Rodzaje bomb atomowych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Rodzaje bomb atomowych"

Transkrypt

1 Artykuł pobrano ze strony eioba.pl Rodzaje bomb atomowych Bomba jądrowa nazywana jest potocznie bombą atomową. Około 90% energii wyzwalanej w wybuchy stanowi energia kinetyczna produktów reakcji, z czego ok. 2/3 zamienia się na energię podmuchu, a 1/3 na promieniowanie cieplne. Co powoduje jej ogromną siłę? Część I Na wstępie warto napisać, czym w ogóle jest bomba jądrowa. Otóż jest to broń o działaniu wybuchowym, polegającym na wyzwoleniu w bardzo krótkim czasie ogromnej energii wskutek łańcuchowej reakcji rozpadu ciężkich jąder głównie atomów izotopów uranu (235 i 233), plutonu 239 lub wskutek reakcji syntezy jąder izotopów wodoru: deuteru i trytu. Bomba jądrowa nazywana jest potocznie bombą atomową. Około 90% energii wyzwalanej w wybuchy stanowi energia kinetyczna produktów reakcji, z czego ok. 2/3 zamienia się na energię podmuchu, a 1/3 na promieniowanie cieplne. Pozostałą część energii unosi promieniowanie y (ok.1%) i neutrony. Podczas pochłaniania neutronów, jądro ulega rozszczepieniu się na dwa mniejsze fragmenty i emituje średnio ok. 2,5 neutronu na jedno rozszczepienie. Suma mas jądra atomowego materiału paliwa oraz padającego neutronu jest większa od sumy mas produktów reakcji. Ubytek masy równy jest energii ok. 2,56* 10 ^r11;11 J. Rozszczepienie 1 kg uranu daje energię ok. 67 GJ, co jest równoważne energii uzyskiwanej w procesie spalania ok. 2,5 * 10^6 kg węgla kamiennego. W środku bomby znajduje się materiał rozszczepialny - izotop uranu 235U, plutonu 239Pu lub znacznie droższy uran 233U. Największym problemem jest, wspomniane wcześniej, szybkie połączenie części ładunku w całość o masie przewyższającej krytyczną. Dlatego niezbędne jest użycie konwencjonalnych materiałów wybuchowych. Jak dotąd pojawiło się kilka rozwiązań pozwalających uzyskać ten efekt. Najprostsza metoda to tzw. system działa. Inna, już bardziej zaawansowana technicznie, polega na gwałtownym ściśnięciu niewielkiej ilości materiału rozszczepialnego. W związku z zależnością masy krytycznej od gęstości, ładunek o masie mniejszej od masy krytycznej odpowiednio ściśnięty będzie wystarczający dla zainicjowania w nim reakcji łańcuchowej. Bomba jądrowa nie istniała by także bez reflektora neutronowego, którego zadaniem jest zmniejszenie ilości straconych neutronów(takich neutronów, które nie biorą udziału w rozszczepieniu kolejnych atomów), a tym samym podniesienie wydajności broni. Reflektor rodbijar1; uciekające neutrony z powrotem do kuli. Od niego więc zależy także siła eksplozji. Z punktu widzenia rodzaju wykorzystywanej reakcji jądrowej w broni jądrowej o działaniu wybuchowym wyróżnia się trzy podstawowe jej rodzaje: jednofazową, dwufazową i trójfazową. W broni jądrowej jednofazowej cała energia wybuchu pochodzi z reakcji rozszczepienia jąder uranu235 lub plutonu 239 za pomocą neutronów powolnych. Ten rodzaj bomby nazywany jest także bombą atomową. W procesie rozszczepienia uwalniane są nowe neutrony, które mogą powodować kolejne rozszczepienia, podtrzymując reakcję (reakcja łańcuchowa). Podobnie do kropli deszczu, która powiększa swoje rozmiary tak, że dzieli się na dwie krople, jądro atomu uranu czy plutonu znajduje się na granicy niestabilności. Do podziału potrzebuje jedynie niewielkiej siły zderzenia z neutronem, tworząc w tej reakcji z jednego ciężkiego pierwiastka dwa lżejsze. Przebieg reakcji zależny jest od geometrii ułożenia materiału rozszczepialnego. Gdy bryła jest zbyt mała lub jest rozłożona na części, wiele neutronów ulatuje na zewnątrz, nie wywołując reakcji rozszczepienia. Aby reakcja łańcuchowa mogła zaistnieć, masa paliwa musi być większa od masy krytycznej. Jest ona określona dla danych warunków (temperatura, ciśnienie, gęstość materiału) i zmiana tych warunków powoduje zmianę jej wartości. Przekroczenie tej masy - wartości progowej (tzw. masa nadkrytyczna) powoduje wybuchową reakcję łańcuchową. Zjawisko to, wykorzystane w bombie jądrowej jest niepożądane np. w reaktorach atomowych. Tak więc np. dla Uranu233 masa krytyczna wynosi 16kg, dla Plutonu kg, a dla Uranu kg. Czas potrzebny dla przebiegu reakcji jest zależny od tego jaką drogę muszą przebyć neutrony, aby dotrzeć do następnych jąder oraz od prędkości z jaką poruszają się neutrony. Dlatego dla różnych izotopów czas przebiegu reakcji będzie różny.

