowo

INSTRUKCJA LABORATORYJNA NR 10-PV MODUŁ FOTOWOLTAICZNY

INSTRUKCJA LABORATORYJNA NR 10-PV MODUŁ FOTOWOLTAICZNY LABORATORIUM ODNAWIALNYCH ŹRÓDEŁ ENERGII Katedra Aparatury i Maszynoznawstwa Chemicznego Wydział Chemiczny Politechniki Gdańskiej INSTRUKCJA LABORATORYJNA NR 10-PV MODUŁ FOTOWOLTAICZNY 1. Cel i zakres

Bardziej szczegółowo

Ćwiczenie 3 WPŁYW NASŁONECZNIENIA I TECHNOLOGII PRODUKCJI KRZEMOWYCH OGNIW FOTOWOLTAICZNYCH NA ICH WŁASNOŚCI EKSPLOATACYJNE

Ćwiczenie 3 WPŁYW NASŁONECZNIENIA I TECHNOLOGII PRODUKCJI KRZEMOWYCH OGNIW FOTOWOLTAICZNYCH NA ICH WŁASNOŚCI EKSPLOATACYJNE Ćwiczenie WPŁYW NASŁONECZNIENIA I TECHNOLOGII PRODUKCJI KRZEMOWYCH OGNIW FOTOWOLTAICZNYCH NA ICH WŁASNOŚCI EKSPLOATACYJNE Opis stanowiska pomiarowego Stanowisko do wyznaczania charakterystyk prądowo napięciowych

Bardziej szczegółowo

E12. Wyznaczanie parametrów użytkowych fotoogniwa

E12. Wyznaczanie parametrów użytkowych fotoogniwa E12. Wyznaczanie parametrów użytkowych fotoogniwa 1/5 E12. Wyznaczanie parametrów użytkowych fotoogniwa Celem ćwiczenia jest zapoznanie z podstawami zjawiska konwersji energii świetlnej na elektryczną,

Bardziej szczegółowo

Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE. Wpływ oświetlenia na półprzewodnik oraz na złącze p-n

Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE. Wpływ oświetlenia na półprzewodnik oraz na złącze p-n Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDA DZENNE LABORATORUM PRZYRZĄDÓW PÓŁPRZEWODNKOWYCH Ćwiczenie nr 5 Wpływ oświetlenia na półprzewodnik oraz na złącze p-n. Zagadnienia

Bardziej szczegółowo

Badanie baterii słonecznych w zależności od natężenia światła

Badanie baterii słonecznych w zależności od natężenia światła POLITECHNIKA WARSZAWSKA Instytut Elektroenergetyki, Zakład Elektrowni i Gospodarki Elektroenergetycznej Przemiany energii laboratorium Ćwiczenie Badanie baterii słonecznych w zależności od natężenia światła

Bardziej szczegółowo

Ćwiczenie nr 34. Badanie elementów optoelektronicznych

Ćwiczenie nr 34. Badanie elementów optoelektronicznych Ćwiczenie nr 34 Badanie elementów optoelektronicznych 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z elementami optoelektronicznymi oraz ich podstawowymi parametrami, a także doświadczalne sprawdzenie

Bardziej szczegółowo

Rys.2. Schemat działania fotoogniwa.

Rys.2. Schemat działania fotoogniwa. Ćwiczenie E16 BADANIE NATĘŻENIA PRĄDU FOTOELEKTRYCZNEGO W ZALEŻNOŚCI OD ODLEGŁOŚCI ŹRÓDŁA ŚWIATŁA Cel: Celem ćwiczenia jest zbadanie zależności natężenia prądu generowanego światłem w fotoogniwie od odległości

Bardziej szczegółowo

1 Źródła i detektory VI. FOTOTRANZYSTOR

1 Źródła i detektory VI. FOTOTRANZYSTOR 1 Wprowadzenie. VI. FOTOTRANZYSTOR Nazwa tranzystor pochodzi z języka angielskiego: transistor - transferring an electrical signal across a resistor. (transfer sygnału elektrycznego przez rezystancję).

