Tranzystory buduje się na bazie trzech warstw półprzewodnikowych w strukturach: PNP lub NPN.

Wielkość: px
Rozpocząć pokaz od strony:

Download "Tranzystory buduje się na bazie trzech warstw półprzewodnikowych w strukturach: PNP lub NPN."

Transkrypt

1 4. PROCESOR. BUDOWA I ZASADA DZIAŁANIA. Mikroprocesor - potocznie nazywany procesorem, często określany skrótem CPU (ang. Central Processing Unit) jest układem cyfrowym o wysokim stopniu integracji, wykonujący operacje matematyczne i logiczne, zamknięty w szczelnej obudowie. Procesor wykonuje operacje cyfrowe przy pomocy dostarczonego ciągu instrukcji. Oprócz przetwarzania informacji, procesor odpowiada również za sterowania pracą pozostałych układów systemu. Biorąc pod uwagę budowę fizyczną procesora, to jest to krzemowa płytka, zawierające miliony tranzystorów, uzyskiwana podczas skomplikowanego procesu produkcyjnego. Podstawowymi elementami budującymi procesor są tranzystory, które umożliwiają blokowanie lub przepływ prądu. Logiczną strukturę procesora reprezentują bramki logiczne, budowane z odpowiednio połączonych tranzystorów. Natomiast połączenia bramek w odpowiednie układy, tworzy kolejne struktury wewnętrznej budowy procesora. Czym jest tak naprawdę tranzystor? Elektronicznym przełącznikiem zbudowanym z dwóch rodzajów półprzewodników: N - (ang. Negative) - ujemny ładunek elektryczny P - (ang. Positive) - dodatni ładunek elektryczny Rozróżnia się dwa rodzaje tranzystorów: Bipolarne - sterowane są za pomocą prądu Unipolarne - tranzystory polowe, sterowane są napięciem Tranzystory buduje się na bazie trzech warstw półprzewodnikowych w strukturach: PNP lub NPN. ELEMENTY BUDOWY PROCESORA Układ zarządzający magistralami BU (ang. Bus Unit) - odpowiada za współpracę procesora z pamięcią (ma trzy niezależne magistrale: adresów, danych i sterowania). Dekoder instrukcji IU - (ang. Instruction Unit) - dekoder odtwarzający rozkazy do wykonania przez procesor, czekające w kolejce. Prefetch - układ mający na celu przyspieszenie pracy procesora poprzez redukcję czasu oczekiwania. Podczas fazy wykonania jednego rozkazu jest już wykonywana faza pobierania następnego rozkazu. Pamięć ROM (ang. Read Only Memory) - pamięć wspomagająca dekoder IU, umożliwiająca dostęp do słownika tłumaczącego przyjmowane kody rozkazowe na sekwencje operacji. Mateusz Pańkowski 1

2 Układ wykonawczy EU (ang. Execution Unit) - układ do którego przekazywane są rozkodowane instrukcje. W skład wchodzą: Jednostka arytmetyczno-logiczna ALU (ang. Arithmetic Logic Unit) - zwana również arytmometrem. Jest uniwersalnym układem cyfrowym, w którym wykonywane są operacje arytmetyczne (dodawanie, odejmowanie, mnożenie oraz dzielenie) i logiczne na dostarczonych do niego danych. Dane pobierane są z pamięci lub rejestrów, a o tym, jaka operacja zostanie wykonana decydują sygnały sterujące. DANA ALU WYNIK DANA SYGNAŁY STERUJĄCE Rys. 1. Schemat jednostki ALU. Układ sterowania CU (ang. Control Unit) - zwany również dekoderem rozkazów, odpowiedzialny jest za dekodowanie dostarczonych mikroprocesorowi instrukcji oraz za sterowanie ALU. Jednostka zmiennoprzecinkowa FPU (ang. Floating Point Unit) - koprocesor, którego zadaniem jest wspomaganie procesora w obliczeniach na liczbach binarnych zmiennoprzecinkowych. We współczesnych konstrukcjach jednostki FPU są zintegrowane z procesorem w jednym układzie. W przeszłości stanowiły one opcjonalny komponent procesora i nie były standardem. Jednostka adresowa AU (ang. Addressing Unit) - jednostka obsługująca operacje m.in. pobierania argumentów rozkazów. Zawiera w sobie: Układ zarządzania pamięcią MMU (ang. Memory Management Unit) - moduł zarządzania realizujący dostęp do pamięci fizycznej żądanej przez CPU Rejestry procesora - są to komórki pamięci o niewielkich rozmiarach (4/8/ /128 bitów) umieszczone wewnątrz procesora i służące do przechowywania tymczasowych wyników obliczeń, adresów lokacji w pamięci RAM itd. Biorąc pod uwagę hierarchię szybkości pamięci, to rejestry stoją na najwyższym jej szczeblu, będąc najszybszym z rodzajów pamięci komputera, a co za tym idzie - najdroższą w produkcji, ale o najmniejszej pojemności. Liczba rejestrów procesora zależy od jego zastosowania i zarazem jest jednym z kryteriów podziału procesorów na klasy RISC i CISC. Procesory do zastosowań domowych mogą mieć tych rejestrów kilkanaście, natomiast zaawansowane procesory do zastosowań np. serwerowych, mogą mieć tych rejestrów kilkaset. Proste mikroprocesory miały tylko jeden rejestr zwany akumulatorem. Możemy wyróżnić m.in.: Rejestr rozkazów IR (ang. Instruction Register) - jednostka, w której przechowywana jest obecnie wykonywana instrukcja. Licznik rozkazów PC (ang. Program Counter) - przechowuje kolejne adresy pamięci z rozkazami. Mateusz Pańkowski 2

3 Akumulator A - (ang. Accumulator) przechowuje wynik wykonywanych operacji. Wskaźnik stosu SP (ang. Stack Pointer) - służy do adresowania pamięci, przechowuje dane w trybie LIFO (ang. Last In First Out), czyli ostatni wchodzi, pierwszy wychodzi. Rejestr flagowy F - przechowuje informacje dotyczące realizacjo wykonywanej operacji. Pamięć cache - pamięć podręczna procesora (ang. CPU cache) jest pamięcią typu SRAM (statyczna) o krótkim czasie dostępu. Przechowuje wyniki najczęściej wykonywanych operacji. Połączenia - wewnętrzne szyny łączące elementy procesora. Podsumowując, schemat blokowy przykładowego procesora wygląda następująco: Adres Kod programu Prefetch AU Dane BU IU ROM MMU Sygnały sterujące Dane ALU CU EU FPU Rys. 2. Schemat blokowy procesora. OBUDOWY PROCESORÓW Procesor jest krzemową płytką o wielkości ok. 1cm 2. Ze względu na to, iż jest on podatny na działanie czynników zewnętrznych, należy umieścić go w powłoce ochronnej. Powłoka ta może być plastikowa, ceramiczna lub metalowa. Obudowa procesora posiada wyprowadzenia (nóżki, piny) mające na celu umożliwienie przepływu informacji w postaci impulsów elektrycznych po zamontowaniu go w gnieździe płyty głównej. Obecne procesory mają kilka różnych typów obudów. Wyróżnia się: PGA (ang. Pin Grid Array) - jest to popularny standard obudów z nóżkami w kształcie symetrycznej siatki. Rys. 3. Wygląd obudowy typu PGA. Powstało kilka odmian standardu PGA: PPGA (ang. Plastic PGA) - obudowa PGA, w której osłona rdzenia wykonana jest z plastikowej powłoki. Mateusz Pańkowski 3

4 CPGA (ang. Ceramic PGA) - obudowa PGA, w której osłona rdzenia wykonana jest z ceramicznej powłoki. FC-PGA (ang. Flip Chip PGA) - rdzeń przeniesiony na górną część obudowy w celu lepszego odprowadzania ciepła i zatopiony w plastikowej osłonie. FC-PGA2 (ang. Flip Chip PGA2) - rdzeń przeniesiony na górną część obudowy w celu lepszego odprowadzania ciepła oraz zatopiony w plastikowej osłonie i ukryty pod metalową blaszką. Rys. 4. Rodzaje obudów PGA. Od lewej: PPGA, CPGA, FC-PGA, FC-PGA2 SECC (ang. Single Edge Contact Cartridge) - dość specyficzny rodzaj obudowy. Powstał tylko dlatego, że nie potrafiono umieścić pamięci cache L2 w strukturze rdzenia procesora (Pentium II i III, Athlon). Procesor przylutowany jest do płytki drukowanej wraz z pamięcią L2, a całość umieszczona w plastikowej obudowie w postaci kartridża. SEPP (ang. Single Edge Processor Package) - obudowa podobna do SECC, ale bez zastosowania plastikowej osłony. Obudowy tej używano do tańszych modeli procesorów (Duron, Celeron). Rys. 5. Obudowy typu (od lewej) SECC i SEPP. LGA (ang. Land Grid Array) - typ obudowy opracowany przez firmę Intel, w którym nóżki zastąpiono specjalnymi pozłacanymi stykami. Obecnie stosowany. Rys. 6. Obudowa typu LGA. BGA (ang. Ball Grid Array) - typ obudowy, w której wyprowadzenia są w postaci kulek ze stopu lutowniczego. Wyprowadzenia te znajdują na znacznej (lub całej) części układu. Pojawiło się dużo problemów z tym typem obudowy. Mateusz Pańkowski 4