2 Przed wybuchem materiał rozszczepialny w bombie jądrowej jest ułożony w kilku małych kawałkach o masach mniejszych niż masa krytyczna. Wartość masy krytycznej można zmniejszyć nawet dwu-trzykrotnie reflektorami neutronów (tzn. materiałami odbijającymi neutrony, które zwiększają ilość i energię neutronów oddziałujących z materiałem promieniotwórczym), co oznacza, że do osiągnięcia reakcji łańcuchowej potrzebna jest mniejsza masa materiału. Odpalenie przed wybuchem zapalnika aktywującego materiał wybuchowy powoduje rozerwanie osłon i połączenie elementów materiału rozszczepialnego w całość o masie nadkrytycznej lub zmniejszenie objętości kuli materiału, co zwiększa jej gęstość. Aby nastąpił wybuch, masa krytyczna musi być osiągnięta w bardzo krótkim czasie. Reakcja rozszczepienia uranu-235: n + 235^U? 141^Ba + 92^Kr + n + n + n W drugiej populacji neutronów narodzi się 9 nowych neutronów, w trzeciej 27, czwartej 81 itd. Aby nastąpił wybuch bomby atomowej musi powstać około 50 populacji neutronowych. Energia wiązania uranu-235 jest na taka mała, że gdy neutron zostaje pochłonięty, energia uwolniona przez ponowne uporządkowanie jądra przekracza ją. Jądro staje się niestabilne, czego efektem jest rozszczepienie na nowe jądra o porównywalnych rozmiarach. Z jednego kilograma U-235 można uzyskać do 82 TJ energii. Typowy czas trwania reakcji łańcuchowej to 1 s, więc moc wynosi 82 EW/kg. Mogłoby się wydawać, że skonstruowanie bomby atomowej wcale nie jest trudne. Jednak w rzeczywistości naukowcy musieli wziąć pod uwagę wiele istotnych praw: 1)przed detonacją materiał rozszczepialny musi być przechowywany w postaci podkrytycznej 2) podczas łączenia materiału rozszczepialnego w masę krytyczną należy chronić go przed promieniowaniem neutronowym 3) należy zbombardować masę (nad)krytyczną neutronami w najbardziej optymalnym momencie 4) nie wolno dopuścić do wybuchu materiału rozszczepialnego dopóki rozszczepienie się nie zakończy. W dzisiejszych czasach bomba atomowa zbudowana jest z: a) wysokościomierza- najwygodniejszy w użyciu dla bomby atomowej jest wysokościomierz radarowy lub radiowy. Służy on do wyznaczania poziomu zerowego bomby (wysokość na jakiej ma wystąpić eksplozja). b) detonator ciśnieniowy- jego zadaniem