Bardziej szczegółowo

LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH

LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE Ćwiczenie nr 8 Wpływ oświetlenia na półprzewodnik oraz na złącze p-n I. Zagadnienia do samodzielnego przygotowania

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 6a

Instrukcja do ćwiczenia laboratoryjnego nr 6a Instrukcja do ćwiczenia laboratoryjnego nr 6a Temat: Charakterystyki i parametry półprzewodnikowych przyrządów optoelektronicznych. Cel ćwiczenia: Zapoznać z budową, zasadą działania, charakterystykami

Bardziej szczegółowo

EFEKT FOTOWOLTAICZNY OGNIWO SŁONECZNE

EFEKT FOTOWOLTAICZNY OGNIWO SŁONECZNE ĆWICZENIE 104 EFEKT FOTOWOLTAICZNY OGNIWO SŁONECZNE Cel ćwiczenia: Wyznaczenie charakterystyki prądowo napięciowej I(V) ogniwa słonecznego przed i po oświetleniu światłem widzialnym; prądu zwarcia, napięcia

Bardziej szczegółowo

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Zagadnienia do opracowania. 1. Struktura pasmowa ciał stałych. 2. Klasyfikacja ciał stałych w oparciu o teorię

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 4

Instrukcja do ćwiczenia laboratoryjnego nr 4 Instrukcja do ćwiczenia laboratoryjnego nr 4 Temat: Badanie własności przełączających diod półprzewodnikowych Cel ćwiczenia. Celem ćwiczenia jest poznanie własności przełączających złącza p - n oraz wybranych

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 13 Temat: Biostymulacja laserowa Istotą biostymulacji laserowej jest napromieniowanie punktów akupunkturowych ciągłym, monochromatycznym

Bardziej szczegółowo

Ćwiczenie Nr 5. Badanie różnych konfiguracji modułów fotowoltaicznych

Ćwiczenie Nr 5. Badanie różnych konfiguracji modułów fotowoltaicznych Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych Laboratorium Fotowoltaiki Ćwiczenie Nr 5 Badanie różnych konfiguracji modułów fotowoltaicznych I. Cel ćwiczenia Celem ćwiczenia jest zapoznanie

Bardziej szczegółowo

Laboratorium Przyrządów Półprzewodnikowych test kompetencji zagadnienia

Laboratorium Przyrządów Półprzewodnikowych test kompetencji zagadnienia Wrocław, 21.03.2017 r. Laboratorium Przyrządów Półprzewodnikowych test kompetencji zagadnienia Podczas testu kompetencji studenci powinni wykazać się znajomością zagadnień określonych w kartach kursów

Bardziej szczegółowo

WOJSKOWA AKADEMIA TECHNICZNA

WOJSKOWA AKADEMIA TECHNICZNA WOJSKOWA AKADEMIA TECHNICZNA INSTYTUT OPTOELEKTRONIKI LABORATORIUM DETEKCJI SYGNAŁÓW OPTYCZNYCH GRUPA:.. Skład podgrupy nr... 1.. 2.. 3.. 4.. 5.. 6.. PROTOKÓŁ DO ĆWICZENIA nr.. Temat ćwiczenia: Pomiary

Bardziej szczegółowo

Ćwiczenie: "Właściwości wybranych elementów układów elektronicznych"

Ćwiczenie: Właściwości wybranych elementów układów elektronicznych Ćwiczenie: "Właściwości wybranych elementów układów elektronicznych" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki.

Bardziej szczegółowo

POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI. Temperaturowa zależność statycznych i dynamicznych charakterystyk złącza p-n

POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI. Temperaturowa zależność statycznych i dynamicznych charakterystyk złącza p-n POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI LABORATORIUM FIZYKI FAZY SKONDENSOWANEJ Ćwiczenie 9 Temperaturowa zależność statycznych i dynamicznych charakterystyk złącza p-n Cel ćwiczenia Celem ćwiczenia jest poznanie

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 7

Instrukcja do ćwiczenia laboratoryjnego nr 7 Instrukcja do ćwiczenia laboratoryjnego nr 7 Temat: Badanie właściwości elektrycznych półprzewodnikowych przyrządów optoelektronicznych.. Cel ćwiczenia: Poznanie budowy, zasady działania, charakterystyk

Bardziej szczegółowo

LVII Olimpiada Fizyczna (2007/2008)

LVII Olimpiada Fizyczna (2007/2008) LVII Olimpiada Fizyczna (2007/2008) Zadanie doświadczalne Masz do dyspozycji: baterię słoneczną, sześć różnych oporników o oporach 100Ω, 500Ω, 1000Ω, 2200Ω, 3000Ω, 4300Ω określonych z dokładnością 5%,

Bardziej szczegółowo

Stanowisko do badania zjawiska tłumienia światła w ośrodkach materialnych

Stanowisko do badania zjawiska tłumienia światła w ośrodkach materialnych Stanowisko do badania zjawiska tłumienia światła w ośrodkach materialnych Na rys. 3.1 przedstawiono widok wykorzystywanego w ćwiczeniu stanowiska pomiarowego do badania zjawiska tłumienia światła w ośrodkach