5 GNIAZDA PROCESORÓW Każdy procesor musi być zamontowany na płycie głównej w specjalnie do tego przystosowanym złączu. Złącze te nazywane gniazdem procesora pełni rolę interfejsu pomiędzy procesorem a pozostałymi elementami systemu komputerowego umożliwiając jego współpracę z systemem za pośrednictwem odpowiednich magistrali i układów na płycie głównej. Do wymiany informacji pomiędzy pamięcią operacyjną i chipsetem służą procesorowi wyprowadzenia w postaci nóżek lub pinów, które fizycznie muszą zostać połączone z końcówkami magistrali pamięci i danych. Każdy typ obudowy procesora wymaga zastosowania odpowiedniego gniazda. Powstało kilka odmian gniazd, które różnią się od siebie kształtem obudowy i liczbą pinów procesora. Najczęściej stosowane to: Socket - gniazda typu socket przeznaczone są do obudów procesorów typu PGA. Wraz z rozwojem procesorów i idącym za tym zwiększaniem liczby nóżek, w które procesory były wyposażone, trzeba było opracowywać kolejne gniazda. Przykłady gniazd typu socket: Socket 1, 2, 3, 4 - dla procesorów Intel 486. Socket 5, 6, 7, 8 - dla procesorów Intel Pentium oraz AMD K5/K6. Socket dla procesorów Intel Pentium III FC-PGA. Socket 754, 939, dla procesorów AMD Athlon 64, Athlon 64 v2, Opteron. Socket P - dla procesorów Intel Core 2. Socket AM3 - dla procesorów AMD Athlon II, Phenom II. Rys. 6. Gniazda typu socket. Od lewej (góra): Socket 5, Socket 370, Socket 604. Od lewej (dół): Socket 754, Socket 939, Socket AM2. Mateusz Pańkowski 5

6 Slot - typ gniazda opracowany dla procesorów w obudowach typu SECC i SEPP: Slot 1 - dla procesorów Intel Pentium (Celeron) II i III. Slot A - dla procesorów AMD Athlon (Duron) K7. Slot 2 - dla procesorów serwerowych Intel Pentium II, III Xeon. Rys. 7. Gniazda typu (od lewej): Slot 1, Slot A. LGA - specjalny typ gniazda przeznaczony dla procesorów w obudowach typu LGA bez nóżek. Przykłady gniazd typu LGA: LGA dla procesorów Intel Pentium 4, Celeron D, Core 2 Duo, Celeron, Core 2 Quad. Socket F - dla procesorów AMD Opteron. LGA dla procesorów Intel Core i3, i5, i7. LGA 2011/Socket R - dla procesorów Intel Core i7 Rys. 8. Gniazda typu (od lewej, góra): LGA 775, LGA 1156, LGA 2011/Socket R. Na dole: Socket F Mateusz Pańkowski 6

7 Dodatkowo, gniazda typu Socket można ze względu na sposób montażu podzielić na: LIF (ang. Low Insertion Force) - aby zamontować processor należało użyć siły nacisku około 20 kg. Niestety miało to jedną wadę - bardzo łatwo można było uszkodzić układ. Rozwiązanie to nie jest już stosowane. ZIF (ang. Zero Insertion Force) - gniazdo, w którym montaż procesora nie wymaga nacisku. Po wsunięciu nóżek procesora do gniazda, zabezpiecza się procesor przy pomocy specjalnej dźwigni. MAGISTRALE PROCESORA Magistrala (ang. bus) jest zestawem układów i ścieżek łączących jednocześnie kilka komponentów i umożliwiających komunikację między nimi. W zależności od użytej technologii, magistrala może przesyłać informację równolegle lub szeregowo, a w zależności od sposobu kontroli przepływu danych - synchronicznie lub asynchronicznie. Magistrala jest elementem, który sprawia, że system komputerowy staje się całością. Magistrale można scharakteryzować za pomocą dwóch parametrów: szerokość - określa, ile bitów może ona przesłać za jednym razem (w jednym takcie). Jeśli jednocześnie magistrala równoległa przesyła np. 32 bity, to mówi się, że jest ona magistralą (szyną) 32-bitową. szybkość - określa jak szybko dane mogą być przesyłane przez ścieżki magistrali. Szybkość określana jest w hercach (Hz) lub krotnościach tej jednostki (MHz - megaherc, GHz - gigaherc). Do grupy magistral umożliwiających komunikację CPU z pozostałymi komponentami komputera należą: magistrala danych, magistrala adresowa, magistrala pamięci, magistrala sterująca. Magistrala danych (ang. data bus) - umożliwia wymianę danych pomiędzy procesorem a chipsetem płyty głównej. Najważniejsza magistrala w systemie. Obecnie spotyka się w komputerach PC cztery rozwiązania: FSB (ang. Front Side Bus) - najstarsze rozwiązanie, pamiętające jeszcze czasy pierwszych procesorów. Jest częścią architektury DIB opartej o dwie magistrale: FSB i BSB. FSB jest magistralą równoległą pracującą z prędkością płyty głównej i umożliwia przesył danych w trybie half-duplex. Magistrala tego typu łączy procesor z chipsetem. Pośredniczy również w wymianie danych pomiędzy procesorem a pamięcią RAM (kontroler pamięci jest zintegrowany z płytą główną). Hyper Transport - rozwiązanie opracowane przez firmę AMD w 2003 dla wchodzących procesorów Athlon 64 z wbudowanym kontrolerem pamięci. Jest to magistrala szeregowa będąca rozwiązaniem typu punkt-punkt. Wykorzystuje się ją do tworzenia szybkich połączeń między różnymi komponentami. Magistrala HT umożliwia transfer w trybie full-duplex, czyli na jednoczesne wysyłanie i odbieranie danych. Czasem można spotkać się z oznaczeniem tej magistrali jako LDT (ang. Lightning Data Transport) QPI (ang. Quick Path Interconnect) - w związku z ograniczeniami architektury DIB, firma Intel musiała opracować nowe rozwiązania, które byłyby odpowiedzią na Hyper Transport od AMD. Wraz z wprowadzeniem na rynek procesora Intel Core i7, zastąpiono leciwą FSB nową, szeregową magistralą QPI. Magistrala ta cechuje się dużą Mateusz Pańkowski 7

8 wydajnością i małymi opóźnieniami. Dodatkowo mamy full-duplex oraz punkt-punkt. Oparta została na architekturze magistrali PCI Express. Dzięki integracji kontrolera pamięci z procesorem, można było zastąpić przestarzałą FSB szybkim rozwiązaniem szeregowym. QPI pozwala na połączenie procesora z chipsetem płyty głównej, ale jej specyfikacja została tak opracowana, aby można było ją wykorzystać do łączenia także innych komponentów i urządzeń. DMI/FDI - wprowadzając na rynek chipset Z68, firma Intel przebudowała swoją dotychczasową koncepcję budowania układów tego typu. Nowe procesory z serii Intel Core drugiej generacji przejęły kontrolę nad obsługą magistrali PCI-Ex co spowodowało wyeliminowanie stosowania dwóch układów scalonych. W układach z wbudowanym chipsetem graficznym zrezygnowano z magistrali QPI i pozostawiono interfejs DMI o przepustowości 20 Gb/s. Aby można było umożliwić współpracę wbudowanego w procesor chipsetu graficznego i zewnętrznej karty graficznej, dodano magistralę FDI. Magistrala adresowa (ang. address bus) - jeszcze przed pobraniem lub zapisaniem danych, procesor musi poinformować pamięć RAM o tym, z których jej komórek pamięci będzie korzystać. Do tego celu (adresowania pamięci) służy specjalny zestaw ścieżek, czyli magistrala adresowa. Znając szerokość magistrali adresowej, jesteśmy w stanie określić z jaką ilością pamięci może współpracować procesor. Dawne procesory z serii 80xx miały 20-bitową magistralę adresową i mogły obsłużyć tylko do 1 MB pamięci RAM. We współczesnych procesorach szerokość tej magistrali przekracza 32 bity, co pozwala na adresowanie nawet kilkunastu TB pamięci operacyjnej. Magistrala pamięci (ang. memory bus) - łączy procesor z pamięcią operacyjną RAM umożliwiając wymianę danych. Po zaadresowaniu konkretnych komórek następuje proces zapisu lub odczytu danych przez procesor. Procesory ze zintegrowanym kontrolerem pamięci są bezpośrednio połączone z RAM, właśnie przy pomocy tej magistrali. Dzięki temu nie trzeba angażować chipsetu podczas wymiany danych między procesorem a pamięcią operacyjną. Współczesne magistrale umożliwiają transfer nawet do 12 GB/s (pamięć DDR3). Magistrala sterująca (ang. control bus) - jest odpowiedzialna za przesyłanie sygnałów sterujących między mikroprocesorem, pamięcią RAM i pozostałymi urządzeniami I/O. Dzięki niej urządzenia współpracujące z procesorem są informowane o przydzielonych im zadaniach. ZASADA DZIAŁANIA PROCESORA Procesor współpracuje z pamięcią operacyjną (cache) przechowującą dane (argumenty) oraz sekwencyjne ciągi instrukcji zwane programem. Każda komórka pamięci ma swój adres. Wymiana danych pomiędzy procesorem a pamięcią odbywa się przy pomocy magistrali pamięci, natomiast adresowanie - za pomocą magistrali adresowej. Procesor pobiera z pamięci operacyjnej dane wskazane przez licznik rozkazów PC i umieszcza je w rejestrze rozkazów IR. Układ sterujący CU dekoduje rozkaz oraz ustala argumenty i rodzaj operacji - na tej podstawie dane przesyłane są z rejestru do jednostki ALU. Po przetworzeniu danych przez ALU, wyniki umieszczane są w rejestrze A lub trafiają do pamięci operacyjnej. Cała procedura odbywa się cyklicznie. Mateusz Pańkowski 8