jest zainicjowanie wybuchu, kiedy ciśnienie powietrza osiągnie wymagany poziom. c) głowica detonacyjna- służy jako katalizator (inicjuje, przyspiesza reakcje, ale sam nie bierze w niej udziału) głównego wybuchu. Odpowiednia budowa tego urządzenia jest bardzo ważna. Gdy głowica detonacyjna będzie za małą, może być ona przyczyną wielkiego niewypału. G.d. otrzymuje impuls elektryczny od detonatora ciśnieniowego lub z wysokościomierza. d) Konwencjonalne ładunki wybuchowe- jego funkcja opisana została wyżej, najlepiej nadaje się plastyczny materiał wybuchowy, można, bowiem go dowolnie kształtować, zależnie od potrzeby do bomby uranowej lub plutonowej. e) reflektor neutronów f) uran i pluton- wydzielenie U-235 jest naprawdę trudne. Z każdych ton wydobytej rudy uzyskuje się tylko 50 ton metalicznego uranu, a aż 99,3% stanowi nienadający się do wybuchów jądrowych. Ich właściwości są prawie identyczne, co utrudnia ich separację. Praktycznie do ich rozdzielenia nadają się jedynie metody mechaniczne. U-235 jest nieco lżejszy od U-238. Do wstępnej separacji stosowany jest system dyfuzji gazowej. W bombie można użyć plutonu. Kiedy umieścimy w reaktorze jądrowym U-238 przez dłuższy czas, zacznie pochłaniać neutrony i stopniowo przekształci się w pluton, który jest rozszczepialny, choć nie tak łatwo jak U-235. g) Detonator uranu- złożony z dwóch części. Jedna ma kształt kulisty z wnęką, a druga odpowiada kształtowi tej wnęki. ładunek konwencjonalny zostaje poddany detonacji (wybuchowi), co powoduje, że mniejsza masa gwałtownie wbija się w większą (następuje ich zespolenie). Masa krytyczna zostaje przekroczona i rozwija się reakcja łańcuchowa ( w ciągu jednej milionowej sekundy). h) detonator plutonu- kształtem przypomina piłkę; budują go 32 segmenty, które tworzą wydrążoną kulę, w której środku znajduje się mieszanina plonu z berylem. Tutaj celem detonacja materiału konwencjonalnego jest doprowadzenie do jednoczesnego scalenia wszystkich 32 sekcji z mieszaniną polonu z berylem w przeciągu jednej dziesięciomilionowej części sekundy. i) Osłona ołowiana- jej funkcją jest ochrona mechanizmu bomby przed radioaktywnością ładunku Nazwa bomba atomowa może być myląca, gdyż konwencjonalne chemiczne materiały wybuchowe czerpią swą