Bardziej szczegółowo

A6: Wzmacniacze operacyjne w układach nieliniowych (diody)

A6: Wzmacniacze operacyjne w układach nieliniowych (diody) A6: Wzmacniacze operacyjne w układach nieliniowych (diody) Jacek Grela, Radosław Strzałka 17 maja 9 1 Wstęp Poniżej zamieszczamy podstawowe wzory i definicje, których używaliśmy w obliczeniach: 1. Charakterystyka

Bardziej szczegółowo

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 1. Połączenia szeregowe oraz równoległe elementów RC

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 1. Połączenia szeregowe oraz równoległe elementów RC Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie ĆWICZENIE Połączenia szeregowe oraz równoległe elementów C. CEL ĆWICZENIA Celem ćwiczenia jest praktyczno-analityczna ocena wartości

Bardziej szczegółowo

LABORATORIUM INŻYNIERII MATERIAŁOWEJ

LABORATORIUM INŻYNIERII MATERIAŁOWEJ Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIUM INŻYNIERII MATERIAŁOWEJ Podstawy

Bardziej szczegółowo

Źródła zasilania i parametry przebiegu zmiennego

Źródła zasilania i parametry przebiegu zmiennego POLIECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGEYKI INSYU MASZYN I URZĄDZEŃ ENERGEYCZNYCH LABORAORIUM ELEKRYCZNE Źródła zasilania i parametry przebiegu zmiennego (E 1) Opracował: Dr inż. Włodzimierz

Bardziej szczegółowo

Stanowisko do pomiaru fotoprzewodnictwa

Stanowisko do pomiaru fotoprzewodnictwa Stanowisko do pomiaru fotoprzewodnictwa Kraków 2008 Układ pomiarowy. Pomiar czułości widmowej fotodetektorów polega na pomiarze fotoprądu w funkcji długości padającego na detektor promieniowania. Stanowisko

Bardziej szczegółowo

Laboratorium Podstaw Elektrotechniki i Elektroniki

Laboratorium Podstaw Elektrotechniki i Elektroniki Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 2 OBWODY NIELINIOWE PRĄDU

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 3 A

Instrukcja do ćwiczenia laboratoryjnego nr 3 A Instrkcja do ćwiczenia laboratoryjnego nr 3 A Temat: Pomiar rezystancji dynamicznej wybranych diod Cel ćwiczenia. Celem ćwiczenia jest poznanie metod wyznaczania oraz pomiar rezystancji dynamicznej (róŝniczkowej)

Bardziej szczegółowo

Ćwiczenie 1 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH

Ćwiczenie 1 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH LABORAORUM ELEKRONK Ćwiczenie 1 Parametry statyczne diod półprzewodnikowych Cel ćwiczenia Celem ćwiczenia jest poznanie statycznych charakterystyk podstawowych typów diod półprzewodnikowych oraz zapoznanie

Bardziej szczegółowo

PRZEŁĄCZANIE DIOD I TRANZYSTORÓW

PRZEŁĄCZANIE DIOD I TRANZYSTORÓW L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE PRZEŁĄCZANIE DIOD I TRANZYSTORÓW REV. 1.1 1. CEL ĆWICZENIA - obserwacja pracy diod i tranzystorów podczas przełączania, - pomiary charakterystycznych czasów

Bardziej szczegółowo

1. Właściwości materiałów półprzewodnikowych 2. Półprzewodniki samoistne i domieszkowane 3. Złącze pn 4. Polaryzacja złącza

1. Właściwości materiałów półprzewodnikowych 2. Półprzewodniki samoistne i domieszkowane 3. Złącze pn 4. Polaryzacja złącza Elementy półprzewodnikowe i układy scalone 1. Właściwości materiałów półprzewodnikowych 2. Półprzewodniki samoistne i domieszkowane 3. Złącze pn 4. Polaryzacja złącza ELEKTRONKA Jakub Dawidziuk sobota,

Bardziej szczegółowo

POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH LABORATORIUM ELEKTRYCZNE. Obwody nieliniowe.

POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH LABORATORIUM ELEKTRYCZNE. Obwody nieliniowe. POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH LABORATORIUM ELEKTRYCZNE Obwody nieliniowe. (E 3) Opracował: dr inż. Leszek Remiorz Sprawdził: dr

Bardziej szczegółowo

Część 1. Wprowadzenie. Przegląd funkcji, układów i zagadnień

Część 1. Wprowadzenie. Przegląd funkcji, układów i zagadnień Część 1 Wprowadzenie Przegląd funkcji, układów i zagadnień Źródło energii w systemie fotowoltaicznym Ogniwo fotowoltaiczne / słoneczne photovoltaic / solar cell pojedynczy przyrząd półprzewodnikowy U 0,5

Bardziej szczegółowo

BADANIA MODELOWE OGNIW SŁONECZNYCH

BADANIA MODELOWE OGNIW SŁONECZNYCH POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 70 Electrical Engineering 2012 Bartosz CERAN* BADANIA MODELOWE OGNIW SŁONECZNYCH W artykule przedstawiono model matematyczny modułu fotowoltaicznego.