9 Aby umożliwić urządzeniom peryferyjnym korzystanie z mocy obliczeniowej procesora, opracowano mechanizm przerwań (ang. interrupt). Jeśli urządzenie I/O zgłosi przerwanie, procesor przerywa bieżące operacje, zapisuje zawartości rejestrów na stosie (ang. stack) i przystępuje do wykonania kodu związanego z obsługą urządzenia. Po zakończeniu obsługi urządzenia, procesor przywraca zawartość rejestrów ze stosu i kontynuuje wykonywanie wcześniej przerwanych operacji. Magistrale wejścia-wyjścia (I/O) połączone są z kontrolerem przerwań przy pomocy kanałów IRQ (ang. Interrupt Request Channel), a kontroler połączony jest bezpośrednio z procesorem. ARCHITEKTURA PROCESORA Pojęcie architektury procesora odnosi się do wewnętrznej budowy oraz sposobu komunikacji mikroprocesora z pamięcią oraz urządzeniami I/O. W zależności od sposobu przechowywania danych i rozkazów przez procesor, wyróżnia się: architekturę Princeton - dane i programy przechowywane są w tym samym bloku pamięci. architekturę harwardzką - rozkazy i dane przechowywane są w oddzielnych pamięciach. architekturę mieszaną - połączenie dwóch architektur (Princeton i harwardzkiej). Rozdzielono pamięci rozkazów i danych, jednak wykorzystują one wspólne magistrale. Obecnie stosuje się rozwiązanie harwardzkie, co umożliwia wykonywanie jednocześnie większej liczby operacji. Inny podział architektury wynika ze złożoności wykonywanych instrukcji: CISC - komputer z pełną listą instrukcji, czyli bogaty zestaw instrukcji o dużych możliwościach. RISC - komputer o zredukowanej liczbie instrukcji, czyli prostszy i mniejszy zestaw instrukcji. Procesory RISC mają mniejszy i prostszy zestaw instrukcji co pozwala na wydajniejszą pracę. Współczesne procesory oparte są jednak o architekturę CISC, jednak zestawy instrukcji są porozbijane na mikrorozkazy przez blok wykonawczy zgodny z architekturą RISC. WYDAJNOŚĆ PROCESORA Wydajności procesora nie da opisać się za pomocą jednego parametru. Wydajność procesora jest bardzo często mylona przez użytkowników z jego prędkością. Ogólnie, na wydajność procesora wpływa kilka czynników: wewnętrzna architektura procesora - szerokość magistrali, rejestrów i jednostek ALU oraz sposób współpracy procesora z RAM-em i urządzeniami I/O. Budowa wielordzeniowa w najnowszych procesorach i sposób rozdzielania zadań pomiędzy rdzenie. szybkość pracy zegara - procesor wykonujący pracę, sterowany jest sygnałem zegarowym. Im wyższa jest częstotliwość (MHz, GHz) tym szybciej procesor będzie wykonywał operacje. pamięć cache - nowoczesne procesory mają po kilka MB pamięci cache (pamięć SRAM) poziomów L1, L2 i L3. Większa ilość cache u pozwala na wydajniejszą i szybszą prace procesora bez modyfikowania jego wewnętrznej struktury. Mateusz Pańkowski 9

10 dodatkowe funkcje - procesory wyposażone są w dodatkowe funkcje, których zadaniem jest zwiększenie możliwości CPU. Przykładem może być zestaw instrukcji MMX lub 3DNow. W Internecie dostępne są programy testujące, które pozwalają na określenie wydajności procesora (lub całego zestawu komputerowego). Jednak należy pamiętać o tym, żeby stosować kilka różnych tzw. benchmarków, aby wyniki były jak najbardziej rzetelne. Przykładowe parametry procesora: Parametr Wartość Nazwa Intel Core i7-3770t Liczba rdzeni 4 Szybkość zegara (taktowanie) Mnożnik Magistrala QPI Zestaw instrukcji Pamięć cache Obsługiwana pamięć (max) 2500 MHz x25 5 GT/s 64 bit L1: 4 x 32 KB (instrukcje) L1: 4 x 32 KB (dane) L2: 4 x 256 KB L3: 8 MB 32 GB Typ gniazda LGA 1155 Typ obudowy Technologia wykonania Pobór mocy Wbudowana karta graficzna LGA mikrona 45 W TAK PAMIĘĆ CACHE i DODATKOWE FUNKCJE PROCESORA Procesor współpracuje z pamięcią RAM znajdującą się na płycie głównej. Pamięć ta jest wolniejsza od rdzenia procesora i żeby uniknąć wolniejszych taktów procesora, podczas których jednostka obliczeniowa czeka na dane z pamięci, umieszcza się wewnątrz rdzenia CPU szybką pamięć podręczną - cache. Pamięć ta zbudowana jest na bazie pamięci typu SRAM pracującej z pełną prędkością rdzenia CPU. Odpowiedni algorytm pobiera dane z RAM i kopiuje je do cache. W momencie zapotrzebowania na te dane przez CPU, zostają one natychmiast przesłane z cache u zamiast sciągania ich z pamięci RAM. Obecne procesory mogą mieć kilka poziomów pamięci podręcznej: Level 1 (L1, poziom pierwszy) - kilkadziesiąt KB pamięci SRAM. Pamięć podręczną poziomu L1 mają wszystkie procesory od czasów 486. Level 2 (L2, poziom drugi) - montowana początkowo na płycie głównej ze względu na ograniczenia technologiczne. Później montowana na specjalnych płytkach z procesorem (SEPP, SECC). W końcu udało zintegrować cache L2 z rdzenien. Dzięki temu wymiana danych wykonywana jest z pełną prędkością rdzenia. Mateusz Pańkowski 10

11 Level 3 (L3, poziom trzeci) - montowany najczęściej w procesorach do serwerów i w tych najlepszych (najwydajniejszych) procesorach do stacji roboczych, komputerów PC. Przykładem są procesory Intel Core i7, AMD FX, Itanium. Umieszczony na płycie głównej lub w rdzeniu procesora, zwiększa wydajność i trafność pobierania danych z pamięci RAM. Im większy rozmiar pamięci cache, tym szybsza praca procesora podczas odczytu danych z RAM. Jeśli jest dużo pamięci podręcznej, procesor może komunikować się praktycznie tylko z nią bez potrzeby sięgania do RAM-u. Dodatkowe poziomy polepszają trafność pobrania danych z pamięci operacyjnej. Poza pamięcią podręczną cache, procesory do komputerów klasy PC wyposażone są w różne dodatkowe funkcje mające na celu poprawę wydajności i zwiększające ich możliwości. Najważniejsze z nich to: MMX - dodatkowe funkcje opracowane przez Intel mające na celu wspomaganie procesor w operacjach takich jak rendering grafiki 3D, kompresja i dekompresja MPEG itp. SSE, SSE2-4 - kolejne operacje działające podobnie jak MMX. Również do polepszenia przetwarzania grafiki 3D, dźwięku i obrazu. 3DNow, 3DNow! Professional - odpowiedź AMD na intelowskie SSE. Analogiczna technologia. Hyper-Threading - hiperwątkowość, HT. Umożliwia wykonywanie przez jeden rdzeń dwóch niezależnych strumieni kodów programów (wątków). Procesory jednordzeniowe obsługujące HT, wykrywane są przez systemy operacyjne jako dwurdzeniowe. Dynamic Execution - zapewnia wykonywanie większej liczby instrukcji w jednym cyklu zegara. AMD PowerNow! - technologia umożliwiająca włączanie i wyłączanie elementów procesorów AMD w celu oszczędzania energii. Intel Turbo Boost - umożliwia automatyczną regulację częstotliwości procesora w zależności od obciążenia. Zastosowano po raz pierwszy w procesorach Core i5 oraz i7. ODPROWADZANIE CIEPŁA (CHŁODZENIE PROCESORA) Do prawidłowej i stabilnej pracy, procesor potrzebuje odpowiedniej temperatury. Aby ją utrzymać stosuje się specjalne elementy chłodzące lub ułatwiające odprowadzanie ciepła. Obecne procesory zbudowane są na bazie milionów tranzystorów nagrzewających się podczas pracy. Przekłada się to na wzrost temperatury całego rdzenia. Najpopularniejszą metodą obniżenia temperatury pracy procesora jest zastosowanie tzw. radiatora, czyli metalowego elementu z aluminium lub miedzi, mającego na celu szybsze odprowadzanie ciepła na zewnątrz. Aby zwiększyć wydajność takiego radiatora, wyposaża się je dodatkowo w wentylatory. Mamy dwa typy radiatorów: pasywne - mają mniejszą wydajność, ale są większe z uwagi na konieczność zastosowania ich na dużych powierzchniach wypromieniowujących ciepło. Radiatory tego typu często stanowią element tzw. komina termicznego. Polega to na tym, że elementy takie jak procesor, pamięć i chipset ulokowane są w jednym ciągu i Mateusz Pańkowski 11

12 chłodzone są dużym wolnoobrotowym wentylatorem zamontowanym na obudowie komputera. Zaletą takich układów jest (pasywnych) jest mniejsza emisja hałasu lub jego kompletny brak. Rys. 9. Radiator typu pasywnego. aktywne - połączenie tradycyjnego metalowego radiatora z wentylatorem, którego zadaniem jest chłodzenie ożebrowania i zwiększanie tym samym wydajności chłodzenia. Zastosowanie wentylatora znacznie poprawia odprowadzanie ciepła, jednak skutkuje zwiększeniem poziomu hałasu. Rys. 10. Radiator typu aktywnego (z dołączonym wentylatorem). Oba typy chłodzenia (odprowadzania ciepła) są najpowszechniej stosowanymi. Dodatkowo do radiatorów stosuje tzw. pasty (termo-)przewodzące poprawiające przewodnictwo cieplne pomiędzy procesorem a radiatorem. Zadaniem pasty jest zniwelowanie niedoskonałości powierzchniowych radiatora i procesora poprzez ich wypełnienie i dzięki temu przylegają one do siebie równomiernie. Rys. 11. Przykłady past termoprzewodzących w tubkach. Mateusz Pańkowski 12