3 energię z wiązań atomowych; ponadto inne rodzaje broni nuklearnej są nie mniej atomowe. Część II W bombie jądrowej dwufazowej wydzielanie się energii odbywa się w dwóch etapach (fazach). W fazie pierwszej źródłem energii jest ta sama reakcja jądrowa, która wykorzystywana jest bombie jednofazowej, zaś w fazie drugiejreakcja syntezy dwóch pierwiastków lekkich. Ten rodzaj bomby nazywany jest również wodorową lub termojądrową. Podczas wybuchu bomby termojądrowej zachodzi reakcja termojądrowa, która jest głównym źródłem energii tej broni. Reakcja termojądrowa polega na syntezie jąder lekkich pierwiastków, w wyniku czego powstają jądra cięższe o większej energii wiązania w przeliczeniu na jeden nukleon. W związku z tym, że rozpoczęcie i utrzymanie fuzji (łączenie) wymaga bardzo wysokiej temperatury, bomba wodorowa posiada ładunek rozszczepialny (pierwszego stopnia), którego detonacja inicjuje fuzję w ładunku drugiego stopnia. ładunki drugiego stopnia mogą być połączone w prawie dowolnej ilości i wielkości (jedna reakcja fuzji inicjuje następną), co umożliwia budowę broni o mocy daleko większej niż w przypadku zwykłej bomby atomowej. Większa część energii wytworzonej podczas reakcji rozprasza się jako energia kinetyczna produktów i promieniowanie gamma, a na otaczających atomach przekształca się na energię cieplną. Aby mogła zajść ta reakcja syntezy konieczne jest silne rozpędzenie jąder atomowych (wysoka temperatura) oraz duża koncentracja odpowiednich jąder. Warunki takie uzyskuje się przez wybuch bomby jądrowej w centrum której umieszczono materiał do syntezy termojądrowej. W związku z tym, że wybuch bardzo szybko rozrzuca reagujące materiały, niezbędne jest zastosowanie w bombie materiałów, które umożliwiałyby przeprowadzenie reakcji termojądrowej w jak najniższej temperaturze. Na początku bomby zawierały deuter i tryt, ale niestety ten drugi nie jest zbyt trwały (ma względnie krótki okres półtrwania - 12,26 lat) i dlatego tak zbudowanej bomby nie można przechowywać przez dłuższy czas. Należało zrobić coś z tym problemem. Dobrym rozwiązaniem jest generowanie trytu w trakcie eksplozji bomby. Tryt otrzymywany jest poprzez bombardowanie jąder litu neutronami wywodzącymi się głównie z rozszczepienia jąder ładunku inicjującego, którym jest zazwyczaj zwykła, uranowa lub plutonowa bomba jądrowa o stosunkowo niewielkiej mocy: n + Li(6) -----> He(4) + H(3) Proces ten dostarcza także dodatkowej energii do przebiegu syntez. Dodatkowo materiał do syntezy jest uzupełniony o ślady trytku litu, co ułatwia rozpoczęcie reakcji. Dzięki związków deuteru i trytu z litem konstrukcja bomby jest zdecydowanie prostsza, co umożliwia przechowywanie tych substancji w stanie stałym, bez instalacji chłodzących. Działanie bomby o ładunku dwufazowym polega na tym, że faza pierwsza dostarcza energii do zainicjowania fazy drugiej. W fazie drugiej zachodzą dwie podstawowe reakcje: -synteza deuteru i trytu w jądro helu H(2) + H(3) -----> He(4) + n ( MeV) (mega elektrov) -synteza deuteru i litu w dwa jadra helu H(2) +Li(6) -----> He(4) + He(4) (+ 24 MeV) oraz reakcja poboczna H(3) + H(3) -----> He(4) + 2n (+11.3 MeV) Reakcja syntezy w bombie termojądrowej zachodzi w temperaturze około 10^6 stopni C. Tak wysoką temperaturę uzyskuje się, o czym wspominałam już wcześniej, w wyniku wybuchu bomby jądrowej, która pełni funkcję zapalnika bomby termojądrowej. W bombie jądrowej eksplozję powoduje zmiana geometrii materiału rozszczepialnego, natomiast w bombie termojądrowej- zmiana gęstości i temperatury materiału. Konwencjonalny materiał wybuchowy jest otoczony materiałem rozszczepialnym. W momencie wybuchu występuje w nim implozja, w efekcie której osiąga on wymaganą gęstość. Jest to czysta bomba wodorowa, po której nie pozostaje radioaktywny opad ciężkich pierwiastków, powodujący promieniotwórcze skażenie terenu. Bomby termojądrowe nie mają ograniczeń masy, mogą mieć energię wybuchu rzędu megaton trotylu. Współczesne bomby termojądrowe to