Bardziej szczegółowo

V. DIODA ELEKTROLUMINESCENCYJNA

V. DIODA ELEKTROLUMINESCENCYJNA 1 V. DIODA ELEKTROLUMINESCENCYJNA Cel ćwiczenia : Pomiar charakterystyk elektrycznych diod elektroluminescencyjnych. Zagadnienia: Emisja spontaniczna, złącze p-n, zasada działania diody elektroluminescencyjnej

Bardziej szczegółowo

POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI. Efekt fotowoltaiczny i fotoprzewodnictwo Badanie fotodiody i fotoopornika

POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI. Efekt fotowoltaiczny i fotoprzewodnictwo Badanie fotodiody i fotoopornika POLITECHNIKA ŁÓDZKA INTYTUT FIZYKI LABORATORIUM FIZYKI FAZY KONDENOWANEJ Ćwiczenie 4 Efekt fotowoltaiczny i fotoprzewodnictwo Badanie fotodiody i fotoopornika Cel ćwiczenia Badanie fotodiody 1. W układzie

Bardziej szczegółowo

Laboratorium Elementów Elektronicznych. Sprawozdanie nr Charakterystyki i parametry dyskretnych półprzewodnikowych.

Laboratorium Elementów Elektronicznych. Sprawozdanie nr Charakterystyki i parametry dyskretnych półprzewodnikowych. Laboratorium Elementów Elektronicznych Sprawozdanie nr 7 Tematy ćwiczeń: 13. Charakterystyki i parametry dyskretnych półprzewodnikowych przyrządów optoelektronicznych 14. Charakterystyki i parametry transoptorów

Bardziej szczegółowo

Cel ćwiczenia. Podstawowe informacje. eu exp mkt ] 1 (1) I =I S[

Cel ćwiczenia. Podstawowe informacje. eu exp mkt ] 1 (1) I =I S[ Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z diodami półprzewodnikowymi poprzez pomiar ich charakterystyk prądowonapięciowych oraz jednoczesne doskonalenie techniki pomiarowej. Zakres ćwiczenia

Bardziej szczegółowo

Wyznaczanie krzywej ładowania kondensatora

Wyznaczanie krzywej ładowania kondensatora Ćwiczenie E10 Wyznaczanie krzywej ładowania kondensatora E10.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie przebiegu procesu ładowania kondensatora oraz wyznaczenie stałej czasowej szeregowego układu.

Bardziej szczegółowo

Ćwiczenie nr 43: HALOTRON

Ćwiczenie nr 43: HALOTRON Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Data wykonania Data oddania Zwrot do popr. Rok Grupa Zespół Nr ćwiczenia Data oddania Data zaliczenia OCENA Ćwiczenie nr 43: HALOTRON Cel

Bardziej szczegółowo

Ćwiczenie - 3. Parametry i charakterystyki tranzystorów

Ćwiczenie - 3. Parametry i charakterystyki tranzystorów Spis treści Ćwiczenie - 3 Parametry i charakterystyki tranzystorów 1 Cel ćwiczenia 1 2 Podstawy teoretyczne 2 2.1 Tranzystor bipolarny................................. 2 2.1.1 Charakterystyki statyczne

Bardziej szczegółowo

Badanie diod półprzewodnikowych i elektroluminescencyjnych (LED)

Badanie diod półprzewodnikowych i elektroluminescencyjnych (LED) Temat ćwiczenia: Badanie diod półprzewodnikowych i elektroluminescencyjnych (LED) - - ` Symbol studiów (np. PK10): data wykonania ćwiczenia - godzina wykonania ćwiczenia. Nazwisko i imię*: 1 Pluton/Grupa

Bardziej szczegółowo

Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0..

Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0.. Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Godzina... Polaryzacja światła sprawdzanie prawa Malusa Początkowa wartość kąta 0.. 1 25 49 2 26 50 3 27 51 4 28 52 5 29 53 6 30 54

Bardziej szczegółowo

BADANIE DIOD PÓŁPRZEWODNIKOWYCH

BADANIE DIOD PÓŁPRZEWODNIKOWYCH BAANE O PÓŁPZEWONKOWYCH nstytut izyki Akademia Pomorska w Słupsku Cel i ćwiczenia. Celem ćwiczenia jest: - zapoznanie się z przebiegiem charakterystyk prądowo-napięciowych diod różnych typów, - zapoznanie

Bardziej szczegółowo

Ćwiczenie nr 4 Charakterystyki I= f(u) złącza p-n.