13 Istnieją jeszcze inne metody chłodzenia procesora mające główne zastosowanie przy overclockingu (podkręcaniu zegara): heat pipe (rurki cieplne) - układ miedzianych lub aluminiowych rurek wypełnionych specjalną cieczą. Pod wpływem zmiany temperatury ciecz paruje, przemieszcza się do zimnego fragmentu rurki i ponownie skrapla spływając do cieplejszego fragmentu rurki. Układ może być wspomagany wentylatorem na radiatorze. chłodzenie wodne - podobne do sposobu chłodzenia w silniku spalinowym. Układ tworzony jest przez pompkę wodną, pojemnik na płyn, wymiennik ciepła, zestaw rurek i złączek. Przepływająca woda odbiera ciepło z rdzenia CPU (może również z chipsetu, układu graficznego itp.) i transportowana jest do zbiornika gdzie zostaje schłodzona i ponownie pobrana do obiegu chłodzącego. ogniwo Peltiera - element półprzewodnikowy zbudowany na bazie dwóch płytek ceramicznych połączonych półprzewodnikami typu p i n. Po podłączeniu napięcia złącza p i n pochłaniają ciepło z otoczenia i powodują, że górna płytka ceramiczna znacznie się schładza. Ogniwo Peltiera często stosowane jest przez overclockerów. Wadą jest szronienie i możliwość pomylenia strony ciepłej z zimną. Rys. 12. Od lewej: Heat Pipe, chłodzenie wodne, ogniwa peltiera. Mateusz Pańkowski 13

Architektura mikroprocesora DSI I

Architektura mikroprocesora DSI I Architektura mikroprocesora DSI I Mikroprocesor (CPU - Central Processing Unit) to centralna jednostka obliczeniowa każdego komputera. To właśnie on zajmuje się wykonywaniem uruchamianych programów i przetwarzaniem

Bardziej szczegółowo

Procesor (ang. processor), także CPU (ang. Central Processing Unit) urządzenie cyfrowe sekwencyjne, które pobiera dane z pamięci, interpretuje je i

Procesor (ang. processor), także CPU (ang. Central Processing Unit) urządzenie cyfrowe sekwencyjne, które pobiera dane z pamięci, interpretuje je i Procesor (ang. processor), także CPU (ang. Central Processing Unit) urządzenie cyfrowe sekwencyjne, które pobiera dane z pamięci, interpretuje je i wykonuje jako rozkazy. Wykonuje on ciąg prostych operacji

Bardziej szczegółowo

13.Dodatkowe funkcje charakteryzujące mikroprocesory z rozszerzeniem SSE: SSE2 SSE3 SSE4 ( HD Boost )

13.Dodatkowe funkcje charakteryzujące mikroprocesory z rozszerzeniem SSE: SSE2 SSE3 SSE4 ( HD Boost ) 1. Zdefiniuj pojęcie mikroprocesora. Mikroprocesor w skrócie CPU(Central Processing Unit) centralna jednostka obliczeniowa. Jest to pojedynczy układ scalony odpowiedzialny za wykonywanie większości obliczeń

Bardziej szczegółowo

Budowa komputera. Magistrala. Procesor Pamięć Układy I/O

Budowa komputera. Magistrala. Procesor Pamięć Układy I/O Budowa komputera Magistrala Procesor Pamięć Układy I/O 1 Procesor to CPU (Central Processing Unit) centralny układ elektroniczny realizujący przetwarzanie informacji Zmiana stanu tranzystorów wewnątrz

Bardziej szczegółowo

Płyty główne rodzaje. 1. Płyta główna w formacie AT

Płyty główne rodzaje. 1. Płyta główna w formacie AT Płyty główne rodzaje 1. Płyta główna w formacie AT Jest formatem płyty głównej typu serwerowego będącej następstwem płyty XT o 8-bitowej architekturze. Została stworzona w celu obsługi 16-bitowej architektury

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Architektura komputerów Wykład 12 Jan Kazimirski 1 Magistrale systemowe 2 Magistrale Magistrala medium łączące dwa lub więcej urządzeń Sygnał przesyłany magistralą może być odbierany przez wiele urządzeń

Bardziej szczegółowo

PODZESPOŁY KOMPUTERA PC. Autor: Maciej Maciąg

PODZESPOŁY KOMPUTERA PC. Autor: Maciej Maciąg PODZESPOŁY KOMPUTERA PC Autor: Maciej Maciąg Spis treści 1. Płyta główna 4. Dysk twardy 1.1. Formaty płyt głównych 4.1. Interfejsy dysków twardych 1.2. Chipset 4.2. Macierze RAID 1.3. BIOS 2. Mikroprocesor

Bardziej szczegółowo

8. MAGISTRALE I GNIAZDA ROZSZERZEŃ. INTERFEJSY ZEWNĘTRZNE.

8. MAGISTRALE I GNIAZDA ROZSZERZEŃ. INTERFEJSY ZEWNĘTRZNE. 8. MAGISTRALE I GNIAZDA ROZSZERZEŃ. INTERFEJSY ZEWNĘTRZNE. Magistrala (ang. bus) jest ścieżką łączącą ze sobą różne komponenty w celu wymiany informacji/danych pomiędzy nimi. Inaczej mówiąc jest to zespół

Bardziej szczegółowo

4.2. Współczesne generacje procesorów

4.2. Współczesne generacje procesorów 4.2. Współczesne generacje procesorów 4.2.1. Materiał nauczania Procesor (ang. processor) sekwencyjne urządzenie cyfrowe potrafiące pobierać dane z pamięci, interpretować je i wykonywać jako rozkazy. Wykonuje

Bardziej szczegółowo

Rodzaje gniazd, identyfikacja i układy chłodzenia procesorów

Rodzaje gniazd, identyfikacja i układy chłodzenia procesorów Rodzaje gniazd, identyfikacja i układy chłodzenia procesorów Gniazda procesorów Procesory na płycie głównej montowane są w tzw. gniazdach. Rodzaj gniazda zależy od generacji procesora, a także od producenta

Bardziej szczegółowo

Architektura systemów komputerowych. dr Artur Bartoszewski

Architektura systemów komputerowych. dr Artur Bartoszewski Architektura systemów komputerowych dr Artur Bartoszewski Rozwój płyt głównych - część 2 Magistrale kart rozszerzeń Rozwój magistral komputera PC Płyta główna Czas życia poszczególnych magistral Pentium

Bardziej szczegółowo

Budowa pamięci RAM Parametry: tcl, trcd, trp, tras, tcr występują w specyfikacjach poszczególnych pamięci DRAM. Czym mniejsze są wartości tych

Budowa pamięci RAM Parametry: tcl, trcd, trp, tras, tcr występują w specyfikacjach poszczególnych pamięci DRAM. Czym mniejsze są wartości tych Budowa pamięci RAM Parametry: tcl, trcd, trp, tras, tcr występują w specyfikacjach poszczególnych pamięci DRAM. Czym mniejsze są wartości tych parametrów, tym szybszy dostęp do komórek, co przekłada się

Bardziej szczegółowo

Z parametrów procesora zamieszczonego na zdjęciu powyżej wynika, że jest on taktowany z częstotliwością a) 1,86 GHz b) 540 MHz c) 533 MHz d) 1 GHz

Z parametrów procesora zamieszczonego na zdjęciu powyżej wynika, że jest on taktowany z częstotliwością a) 1,86 GHz b) 540 MHz c) 533 MHz d) 1 GHz Test z przedmiotu Urządzenia techniki komputerowej semestr 1 Zadanie 1 Liczba 200 zastosowana w symbolu opisującym pamięć DDR-200 oznacza a) Efektywną częstotliwość, z jaka pamięć może pracować b) Przepustowość

Bardziej szczegółowo

Architektura komputera wg Neumana

Architektura komputera wg Neumana PROCESOR Architektura komputera wg Neumana Uproszczony schemat procesora Podstawowe elementy procesora Blok rejestrów Blok ALU Dekoder kodu rozkazowego Układ sterujący Magistrala procesora Cykl pracy procesora

Bardziej szczegółowo

Technologie informacyjne - wykład 2 -

Technologie informacyjne - wykład 2 - Zakład Fizyki Budowli i Komputerowych Metod Projektowania Instytut Budownictwa Wydział Budownictwa Lądowego i Wodnego Politechnika Wrocławska Technologie informacyjne - wykład 2 - Prowadzący: dr inż. Łukasz

Bardziej szczegółowo

Chipset i magistrala Chipset Mostek północny (ang. Northbridge) Mostek południowy (ang. Southbridge) -

Chipset i magistrala Chipset Mostek północny (ang. Northbridge) Mostek południowy (ang. Southbridge) - Chipset i magistrala Chipset - Układ ten organizuje przepływ informacji pomiędzy poszczególnymi podzespołami jednostki centralnej. Idea chipsetu narodziła się jako potrzeba zintegrowania w jednym układzie

Bardziej szczegółowo

Procesor budowa, schemat, tryby pracy

Procesor budowa, schemat, tryby pracy 1 Procesor budowa, schemat, tryby pracy Procesor (ang. processor), także CPU (ang. Central Processing Unit) to główny element komputera, urządzenie cyfrowe sekwencyjne, którego zadaniem jest wykonywanie

Bardziej szczegółowo

Płyta główna. podtrzymania zegara.