4 zazwyczaj bomby typu 3F (ang. Fission-Fusion-Fission= rozszczepienie-synteza-rozszczeopienie). Przebieg reakcji w tych procesach jest związany także z gęstością materiałów. Stąd zastosowanie izotopów wodoru: deuteru i trytu. Aby zaś gazowy wodór doprowadzić do stanu ciekłego należy schłodzić go do temperatury kilkunastu kelwinów. W związku z tym swoje zastosowanie znalazł tutaj materiał stały, tzn. deuterek litu (LiH). Znajduje się on we wnętrzu bomby. LiH jest źródłem zarówno deuteru jak i litu. Deuterek litu jest materialem aktywnym, otoczonym płaszczem z naturalnego uranu. Reakcję inicjuje wybuch atomowy. Następuje rozwój reakcji łańcuchowej syntezy termojądrowej z udziałem 6^Li. Uwolnione neutrony prędkie przenikają przez płaszcz z materiału rozszczepialnego, np. 238^U, po czym zachodzą dalsze reakcje rozszczepienia i w ten sposób zwiększa się siła wybuchu. Kilogram uranu wyzwala energię ok. 20 kt TNT, natomiast 1 kg mieszaniny deuteru i trytu- ok. 80 kt TNT. Bomba o ładunku dwufazowym dostarcza energii rzędu kilku do kilkanastu megaton. Współczesne bomby, testowane w próbnych eksplozjach, osiągają energię ok.20 Mt TNT (TNT- równoważnik trytylowy, nazywany powszechnie masą wybuchu; ilość energii wydzielającej się w czasie wybuchu). Konstruuje się także brudne bomby. Jest to broń radiologiczna. Na czym polega jej działanie? Bomba jest otoczona płaszzem uranu-238, który pod wpływem prędkich neutronów rozszczepia się i dodatkowo zwiększa energię wybuchu.materiał radioaktywny jest rozrzucany na dużym obszarze za pomocą konwencjonalnej eksplozji. W efekcie następuje skażenie promieniotwórcze terenu. Jeśli w broni jądrowej dwufazowej przeważającą część energii (ponad 80%) wydziela się w wyniku reakcji łączenia izotopów wodoru, deuteru i trytu, to taka broń nazywana jest bronią neutronową, ze względu na powstanie podczas tego typu reakcji dużego strumienia wysokoenergetycznych neutronów, tzw. prędkich. Siła jej wybuchu jest niewielka, także skażenie promieniotwórcze terenu nie jest duże. Energia uzyskana w wybuchu ładunku dwufazowego może bądź oddziaływać bezpośrednio bądź zostać wykorzystana do kolejnego procesu - jest to realizowane w bombie o tzw. ładunku trójfazowym. W broni jądrowej trójfazowej energia wydziela się w trzech kolejnych etapach. Przebieg dwóch pierwszych jest praktycznie taki sam jak i w broni jądrowej dwufazowej. źródłem energii w fazie trzeciej jest reakcja rozszczepienia jąder izotopu uranu 238 za pomocą neutronów prędkich. Neutrony te są wytwarzane w reakcjach termojądrowych. Uran(238) stanowi obudowę komory reakcyjnej, w której przebiega wybuch ładunku dwufazowego. Ponieważ rozszczepienie tego materiału i uzyskanie energii następuje w wyniku pochłaniania prędkich neutronów, a nie reakcji łańcuchowej, nie jest konieczne zapewnienie masy krytycznej uranu. Wybuch ładunku może nam dostarczyć od kilku do kilkuset Mt TNT. Jeśli przyjęlibyśmy 100 % wydajności reakcji, to do wybuchu o energii 20 Mt potrzeba jedynie niecała tona uranu. To jednak tylko teoria. W praktyce, takie energie nie są nigdy osiągalne, ponieważ nie wszystkie jądra ulegają rozpadowi, a część uzyskanej energii jest tracona lub nieużyteczna (np. jako energia wewnętrzna powstałych w rozpadzie jąder). Prawdziwa wydajność reakcji sięga do około kilkunastu procent. Dlatego masy ładunku muszą wynosić: -dla ładunku jednofazowego od kilkudziesięciu (masa krytyczna!) kilogramów do kilku ton; -dla ładunku dwufazowego (całkowitego) kilka ton; -dla ładunku trójfazowego (całkowitego)od kilku do kilkudziesięciu ton; Bezpośrednie produkty przemian jądrowych można podzielić na: * izotopy pierwiastków ciężkich - pluton i uran pochodzące bezpośrednio z wybuchu; * stront (izotop 89 i 90), cyrkon(95), rubid (izotop 93 i 106), jod(131), cez(137), cer (izotop 141 i 144) itp. izotopy (w sumie 200) promieniotwórcze pochodzące z rozpadu uranu/plutonu (w bombie atomowej); * hel i tryt ( w bombie termojądrowej) * promieniotwórcze izotopy cynku i kobaltu powstające wyłącznie w bomach cynkowych/kobaltowych, zaprojektowanych dla wytworzenia większej ilości izotopów promieniotwórczych. 2. PROMIENIOWANIE N, które stanowią emitowane z różnymi prędkościami neutrony, towarzyszące zarówno syntezie jak i rozpadowi 3. PRODUKTY WTÓRNE powstające przez absorbcję neutronów przez atomy powietrza.