Ćwiczenie nr 4 Charakterystyki I= f(u) złącza p-n. Wydział Elektroniki Mikrosystemów i otoniki Politechniki Wrocławskiej TUDA DZENNE LABORATORUM PRZYRZĄDÓW PÓŁPRZEWODNKOWYCH Ćwiczenie nr 4 Charakterystyki = f(u) złącza p-n.. Zagadnienia do samodzielnego

Bardziej szczegółowo

Elementy i obwody nieliniowe

Elementy i obwody nieliniowe POLTCHNKA ŚLĄSKA WYDZAŁ NŻYNR ŚRODOWSKA NRGTYK NSTYTT MASZYN RZĄDZŃ NRGTYCZNYCH LABORATORM LKTRYCZN lementy i obwody nieliniowe ( 3) Opracował: Dr inż. Włodzimierz OGLWCZ 3 1. Cel ćwiczenia Celem ćwiczenia

Bardziej szczegółowo

E1. OBWODY PRĄDU STAŁEGO WYZNACZANIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁA

E1. OBWODY PRĄDU STAŁEGO WYZNACZANIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁA E1. OBWODY PRĄDU STŁEGO WYZNCZNIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁ tekst opracowała: Bożena Janowska-Dmoch Prądem elektrycznym nazywamy uporządkowany ruch ładunków elektrycznych wywołany

Bardziej szczegółowo

BADANIE TRANZYSTORA BIPOLARNEGO

BADANIE TRANZYSTORA BIPOLARNEGO BADANIE TRANZYSTORA BIPOLARNEGO CEL poznanie charakterystyk tranzystora bipolarnego w układzie WE poznanie wybranych parametrów statycznych tranzystora bipolarnego w układzie WE PRZEBIEG ĆWICZENIA: 1.

Bardziej szczegółowo

LABORATORIUM PODSTAW ELEKTRONIKI DIODA

LABORATORIUM PODSTAW ELEKTRONIKI DIODA ZESPÓŁ LABORATORÓW TELEMATYK TRANSPORT ZAKŁAD TELEKOMNKACJ W TRANSPORCE WYDZAŁ TRANSPORT POLTECHNK WARSZAWSKEJ LABORATORM PODSTAW ELEKTRONK NSTRKCJA DO ĆWCZENA NR 2 DODA DO ŻYTK WEWNĘTRZNEGO WARSZAWA 2016

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra utomatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIK ENS1C300 022 WYBRNE ZSTOSOWNI DIOD PÓŁPRZEWODNIKOWYCH BIŁYSTOK

Bardziej szczegółowo

Systemy i architektura komputerów

Systemy i architektura komputerów Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech Systemy i architektura komputerów Laboratorium nr 4 Temat: Badanie tranzystorów Spis treści Cel ćwiczenia... 3 Wymagania... 3 Przebieg ćwiczenia...

Bardziej szczegółowo

Badanie diod półprzewodnikowych

Badanie diod półprzewodnikowych POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH LABORATORIUM ELEKTRYCZNE Badanie diod półprzewodnikowych (E - 7) www.imiue.polsl.pl/~wwwzmiape Opracował:

Bardziej szczegółowo

Tranzystory bipolarne. Właściwości dynamiczne wzmacniaczy w układzie wspólnego emitera.

Tranzystory bipolarne. Właściwości dynamiczne wzmacniaczy w układzie wspólnego emitera. ĆWICZENIE 5 Tranzystory bipolarne. Właściwości dynamiczne wzmacniaczy w układzie wspólnego emitera. I. Cel ćwiczenia Badanie właściwości dynamicznych wzmacniaczy tranzystorowych pracujących w układzie

Bardziej szczegółowo

PARAMETRY MAŁOSYGNAŁOWE TRANZYSTORÓW BIPOLARNYCH

PARAMETRY MAŁOSYGNAŁOWE TRANZYSTORÓW BIPOLARNYCH L B O R T O R I U M ELEMENTY ELEKTRONICZNE PRMETRY MŁOSYGNŁOWE TRNZYSTORÓW BIPOLRNYCH REV. 1.0 1. CEL ĆWICZENI - celem ćwiczenia jest zapoznanie się z metodami pomiaru i wyznaczania parametrów małosygnałowych