Płyta główna. podtrzymania zegara. Płyta główna Płyta główna (ang. motherboard, mainboard) obwód drukowany urządzenia elektronicznego, na którym montuje się najważniejsze elementy, umożliwiając komunikację wszystkim pozostałym komponentom

Bardziej szczegółowo

Wybrane bloki i magistrale komputerów osobistych (PC) Opracował: Grzegorz Cygan 2010 r. CEZ Stalowa Wola

Wybrane bloki i magistrale komputerów osobistych (PC) Opracował: Grzegorz Cygan 2010 r. CEZ Stalowa Wola Wybrane bloki i magistrale komputerów osobistych (PC) Opracował: Grzegorz Cygan 2010 r. CEZ Stalowa Wola Ogólny schemat komputera Jak widać wszystkie bloki (CPU, RAM oraz I/O) dołączone są do wspólnych

Bardziej szczegółowo

Jednostka centralna. Miejsca na napędy 5,25 :CD-ROM, DVD. Miejsca na napędy 3,5 : stacja dyskietek

Jednostka centralna. Miejsca na napędy 5,25 :CD-ROM, DVD. Miejsca na napędy 3,5 : stacja dyskietek Ćwiczenia 1 Budowa komputera PC Komputer osobisty (Personal Komputer PC) komputer (stacjonarny lub przenośny) przeznaczony dla pojedynczego użytkownika do użytku domowego lub biurowego. W skład podstawowego

Bardziej szczegółowo

LEKCJA. TEMAT: Pamięć operacyjna.

LEKCJA. TEMAT: Pamięć operacyjna. TEMAT: Pamięć operacyjna. LEKCJA 1. Wymagania dla ucznia: zna pojęcia: pamięci półprzewodnikowej, pojemności, czas dostępu, transfer, ROM, RAM; zna podział pamięci RAM i ROM; zna parametry pamięci (oznaczone

Bardziej szczegółowo

W sklepie komputerowym sprzedawca zachwala klientowi swój najnowszy towar: -Ten komputer wykona za pana połowę pracy! - W takim razie biorę dwa.

W sklepie komputerowym sprzedawca zachwala klientowi swój najnowszy towar: -Ten komputer wykona za pana połowę pracy! - W takim razie biorę dwa. W sklepie komputerowym sprzedawca zachwala klientowi swój najnowszy towar: -Ten komputer wykona za pana połowę pracy! - W takim razie biorę dwa. Rys. wg Z. Postawa, UJ 1 pamięć ROM system operacyjny procesor

Bardziej szczegółowo

KOMPUTER. Zestawy komputerowe podstawowe wiadomości

KOMPUTER. Zestawy komputerowe podstawowe wiadomości KOMPUTER Zestawy komputerowe podstawowe wiadomości Budowa zestawu komputerowego Monitor Jednostka centralna Klawiatura Mysz Urządzenia peryferyjne Monitor Monitor wchodzi w skład zestawu komputerowego

Bardziej szczegółowo

BUDOWA KOMPUTERA. Monika Słomian

BUDOWA KOMPUTERA. Monika Słomian BUDOWA KOMPUTERA Monika Słomian Kryteria oceniania O znam podstawowe elementy zestawu komputerowego O wiem, jakie elementy znajdują się wewnątrz komputera i jaka jest ich funkcja O potrafię wymienić przykładowe

Bardziej szczegółowo

Sprawdzian test egzaminacyjny 2 GRUPA I

Sprawdzian test egzaminacyjny 2 GRUPA I ... nazwisko i imię ucznia Sprawdzian test egzaminacyjny 2 GRUPA I 1. Na rys. 1 procesor oznaczony jest numerem A. 2 B. 3 C. 5 D. 8 2. Na rys. 1 karta rozszerzeń oznaczona jest numerem A. 1 B. 4 C. 6 D.

Bardziej szczegółowo

Procesor przetwarza informacje, wykonuje elementarne operacje zwane instrukcjami bądź (rozkazami). Ciąg takich instrukcji realizujących konkretne

Procesor przetwarza informacje, wykonuje elementarne operacje zwane instrukcjami bądź (rozkazami). Ciąg takich instrukcji realizujących konkretne Procesor przetwarza informacje, wykonuje elementarne operacje zwane instrukcjami bądź (rozkazami). Ciąg takich instrukcji realizujących konkretne zadanie nazywamy programem. Jednym z elementów systemu

Bardziej szczegółowo

Zasada działania pamięci RAM Pamięć operacyjna (robocza) komputera - zwana pamięcią RAM (ang. Random Access Memory - pamięć o swobodnym dostępie)

Zasada działania pamięci RAM Pamięć operacyjna (robocza) komputera - zwana pamięcią RAM (ang. Random Access Memory - pamięć o swobodnym dostępie) Zasada działania pamięci RAM Pamięć operacyjna (robocza) komputera - zwana pamięcią RAM (ang. Random Access Memory - pamięć o swobodnym dostępie) służy do przechowywania danych aktualnie przetwarzanych

Bardziej szczegółowo

Budowa komputera: dr inż. Jarosław Forenc. Zestaw komputerowy Jednostka centralna. płyta główna (przykłady, standardy)

Budowa komputera: dr inż. Jarosław Forenc. Zestaw komputerowy Jednostka centralna. płyta główna (przykłady, standardy) Rok akademicki 2010/2011, Wykład nr 7 2/56 Plan wykładu nr 7 Informatyka 1 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia niestacjonarne I stopnia Rok akademicki 2010/2011

Bardziej szczegółowo

Podzespoły Systemu Komputerowego:

Podzespoły Systemu Komputerowego: Podzespoły Systemu Komputerowego: 1) Płyta główna- jest jednym z najważniejszych elementów komputera. To na niej znajduje się gniazdo procesora, układy sterujące, sloty i porty. Bezpośrednio na płycie

Bardziej szczegółowo

T2: Budowa komputera PC. dr inż. Stanisław Wszelak

T2: Budowa komputera PC. dr inż. Stanisław Wszelak T2: Budowa komputera PC dr inż. Stanisław Wszelak Ogólny schemat płyty Interfejsy wejścia-wyjścia PS2 COM AGP PCI PCI ex USB PS/2 port komunikacyjny opracowany przez firmę IBM. Jest on odmianą portu szeregowego

Bardziej szczegółowo

Zaleta duża pojemność, niska cena

Zaleta duża pojemność, niska cena Pamięć operacyjna (DRAM) jest przestrzenią roboczą mikroprocesora przechowującą otwarte pliki systemu operacyjnego, uruchomione programy oraz efekty ich działania. Wymianą informacji pomiędzy mikroprocesorem

Bardziej szczegółowo

II seria ćwiczeń NiEUKT

II seria ćwiczeń NiEUKT 1. WPROWADZENIE II seria ćwiczeń NiEUKT Poradnik będzie Cię wspomagać w przyswajaniu nowej wiedzy i kształtowaniu umiejętności z zakresu architektury i działania zestawu komputerowego, doboru i konfiguracji

Bardziej szczegółowo

Schemat logicznej budowy komputera

Schemat logicznej budowy komputera Schemat logicznej budowy komputera Ogólnie komputer składa się z procesora, pamięci wewnętrznej oraz podłączonych za pomocą magistrali urządzeń peryferyjnych, czyli zewnętrznych urządzeń wejścia i wyjścia.

Bardziej szczegółowo

Jednostka centralna. dr hab. inż. Krzysztof Patan, prof. PWSZ

Jednostka centralna. dr hab. inż. Krzysztof Patan, prof. PWSZ Jednostka centralna dr hab. inż. Krzysztof Patan, prof. PWSZ Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa w Głogowie k.patan@issi.uz.zgora.pl Architektura i organizacja komputerów Architektura

Bardziej szczegółowo

Urządzenia zewnętrzne

Urządzenia zewnętrzne Urządzenia zewnętrzne SZYNA ADRESOWA SZYNA DANYCH SZYNA STEROWANIA ZEGAR PROCESOR PAMIĘC UKŁADY WE/WY Centralna jednostka przetw arzająca (CPU) DANE PROGRAMY WYNIKI... URZ. ZEWN. MO NITORY, DRUKARKI, CZYTNIKI,...

Bardziej szczegółowo

DIAGNOSTYKA I NAPRAWA SPRZĘTU KOMPUTEROWEGO PŁYTA GŁOWNA

DIAGNOSTYKA I NAPRAWA SPRZĘTU KOMPUTEROWEGO PŁYTA GŁOWNA DIAGNOSTYKA I NAPRAWA SPRZĘTU KOMPUTEROWEGO PŁYTA GŁOWNA Rodzaje płyt głownych opis ATX -w komputerach składakach wyższej klasy instaluje się zwykle płyty główne w formacie ATX. Mają one rozmiar 305 x

Bardziej szczegółowo

Pamięć operacyjna. Moduł pamięci SDR SDRAM o pojemności 256MB

Pamięć operacyjna. Moduł pamięci SDR SDRAM o pojemności 256MB Mikroprocesor do prawidłowego funkcjonowania potrzebuje pamięci operacyjnej, która staje się jego przestrzenią roboczą. Potocznie pamięć operacyjną określa się skrótem RAM (ang. Random Access Memory pamięć

Bardziej szczegółowo

Architektura von Neumanna. Jak zbudowany jest współczesny komputer? Schemat architektury typowego PC-ta. Architektura PC wersja techniczna

Architektura von Neumanna. Jak zbudowany jest współczesny komputer? Schemat architektury typowego PC-ta. Architektura PC wersja techniczna Architektura von Neumanna CPU pamięć wejście wyjście Jak zbudowany jest współczesny komputer? magistrala systemowa CPU jednostka centralna (procesor) pamięć obszar przechowywania programu i danych wejście

Bardziej szczegółowo

Pamięć wirtualna. Przygotował: Ryszard Kijaka. Wykład 4

Pamięć wirtualna. Przygotował: Ryszard Kijaka. Wykład 4 Pamięć wirtualna Przygotował: Ryszard Kijaka Wykład 4 Wstęp główny podział to: PM- do pamięci masowych należą wszelkiego rodzaju pamięci na nośnikach magnetycznych, takie jak dyski twarde i elastyczne,

Bardziej szczegółowo

Wydajność obliczeń a architektura procesorów. Krzysztof Banaś Obliczenia Wysokiej Wydajności 1