Bardziej szczegółowo

Wyznaczanie podstawowych parametrów ogniwa paliwowego

Wyznaczanie podstawowych parametrów ogniwa paliwowego Wyznaczanie podstawowych parametrów ogniwa paliwowego Spis ćwiczeń 1. Charakterystyka IU (prądowo-napięciowa) dla zacienionego i oświetlonego modułu solarnego 2. Natężenie prądu w funkcji odległości i

Bardziej szczegółowo

spis urządzeń użytych dnia moduł O-01

spis urządzeń użytych dnia moduł O-01 Cel ćwiczenia Celem ćwiczenia jest poznanie wybranych reprezentatywnych elementów optoelektronicznych nadajników światła (fotoemiterów), odbiorników światła (fotodetektorów) i transoptorów oraz zapoznanie

Bardziej szczegółowo

Pomiary elektryczne: Szeregowe i równoległe łączenie żarówek

Pomiary elektryczne: Szeregowe i równoległe łączenie żarówek Pomiary elektryczne: Szeregowe i równoległe łączenie żarówek 1. Dane osobowe Data wykonania ćwiczenia: Nazwa szkoły, klasa: Dane uczniów: A. B. C. D. E. 2. Podstawowe informacje BHP W pracowni większość

Bardziej szczegółowo

Konfiguracja modułu fotowoltaicznego

Konfiguracja modułu fotowoltaicznego LABORATORIUM OPTOELEKTRONIKI Ćwiczenie 8 Konfiguracja modułu fotowoltaicznego Cel ćwiczenia: Zapoznanie studentów z działaniem modułów fotowoltaicznych, oraz różnymi konfiguracjami połączeń tych modułów.

Bardziej szczegółowo

POLITECHNIKA WARSZAWSKA Wydział Elektryczny Instytut Elektroenergetyki Zakład Elektrowni i Gospodarki Elektroenergetycznej

POLITECHNIKA WARSZAWSKA Wydział Elektryczny Instytut Elektroenergetyki Zakład Elektrowni i Gospodarki Elektroenergetycznej POLITECHNIKA WARSZAWSKA Wydział Elektryczny Instytut Elektroenergetyki Zakład Elektrowni i Gospodarki Elektroenergetycznej INSTRUKCJA DO ĆWICZENIA: BADANIE BATERII SŁONECZNYCH W ZALEśNOŚCI OD NATĘśENIA

Bardziej szczegółowo

Ćwiczenie 134. Ogniwo słoneczne

Ćwiczenie 134. Ogniwo słoneczne Ćwiczenie 134 Ogniwo słoneczne Cel ćwiczenia Zapoznanie się z różnymi rodzajami półprzewodnikowych ogniw słonecznych. Wyznaczenie charakterystyki prądowo-napięciowej i sprawności przetwarzania energii

Bardziej szczegółowo

Schemat układu zasilania diod LED pokazano na Rys.1. Na jednej płytce połączone są różne diody LED, które przełącza się przestawiając zworkę.

Schemat układu zasilania diod LED pokazano na Rys.1. Na jednej płytce połączone są różne diody LED, które przełącza się przestawiając zworkę. Ćwiczenie 3. Parametry spektralne detektorów. Cel ćwiczenia. Celem ćwiczenia jest zapoznanie się z podstawowymi parametrami detektorów i ich podstawowych parametrów. Poznanie zależności związanych z oddziaływaniem

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA 2 Kod: ES1C400 026 BADANIE WYBRANYCH DIOD I TRANZYSTORÓW BIAŁYSTOK

Bardziej szczegółowo

Ćwiczenie 1. Parametry statyczne diod LED

Ćwiczenie 1. Parametry statyczne diod LED Ćwiczenie. Parametry statyczne diod LED. Cel ćwiczenia. Celem ćwiczenia jest zapoznanie się z podstawowymi właściwościami i charakterystykami diod LED. Poznanie ograniczeń i sposobu zasilania tego typu

Bardziej szczegółowo

Wyznaczanie parametrów baterii słonecznej

Wyznaczanie parametrów baterii słonecznej Wyznaczanie parametrów baterii słonecznej Obowiązkowa znajomość zagadnień Działanie ogniwa fotowoltaicznego. Złącze p-n. Parametry charakteryzujące ogniwo fotowoltaiczne. Zastosowanie ogniw fotowoltaicznych.

Bardziej szczegółowo

Akademia Górniczo Hutnicza im. Stanisława Staszica w Krakowie Wydział IEiT. Ćwiczenie laboratoryjne Badanie modułu fotowoltaicznego

Akademia Górniczo Hutnicza im. Stanisława Staszica w Krakowie Wydział IEiT. Ćwiczenie laboratoryjne Badanie modułu fotowoltaicznego Akademia Górniczo Hutnicza im. Stanisława Staszica w Krakowie Wydział IEiT Katedra Elektroniki Alternatywne Źródła Energii Ćwiczenie laboratoryjne Badanie modułu fotowoltaicznego Opracowanie instrukcji:

Bardziej szczegółowo

Ćwiczenie 7 PARAMETRY MAŁOSYGNAŁOWE TRANZYSTORÓW BIPOLARNYCH

Ćwiczenie 7 PARAMETRY MAŁOSYGNAŁOWE TRANZYSTORÓW BIPOLARNYCH Ćwiczenie 7 PRMETRY MŁOSYGNŁO TRNZYSTORÓW BIPOLRNYCH Wstęp Celem ćwiczenia jest wyznaczenie niektórych parametrów małosygnałowych hybrydowego i modelu hybryd tranzystora bipolarnego. modelu Konspekt przygotowanie

Bardziej szczegółowo

Badanie diod półprzewodnikowych

Badanie diod półprzewodnikowych POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH LABORATORIUM ELEKTRYCZNE Badanie diod półprzewodnikowych (E 7) Opracował: Dr inż. Włodzimierz OGULEWICZ

Bardziej szczegółowo

LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH

LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH Wydział lektroniki Mikrosystemów i Fotoniki Politecniki Wrocławskiej STUDA DZNN W0 LAORATORUM PRZYRZĄDÓW PÓŁPRZWODNKOWYCH Ćwiczenie nr 3 Carakterystyki statyczne tranzystora bipolarnego. Zagadnienia do

Bardziej szczegółowo

Tester diod i tranzystorów

Tester diod i tranzystorów Tester diod i tranzystorów Model M-0 do Dydaktycznego Systemu Mikroprocesorowego DSM- Instrukcja uŝytkowania Copyright 007 by MicroMade All rights reserved Wszelkie prawa zastrzeŝone MicroMade Gałka i

Bardziej szczegółowo

Pomiary podstawowych wielkości elektrycznych: prawa Ohma i Kirchhoffa. Katedra Architektury Komputerów i Telekomunikacji

Pomiary podstawowych wielkości elektrycznych: prawa Ohma i Kirchhoffa. Katedra Architektury Komputerów i Telekomunikacji Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech Elektronika Laboratorium nr 1 Temat: Pomiary podstawowych wielkości elektrycznych: prawa Ohma i Kirchhoffa Katedra Architektury Komputerów i Telekomunikacji

Bardziej szczegółowo

Ćwiczenie nr 82: Efekt fotoelektryczny

Ćwiczenie nr 82: Efekt fotoelektryczny Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Rok Grupa Zespół Nr ćwiczenia Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 82: Efekt fotoelektryczny

Bardziej szczegółowo

Laboratorum 4 Dioda półprzewodnikowa

Laboratorum 4 Dioda półprzewodnikowa Laboratorum 4 Dioda półprzewodnikowa Marcin Polkowski (251328) 19 kwietnia 2007 r. Spis treści 1 Cel ćwiczenia 2 2 Opis ćwiczenia 2 3 Wykonane pomiary 3 3.1 Dioda krzemowa...............................................

Bardziej szczegółowo

PODSTAWY METROLOGII ĆWICZENIE 7 TEMPERATURA Międzywydziałowa Szkoła Inżynierii Biomedycznej 2009/2010 SEMESTR 3

PODSTAWY METROLOGII ĆWICZENIE 7 TEMPERATURA Międzywydziałowa Szkoła Inżynierii Biomedycznej 2009/2010 SEMESTR 3 PODSTAWY METROLOGII ĆWICZENIE 7 TEMPERATURA Międzywydziałowa Szkoła Inżynierii Biomedycznej 2009/2010 SEMESTR 3 Rozwiązania zadań nie były w żaden sposób konsultowane z żadnym wiarygodnym źródłem informacji!!!