Wydajność obliczeń a architektura procesorów. Krzysztof Banaś Obliczenia Wysokiej Wydajności 1 Wydajność obliczeń a architektura procesorów Krzysztof Banaś Obliczenia Wysokiej Wydajności 1 Wydajność komputerów Modele wydajności-> szacowanie czasu wykonania zadania Wydajność szybkość realizacji wyznaczonych

Bardziej szczegółowo

Test wiedzy z UTK. Dział 1 Budowa i obsługa komputera

Test wiedzy z UTK. Dział 1 Budowa i obsługa komputera Test wiedzy z UTK Dział 1 Budowa i obsługa komputera Pytanie 1 Który z elementów nie jest niezbędny do pracy z komputerem? A. Monitor B. Klawiatura C. Jednostka centralna D. Drukarka Uzasadnienie : Jednostka

Bardziej szczegółowo

Plan wykładu. 1. Rodzaje chłodzenia 2. Chłodzenie aktywne 3. Chłodzenie pasywne 4. Źródła hałasu 5. Metody zmniejszania hałasu

Plan wykładu. 1. Rodzaje chłodzenia 2. Chłodzenie aktywne 3. Chłodzenie pasywne 4. Źródła hałasu 5. Metody zmniejszania hałasu Plan wykładu 1. Rodzaje chłodzenia 2. Chłodzenie aktywne 3. Chłodzenie pasywne 4. Źródła hałasu 5. Metody zmniejszania hałasu Rodzaje chłodzenia Współczesne komputery wydzielają duże ilości ciepła, dlatego

Bardziej szczegółowo

Numer ogłoszenia: 162458-2015; data zamieszczenia: 01.07.2015 OGŁOSZENIE O ZMIANIE OGŁOSZENIA

Numer ogłoszenia: 162458-2015; data zamieszczenia: 01.07.2015 OGŁOSZENIE O ZMIANIE OGŁOSZENIA Strona 1 z 8 Ogłoszenie powiązane: Ogłoszenie nr 154578-2015 z dnia 2015-06-24 r. Ogłoszenie o zamówieniu - Łódź Przedmiotem zamówienia jest dostawa elementów i podzespołów do serwisowania mikrokomputerów

Bardziej szczegółowo

Podstawy obsługi komputerów. Budowa komputera. Podstawowe pojęcia

Podstawy obsługi komputerów. Budowa komputera. Podstawowe pojęcia Budowa komputera Schemat funkcjonalny i podstawowe parametry Podstawowe pojęcia Pojęcia podstawowe PC personal computer (komputer osobisty) Kompatybilność to cecha systemów komputerowych, która umoŝliwia

Bardziej szczegółowo

Temat: Pamięci. Programowalne struktury logiczne.

Temat: Pamięci. Programowalne struktury logiczne. Temat: Pamięci. Programowalne struktury logiczne. 1. Pamięci są układami służącymi do przechowywania informacji w postaci ciągu słów bitowych. Wykonuje się jako układy o bardzo dużym stopniu scalenia w

Bardziej szczegółowo

Procesory rodziny x86. Dariusz Chaberski

Procesory rodziny x86. Dariusz Chaberski Procesory rodziny x86 Dariusz Chaberski 8086 produkowany od 1978 magistrala adresowa - 20 bitów (1 MB) magistrala danych - 16 bitów wielkość instrukcji - od 1 do 6 bajtów częstotliwośc pracy od 5 MHz (IBM

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Architektura komputerów PCI EXPRESS Rozwój technologii magistrali Architektura Komputerów 2 Architektura Komputerów 2006 1 Przegląd wersji PCI Wersja PCI PCI 2.0 PCI 2.1/2.2 PCI 2.3 PCI-X 1.0 PCI-X 2.0

Bardziej szczegółowo

Podstawy Informatyki DMA - Układ bezpośredniego dostępu do pamięci

Podstawy Informatyki DMA - Układ bezpośredniego dostępu do pamięci Układ Podstawy Informatyki - Układ bezpośredniego dostępu do pamięci alina.momot@polsl.pl http://zti.polsl.pl/amomot/pi Plan wykładu Układ 1 Układ Wymiana informacji Idea Zasady pracy maszyny W Architektura

Bardziej szczegółowo

sterowanie Urządzenia we/wy Procesor Pamięć mag. danych mag. adresowa

sterowanie Urządzenia we/wy Procesor Pamięć mag. danych mag. adresowa Budowa i architektura komputera sterowanie Procesor Pamięć Urządzenia we/wy mag. danych mag. adresowa Koncepcja von Neumanna JEDNOSTKA CENTRALNA Urządzenia wejścia Procesor Pamięć operacyjna Urządzenia

Bardziej szczegółowo

Wykład 2. Mikrokontrolery z rdzeniami ARM

Wykład 2. Mikrokontrolery z rdzeniami ARM Wykład 2 Źródło problemu 2 Wstęp Architektura ARM (Advanced RISC Machine, pierwotnie Acorn RISC Machine) jest 32-bitową architekturą (modelem programowym) procesorów typu RISC. Różne wersje procesorów

Bardziej szczegółowo

Architektura systemów komputerowych. dr Artur Bartoszewski

Architektura systemów komputerowych. dr Artur Bartoszewski Architektura systemów komputerowych dr Artur Bartoszewski Procesor część III Podział pamięci operacyjnej Pierwsze komputery IBM PC z procesorem 8086/88 (XT) narzuciły pewien podział pamięci, kontynuowany

Bardziej szczegółowo

Architektura komputerów wer. 7

Architektura komputerów wer. 7 Architektura komputerów wer. 7 Wojciech Myszka 2013-10-29 19:47:07 +0100 Karty perforowane Kalkulator IBM 601, 1931 IBM 601 kalkulator Maszyna czytała dwie liczby z karty, mnożyła je przez siebie i wynik

Bardziej szczegółowo

Budowa Komputera część teoretyczna

Budowa Komputera część teoretyczna Budowa Komputera część teoretyczna Komputer PC (pesonal computer) jest to komputer przeznaczony do użytku osobistego przeznaczony do pracy w domu lub w biurach. Wyróżniamy parę typów komputerów osobistych:

Bardziej szczegółowo

Struktura i działanie jednostki centralnej

Struktura i działanie jednostki centralnej Struktura i działanie jednostki centralnej ALU Jednostka sterująca Rejestry Zadania procesora: Pobieranie rozkazów; Interpretowanie rozkazów; Pobieranie danych Przetwarzanie danych Zapisywanie danych magistrala

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Wykład jest przygotowany dla IV semestru kierunku Elektronika i Telekomunikacja. Studia I stopnia Dr inż. Małgorzata Langer Architektura komputerów Prezentacja multimedialna współfinansowana przez Unię

Bardziej szczegółowo

Pamięć operacyjna (robocza) komputera - zwana pamięcią RAM (ang. Random Acces Memory - pamięć o swobodnym dostępie) służy do przechowywania danych

Pamięć operacyjna (robocza) komputera - zwana pamięcią RAM (ang. Random Acces Memory - pamięć o swobodnym dostępie) służy do przechowywania danych Pamięć operacyjna (robocza) komputera - zwana pamięcią RAM (ang. Random Acces Memory - pamięć o swobodnym dostępie) służy do przechowywania danych aktualnie przetwarzanych przez program oraz ciągu rozkazów,

Bardziej szczegółowo

Architektura systemów komputerowych Ćwiczenie 2

Architektura systemów komputerowych Ćwiczenie 2 Architektura systemów komputerowych Ćwiczenie 2 Komputer widziany oczami użytkownika Płyta główna parametry złącza i magistrale podstawki montaż Procesor ewolucja procesorów wielordzeniowość technologia

Bardziej szczegółowo

Zagadnienia zaliczeniowe z przedmiotu Układy i systemy mikroprocesorowe elektronika i telekomunikacja, stacjonarne zawodowe

Zagadnienia zaliczeniowe z przedmiotu Układy i systemy mikroprocesorowe elektronika i telekomunikacja, stacjonarne zawodowe Zagadnienia zaliczeniowe z przedmiotu Układy i systemy mikroprocesorowe elektronika i telekomunikacja, stacjonarne zawodowe System mikroprocesorowy 1. Przedstaw schemat blokowy systemu mikroprocesorowego.

Bardziej szczegółowo

Płyta Główna magistrale i złącza. @ʁ ud3 k0 Urządzenia Techniki Komputerowej

Płyta Główna magistrale i złącza. @ʁ ud3 k0 Urządzenia Techniki Komputerowej Płyta Główna magistrale i złącza @ʁ ud3 k0 Urządzenia Techniki Komputerowej Spis treści Połączenia na płycie głównej Równoległe i szeregowe Magistrale i punkt-punkt Złącza płyty głównej 2 Magistrale płyty

Bardziej szczegółowo

Technologie informacyjne (wyk.2) Budowa komputera klasy PC (procesory, płyta główna - chipset, interfejsy, BIOS, pamięć) dr Tomasz Ordysiński

Technologie informacyjne (wyk.2) Budowa komputera klasy PC (procesory, płyta główna - chipset, interfejsy, BIOS, pamięć) dr Tomasz Ordysiński Technologie informacyjne (wyk.2) Budowa komputera klasy PC (procesory, płyta główna - chipset, interfejsy, BIOS, pamięć) dr Tomasz Składniki typowego PC ta Procesor Pamięć operacyjna (RAM) Płyta główna

Bardziej szczegółowo

Podstawy Projektowania Przyrządów Wirtualnych. Wykład 9. Wprowadzenie do standardu magistrali VMEbus. mgr inż. Paweł Kogut

Podstawy Projektowania Przyrządów Wirtualnych. Wykład 9. Wprowadzenie do standardu magistrali VMEbus. mgr inż. Paweł Kogut Podstawy Projektowania Przyrządów Wirtualnych Wykład 9 Wprowadzenie do standardu magistrali VMEbus mgr inż. Paweł Kogut VMEbus VMEbus (Versa Module Eurocard bus) jest to standard magistrali komputerowej

Bardziej szczegółowo

ZAPYTANIE OFERTOWE 6/2014

ZAPYTANIE OFERTOWE 6/2014 Rejowiec Fabryczny, dnia 14.03.2014 r. ZAPYTANIE OFERTOWE 6/2014 Zespół Szkół Samorządowych w Rejowcu Fabrycznym, ul. Lubelska 18, 22-170 Rejowiec Fabryczny zaprasza do złożenia oferty na 10 zestawów komputerów

Bardziej szczegółowo

Procesor. Rys. 1 Wafel o średnicy 300 mm z umieszczonymi. na nim układami scalonymi.