Bardziej szczegółowo

Uniwersytet Pedagogiczny im. Komisji Edukacji Narodowej w Krakowie

Uniwersytet Pedagogiczny im. Komisji Edukacji Narodowej w Krakowie Uniwersytet Pedagogiczny im. Komisji Edukacji Narodowej w Krakowie Laboratorium elektroniki Ćwiczenie nr 4 Temat: PRZYRZĄDY PÓŁPRZEWODNIKOWE TRANZYSTOR BIPOLARNY Rok studiów Grupa Imię i nazwisko Data

Bardziej szczegółowo

Elektronika. Laboratorium nr 2. Liniowe i nieliniowe elementy elektroniczne Zasada superpozycji i twierdzenie Thevenina

Elektronika. Laboratorium nr 2. Liniowe i nieliniowe elementy elektroniczne Zasada superpozycji i twierdzenie Thevenina Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech Elektronika Laboratorium nr 2 emat: Liniowe i nieliniowe elementy elektroniczne Zasada superpozycji i twierdzenie hevenina SPIS REŚCI Spis treści...2

Bardziej szczegółowo

Laboratorium Podstaw Elektrotechniki i Elektroniki

Laboratorium Podstaw Elektrotechniki i Elektroniki Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 3 OBWODY LINIOWE PĄDU SINUSOIDLNEGO

Bardziej szczegółowo

UKŁADY PROSTOWNICZE 0.47 / 5W 0.47 / 5W D2 C / 5W

UKŁADY PROSTOWNICZE 0.47 / 5W 0.47 / 5W D2 C / 5W UKŁADY PROSTOWNICZE. Cel ćwiczenia. Celem ćwiczenia jest zapoznanie się z budową i właściwościami podstawowych układów prostowniczych: prostownika jednopołówkowego, dwupołówkowego z dzielonym uzwojeniem

Bardziej szczegółowo

Prostowniki. 1. Cel ćwiczenia. 2. Budowa układu.

Prostowniki. 1. Cel ćwiczenia. 2. Budowa układu. Prostowniki. Cel ćwiczenia. Celem ćwiczenia jest zapoznanie się z budową i właściwościami podstawowych układów prostowniczych: prostownika jednopołówkowego, dwupołówkowego z dzielonym uzwojeniem transformatora

Bardziej szczegółowo

Ćwiczenie nr 2 Charakterystyki I= f(u) złącza p-n.

Ćwiczenie nr 2 Charakterystyki I= f(u) złącza p-n. Wydział Elektroniki Mikrosystemów i otoniki Opracował zespół: Marek Panek, Waldemar Oleszkiewicz, wona Zborowska-Lindert, Bogdan Paszkiewicz, Małgorzata Kramkowska, Beata Ściana, Zdzisław ynowiec, Bogusław

Bardziej szczegółowo

42. Prąd stały. Prawa, twierdzenia, metody obliczeniowe

42. Prąd stały. Prawa, twierdzenia, metody obliczeniowe Prąd stały. Prawa, twierdzenia, metody obliczeniowe 42. Prąd stały. Prawa, twierdzenia, metody obliczeniowe Celem ćwiczenia jest doświadczalne sprawdzenie praw obowiązujących w obwodach prądu stałego,

Bardziej szczegółowo

UNIWERSYTET SZCZECIŃSKI INSTYTUT FIZYKI ZAKŁAD FIZYKI CIAŁA STAŁEGO. Ćwiczenie laboratoryjne Nr.2. Elektroluminescencja

UNIWERSYTET SZCZECIŃSKI INSTYTUT FIZYKI ZAKŁAD FIZYKI CIAŁA STAŁEGO. Ćwiczenie laboratoryjne Nr.2. Elektroluminescencja UNIWERSYTET SZCZECIŃSKI INSTYTUT FIZYKI ZAKŁAD FIZYKI CIAŁA STAŁEGO Ćwiczenie laboratoryjne Nr.2 Elektroluminescencja SZCZECIN 2002 WSTĘP Mianem elektroluminescencji określamy zjawisko emisji spontanicznej

Bardziej szczegółowo

Sprzęt i architektura komputerów

Sprzęt i architektura komputerów Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech Sprzęt i architektura komputerów Laboratorium Temat:Pomiary podstawowych wielkości elektryczych: prawa Ohma i Kirchhoffa Katedra Architektury

Bardziej szczegółowo

Badanie wzmacniacza operacyjnego

Badanie wzmacniacza operacyjnego Badanie wzmacniacza operacyjnego CEL: Celem ćwiczenia jest poznanie właściwości wzmacniaczy operacyjnych i komparatorów oraz możliwości wykorzystania ich do realizacji bloków funkcjonalnych poprzez dobór

Bardziej szczegółowo

Ćwiczenie nr 9. Pomiar rezystancji metodą porównawczą.

Ćwiczenie nr 9. Pomiar rezystancji metodą porównawczą. Ćwiczenie nr 9 Pomiar rezystancji metodą porównawczą. 1. Cel ćwiczenia Celem ćwiczenia jest praktyczne poznanie różnych metod pomiaru rezystancji, a konkretnie zapoznanie się z metodą porównawczą. 2. Dane

Bardziej szczegółowo