Procesor. Rys. 1 Wafel o średnicy 300 mm z umieszczonymi. na nim układami scalonymi. Procesor Procesorów, jak i układów scalonych nie produkuje się pojedynczo, lecz w większych partiach. Cała taka partia jest wytwarzana na specjalnie przygotowanym krzemowym waflu na którym mieści się kilkaset

Bardziej szczegółowo

Procesor (CPU Central Processing Unit) informacje dodatkowe

Procesor (CPU Central Processing Unit) informacje dodatkowe Procesor (CPU Central Processing Unit) informacje dodatkowe Procesor Procesor - przetwarzanie. Urządzenie cyfrowe sekwencyjne: pobiera dane z pamięci interpretuje je wykonuje jako rozkazy, zgodnie z tzw.

Bardziej szczegółowo

Architektura komputera PC cd. Cezary Bolek. cbolek@ki.uni.lodz.pl. Uniwersytet Łódzki. Wydział Zarządzania. Katedra Informatyki

Architektura komputera PC cd. Cezary Bolek. cbolek@ki.uni.lodz.pl. Uniwersytet Łódzki. Wydział Zarządzania. Katedra Informatyki Wstęp do informatyki Architektura komputera PC cd. Cezary Bolek cbolek@ki.uni.lodz.pl Uniwersytet Łódzki Wydział Zarządzania Katedra Informatyki Chipset Zestaw układów scalonych zarządzających transferami

Bardziej szczegółowo

Podstawowe zadanie komputera to wykonywanie programu Program składa się z rozkazów przechowywanych w pamięci Rozkazy są przetwarzane w dwu krokach:

Podstawowe zadanie komputera to wykonywanie programu Program składa się z rozkazów przechowywanych w pamięci Rozkazy są przetwarzane w dwu krokach: Rok akademicki 2012/2013, Wykład nr 6 2/46 Plan wykładu nr 6 Informatyka 1 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia niestacjonarne I stopnia Rok akademicki 2012/2013

Bardziej szczegółowo

Zarządzanie zasobami pamięci

Zarządzanie zasobami pamięci Zarządzanie zasobami pamięci System operacyjny wykonuje programy umieszczone w pamięci operacyjnej. W pamięci operacyjnej przechowywany jest obecnie wykonywany program (proces) oraz niezbędne dane. Jeżeli

Bardziej szczegółowo

Pamięć. Podstawowe własności komputerowych systemów pamięciowych:

Pamięć. Podstawowe własności komputerowych systemów pamięciowych: Pamięć Podstawowe własności komputerowych systemów pamięciowych: Położenie: procesor, wewnętrzna (główna), zewnętrzna (pomocnicza); Pojemność: rozmiar słowa, liczba słów; Jednostka transferu: słowo, blok

Bardziej szczegółowo

OPIS PRZEDMIOTU ZAMÓWIENIA

OPIS PRZEDMIOTU ZAMÓWIENIA Nr sprawy: DAS-251-2/14 Załącznik A OPIS PRZEDMIOTU ZAMÓWIENIA Warunki ogólne: gwarancja świadczona w siedzibie Zamawiającego dostawa na koszt i ryzyko Dostawcy dostawa na adres Zamawiającego deklaracja

Bardziej szczegółowo

Część V - Serwery. UWAGA! Część V stanowi nierozerwalną całość. Ocena będzie łączna dla 4 zadań. Zadanie nr 1. SERWER BAZODANOWY KWESTURA

Część V - Serwery. UWAGA! Część V stanowi nierozerwalną całość. Ocena będzie łączna dla 4 zadań. Zadanie nr 1. SERWER BAZODANOWY KWESTURA Załącznik nr 3E do SIWZ DZP-0431-1257/2009 Część V - Serwery UWAGA! Część V stanowi nierozerwalną całość. Ocena będzie łączna dla 4 zadań Zadanie nr 1. SERWER BAZODANOWY OBUDOWA Parametr KWESTURA Wymagane

Bardziej szczegółowo

Załącznik nr 1 Do Umowy nr z dnia. . Wymagania techniczne sieci komputerowej.

Załącznik nr 1 Do Umowy nr z dnia. . Wymagania techniczne sieci komputerowej. Załącznik nr 1 Do Umowy nr z dnia.. Wymagania techniczne sieci komputerowej. 1. Sieć komputerowa spełnia następujące wymagania techniczne: a) Prędkość przesyłu danych wewnątrz sieci min. 100 Mbps b) Działanie

Bardziej szczegółowo

Rysunek 1 Schemat maszyny von Neumanna

Rysunek 1 Schemat maszyny von Neumanna - 1 - Architektura von Neumanna według tej koncepcji komputer składa się z 3 podstawowych części: procesor z wydzieloną częścią sterującą oraz częścią arytmetyczno-logiczną (ALU) pamięć dane i instrukcje

Bardziej szczegółowo

Wykład II. Pamięci operacyjne. Studia stacjonarne Pedagogika Budowa i zasada działania komputera

Wykład II. Pamięci operacyjne. Studia stacjonarne Pedagogika Budowa i zasada działania komputera Studia stacjonarne Pedagogika Budowa i zasada działania komputera Wykład II Pamięci operacyjne 1 Część 1 Pamięci RAM 2 I. Pamięć RAM Przestrzeń adresowa pamięci Pamięć podzielona jest na słowa. Podczas

Bardziej szczegółowo

Ogólne informacje. cią pracy, wielkości wyświetlan. cią obrazu, wietlaną rozdzielczości. częstotliwo. wieŝania obrazu.

Ogólne informacje. cią pracy, wielkości wyświetlan. cią obrazu, wietlaną rozdzielczości. częstotliwo. wieŝania obrazu. Karty graficzne Ogólne informacje Karta rozszerzeń,, umiejscawiana na płycie p głównej poprzez gniazdo PCI lub AGP odpowiada w komputerze za obraz wyświetlany wietlany przez monitor. Karty graficzne róŝnir

Bardziej szczegółowo

Wydajność systemów a organizacja pamięci, czyli dlaczego jednak nie jest aż tak źle. Krzysztof Banaś, Obliczenia wysokiej wydajności.

Wydajność systemów a organizacja pamięci, czyli dlaczego jednak nie jest aż tak źle. Krzysztof Banaś, Obliczenia wysokiej wydajności. Wydajność systemów a organizacja pamięci, czyli dlaczego jednak nie jest aż tak źle Krzysztof Banaś, Obliczenia wysokiej wydajności. 1 Organizacja pamięci Organizacja pamięci współczesnych systemów komputerowych

Bardziej szczegółowo

Płyty główne Standardy magistrali rozszerzającej Opracował: Andrzej Nowak

Płyty główne Standardy magistrali rozszerzającej Opracował: Andrzej Nowak Płyty główne Standardy magistrali rozszerzającej Opracował: Andrzej Nowak Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz ISA ISA (ang. Industry Standard Architecture - standardowa architektura

Bardziej szczegółowo

Wykład 14. Zagadnienia związane z systemem IO

Wykład 14. Zagadnienia związane z systemem IO Wykład 14 Zagadnienia związane z systemem IO Wprowadzenie Urządzenia I/O zróżnicowane ze względu na Zachowanie: wejście, wyjście, magazynowanie Partnera: człowiek lub maszyna Szybkość transferu: bajty

Bardziej szczegółowo

Pamięci masowe. ATA (Advanced Technology Attachments)

Pamięci masowe. ATA (Advanced Technology Attachments) Pamięci masowe ATA (Advanced Technology Attachments) interfejs systemowy w komputerach klasy PC i Amiga przeznaczony do komunikacji z dyskami twardymi zaproponowany w 1983 przez firmę Compaq. Używa się

Bardziej szczegółowo

Wydajność systemów a organizacja pamięci. Krzysztof Banaś, Obliczenia wysokiej wydajności. 1

Wydajność systemów a organizacja pamięci. Krzysztof Banaś, Obliczenia wysokiej wydajności. 1 Wydajność systemów a organizacja pamięci Krzysztof Banaś, Obliczenia wysokiej wydajności. 1 Motywacja - memory wall Krzysztof Banaś, Obliczenia wysokiej wydajności. 2 Organizacja pamięci Organizacja pamięci:

Bardziej szczegółowo

20. Czy serwerownia spełnia standardowe wymagania techniczne dla takich pomieszczeń?

20. Czy serwerownia spełnia standardowe wymagania techniczne dla takich pomieszczeń? 1 z 5 2008-12-01 10:54 Część III: Infrastruktura teleinformatyczna 19. Czy w budynku urzędu gminy urządzona jest serwerownia? 20. Czy serwerownia spełnia standardowe wymagania techniczne dla takich pomieszczeń?

Bardziej szczegółowo

Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego 21

Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego 21 4.3. Pamięci wewnętrzne RAM i ROM 4.3.1. Materiał nauczania Oprócz mikroprocesora istotnym składnikiem jednostki centralnej jest pamięć. Pamięć komputera pozwala przechowywać informacje (dane). Aby komputer

Bardziej szczegółowo

Architektura systemu komputerowego

Architektura systemu komputerowego Architektura systemu komputerowego Klawiatura 1 2 Drukarka Mysz Monitor CPU Sterownik dysku Sterownik USB Sterownik PS/2 lub USB Sterownik portu szeregowego Sterownik wideo Pamięć operacyjna Działanie

Bardziej szczegółowo

Oferowany sprzęt: nazwa, model/typ

Oferowany sprzęt: nazwa, model/typ DRUK OFERTY L.P. Nazwa Ilość Oferowany sprzęt: nazwa, model/typ Cena jedn.bru tto Załacznik nr 1 1 2 3 4 5 1. Pamięć DDR1 1GB 15 2. Wentylator przekątna went. 9,2cm 10 3. Wentylator przekątna 5 cm 10 4.

Bardziej szczegółowo

Siemens Simatic S7-300 Informacje podstawowe o sterowniku programowalnym

Siemens Simatic S7-300 Informacje podstawowe o sterowniku programowalnym Siemens Simatic S7-300 Informacje podstawowe o sterowniku programowalnym Zakład Napędu Elektrycznego ISEP PW Wstęp Sterowniki swobodnie programowalne S7-300 należą do sterowników średniej wielkości. Są

Bardziej szczegółowo

jedn. miary ilość procesor: płyta główna: pamięć RAM: napęd DVD: dysk twardy: zasilacz: obudowa: oprogramowanie: klawiatura: mysz: monitor: procesor:

jedn. miary ilość procesor: płyta główna: pamięć RAM: napęd DVD: dysk twardy: zasilacz: obudowa: oprogramowanie: klawiatura: mysz: monitor: procesor: Załacznik nr 1, znak sprawy DZ-2501/211/14 FORMULARZ OPISU PRZEDMIOTU ZAMÓWIENIA - FORMULARZ CENOWY lp. nazwa jedn. miary ilość nazwa producenta i nr katalogowy części wchodzącej w skład zestawu/ okres

Bardziej szczegółowo

Specyfikacja komputera w Zadaniu Nr 1 /AJ/

Specyfikacja komputera w Zadaniu Nr 1 /AJ/ Specyfikacja komputera w Zadaniu Nr 1 /AJ/ ZAŁĄCZNIK Nr 1 Zadanie Nr 1 /AJ/ obejmuje: 1) Dysk twardy: Dysk twardy: Procesor: Pamięć: Karta graficzna: Płyta główna: Obudowa: Minimum 120GB technologia SSD

Bardziej szczegółowo

Pamięci półprzewodnikowe w oparciu o książkę : Nowoczesne pamięci. Ptc 2013/2014 13.12.2013

Pamięci półprzewodnikowe w oparciu o książkę : Nowoczesne pamięci. Ptc 2013/2014 13.12.2013 Pamięci półprzewodnikowe w oparciu o książkę : Nowoczesne pamięci półprzewodnikowe, Betty Prince, WNT Ptc 2013/2014 13.12.2013 Pamięci statyczne i dynamiczne Pamięci statyczne SRAM przechowywanie informacji

Bardziej szczegółowo

Opis I. MONITOR TELEWIZYJNY 46 47. Monitor telewizyjny 46-47 : nazwa, typ... rok produkcji..., producent... min.100hz.

Opis I. MONITOR TELEWIZYJNY 46 47. Monitor telewizyjny 46-47 : nazwa, typ... rok produkcji..., producent... min.100hz. ZAŁĄCZNIK Nr 1 DO SIWZ Opis Dotyczy postępowania na dostawę sprzętu komputerowego dla potrzeb nadzoru wizyjnego (znak sprawy: TI/2/PN/14) I. MONITOR TELEWIZYJNY 46 47 Monitor telewizyjny 46-47 : nazwa,

Bardziej szczegółowo

DOTACJE NA INNOWACJE O G Ł O S Z E N I E

DOTACJE NA INNOWACJE O G Ł O S Z E N I E Rzeszów, 03.01.2014 O G Ł O S Z E N I E o zamówieniu w trybie zapytania ofertowego na dostawę sprzętu komputerowego do obsługi platformy B2B realizowanej w ramach Programu Operacyjnego Innowacyjna Gospodarka,

Bardziej szczegółowo

CENNIK SKUPU ZUŻYTEJ ELEKTRONIKI I ELEKTROZŁOMU WAŻNY OD: 22-7-2015

CENNIK SKUPU ZUŻYTEJ ELEKTRONIKI I ELEKTROZŁOMU WAŻNY OD: 22-7-2015 CENNIK SKUPU ZUŻYTEJ ELEKTRONIKI I ELEKTROZŁOMU WAŻNY OD: 22-7-2015 Sekcja I - Elektronika z komputerów - płyty główne, komponenty i procesory Płyty Główne STARA (P3, 462 i starsze) (bez Fe, Al. baterii)

Bardziej szczegółowo

MAGISTRALE I/O DLA DSI II

MAGISTRALE I/O DLA DSI II MAGISTRALE I/O DLA DSI II Magistrala komunikacyjna Magistrala to ścieżka łącząca ze sobą różne komponenty w celu wymiany informacji miedzy nimi. Zespół linii oraz układów przełączających, służących do

Bardziej szczegółowo

W Y K O N A W C Y MINISTERSTWO SPORTU I TURYSTYKI. Komisja Przetargowa. Sygn.: 30/dost./2008. BA/zp/19038/2008. Warszawa, 06 listopada 2008 r.

W Y K O N A W C Y MINISTERSTWO SPORTU I TURYSTYKI. Komisja Przetargowa. Sygn.: 30/dost./2008. BA/zp/19038/2008. Warszawa, 06 listopada 2008 r. MINISTERSTWO SPORTU I TURYSTYKI Komisja Przetargowa Sygn.: 30/dost./2008 BA/zp/19038/2008 Warszawa, 06 listopada 2008 r. W Y K O N A W C Y Dot.: Postępowania o udzielenie zamówienia publicznego na dostawę

Bardziej szczegółowo

Załącznik nr 4 do SIWZ Szczegółowa kalkulacja cenowa

Załącznik nr 4 do SIWZ Szczegółowa kalkulacja cenowa Załącznik nr 4 do SIWZ Szczegółowa kalkulacja cenowa Lp. Nazwa artykułu Model/typ/nazwa Ilość 1. kabel USB 2.0 typu A-B 3.0 m 1 2. kabel USB 2.0 typu A-B 5.0 m 1 3. kabel USB 2.0 typu A-A 3.0 m 1 4. Kabel

Bardziej szczegółowo

I Zestaw komputerowy: Stacja robocza i monitor wraz z oprogramowaniem systemowym i akcesoriami - 10 szt. STACJA ROBOCZA:

I Zestaw komputerowy: Stacja robocza i monitor wraz z oprogramowaniem systemowym i akcesoriami - 10 szt. STACJA ROBOCZA: Załącznik nr 6 C Część C Przedmiot zamówienia dotyczący pkt 1.1.3 SIWZ I Zestaw komputerowy: Stacja robocza i monitor wraz z oprogramowaniem systemowym i akcesoriami - 10 szt. STACJA ROBOCZA: 1. Procesor

Bardziej szczegółowo

Załącznik nr 6 do SIWZ. 1. Stacja robocza 46 szt. NAZWA PRODUCENTA: NUMER PRODUKTU (part number):

Załącznik nr 6 do SIWZ. 1. Stacja robocza 46 szt. NAZWA PRODUCENTA: NUMER PRODUKTU (part number): Załącznik nr 6 do SIWZ 1. Stacja robocza 46 szt. NUMER PRODUKTU (part number): LP. Atrybut Parametr wymagany Opis parametru urządzenia 1. Procesor Min. 2-rdzeniowy, osiągający w teście PassMark CPU Mark

Bardziej szczegółowo

890FXA-GD70. Specyfikacja techniczna. Format płyty Chipset Mostek północny Chipset Mostek południowy AMD 890FX AMD SB850. Obsługiwane procesory

890FXA-GD70. Specyfikacja techniczna. Format płyty Chipset Mostek północny Chipset Mostek południowy AMD 890FX AMD SB850. Obsługiwane procesory MSI 890FXA-GD70 Kod Producenta Format płyty Chipset Mostek północny Chipset Mostek południowy Gniazdo procesora 890FXA-GD70 ATX AMD 890FX AMD SB850 Socket-AM3 Obsługiwane procesory AMD Phenom II X6 /X4/X3/X2,

Bardziej szczegółowo

Architektura i magistrale komputerów przemysłowych

Architektura i magistrale komputerów przemysłowych Budowa i oprogramowanie komputerowych systemów sterowania Wykład 5 Architektura i magistrale komputerów przemysłowych Układ sterowania u Układy sterujące Układy wykonawcze Przetworniki Obiekt sterowania

Bardziej szczegółowo

Dane Techniczne TH ALPLAST ADS-S25

Dane Techniczne TH ALPLAST ADS-S25 Dane Techniczne komputer PC TH ALPLAST ADS-S25 Komputer ADS-S25 charakteryzuje się najwyższymi parametrami technicznymi oraz nieporównywalną niezawodnością, dzięki doświadczonej i wysoko wykwalifikowanej

Bardziej szczegółowo

Część I Komputery stacjonarne KONFIGURACJA WYMAGANE PARAMETRY PARAMETRY OFEROWANE 1 2 3

Część I Komputery stacjonarne KONFIGURACJA WYMAGANE PARAMETRY PARAMETRY OFEROWANE 1 2 3 Zadanie nr 1 Część I Komputery stacjonarne Katedra Chemii Rolnej Załącznik nr 3 A Do SIWZ DZP04311009/2009 ACAR Dostosowana do zaoferowanego procesora Posiadająca: Socket 775, chipset Intel P45 mostek

Bardziej szczegółowo