5 4. PRODUKTY WYBUCHU, powstałe podczas rozpadu elementów konstrukcyjnych bomby (obudowa, urządzenia zapalające) pod wpływem zarówno siły wybuchu, jak i absorbcji neutronów. Dopiero poznanie procesów chemicznych i fizycznych, jakie zachodzą w bombie jądrowej, pozwala zrozumieć jej istotę. Skonstruowanie bomby atomowej, wymaga niezwykłej dokładności i wiedzy na temat reakcji jądrowych. Energia, jaka wyzwala się podczas wybuchu jest naprawdę zadziwiająco duża. Bomba jądrowa stała się przedmiotem wielu kontrowersji i sporów, ale także niezwykłym zjawiskiem, które ciągle jest obiektem badań :) Autor: lucynkaaa Przedruk ze strony: Artykuł pobrano ze strony eioba.pl

Reakcja rozszczepienia

Reakcja rozszczepienia Reakcje jądrowe Reakcja rozszczepienia W reakcji rozszczepienia neutron powoduje rozszczepienie cięższego jądra na dwa lub więcej mniejsze jadra lżejszych pierwiastków oraz kilka neutronów. Podczas tej

Bardziej szczegółowo

Fizyka współczesna. Jądro atomowe podstawy Odkrycie jądra atomowego: 1911, Rutherford Rozpraszanie cząstek alfa na cienkich warstwach metalu

Fizyka współczesna. Jądro atomowe podstawy Odkrycie jądra atomowego: 1911, Rutherford Rozpraszanie cząstek alfa na cienkich warstwach metalu Odkrycie jądra atomowego: 9, Rutherford Rozpraszanie cząstek alfa na cienkich warstwach metalu Tor ruchu rozproszonych cząstek (fakt, że część cząstek rozprasza się pod bardzo dużym kątem) wskazuje na

Bardziej szczegółowo

Promieniowanie jonizujące

Promieniowanie jonizujące Promieniowanie jonizujące Wykład IV Krzysztof Golec-Biernat Promieniotwórczość naturalna Uniwersytet Rzeszowski, 22 listopada 2017 Wykład IV Krzysztof Golec-Biernat Promieniowanie jonizujące 1 / 21 Reakcja

Bardziej szczegółowo

Reakcje rozszczepienia jądra i ich wykorzystanie

Reakcje rozszczepienia jądra i ich wykorzystanie Reakcje rozszczepienia jądra i ich wykorzystanie 1. Warunki wystąpienia procesu rozszczepienia 2. Charakterystyka procesu rozszczepienia 3. Kontrolowana reakcja rozszczepienia 4. Zasada konstrukcji reaktora

Bardziej szczegółowo

pobrano z serwisu Fizyka Dla Każdego - - zadania z fizyki, wzory fizyczne, fizyka matura

pobrano z serwisu Fizyka Dla Każdego -  - zadania z fizyki, wzory fizyczne, fizyka matura 14. Fizyka jądrowa zadania z arkusza I 14.10 14.1 14.2 14.11 14.3 14.12 14.4 14.5 14.6 14.13 14.7 14.8 14.14 14.9 14. Fizyka jądrowa - 1 - 14.15 14.23 14.16 14.17 14.24 14.18 14.25 14.19 14.26 14.27 14.20

Bardziej szczegółowo

Reakcje syntezy lekkich jąder

Reakcje syntezy lekkich jąder Reakcje syntezy lekkich jąder 1. Synteza jąder lekkich w gwiazdach 2. Warunki wystąpienia procesu syntezy 3. Charakterystyka procesu syntezy 4. Kontrolowana reakcja syntezy termojądrowej 5. Zasada konstrukcji

Bardziej szczegółowo

Reakcje rozszczepienia jądra i ich wykorzystanie

Reakcje rozszczepienia jądra i ich wykorzystanie Reakcje rozszczepienia jądra i ich wykorzystanie 1. Warunki wystąpienia procesu rozszczepienia 2. Charakterystyka procesu rozszczepienia 3. Kontrolowana reakcja rozszczepienia 4. Zasada konstrukcji reaktora

Bardziej szczegółowo

Elementy Fizyki Jądrowej. Wykład 8 Rozszczepienie jąder i fizyka neutronów

Elementy Fizyki Jądrowej. Wykład 8 Rozszczepienie jąder i fizyka neutronów Elementy Fizyki Jądrowej Wykład 8 Rozszczepienie jąder i fizyka neutronów Rozszczepienie lata 30 XX w. poszukiwanie nowych nuklidów n + 238 92U 239 92U + reakcja przez jądro złożone 239 92 U 239 93Np +

Bardziej szczegółowo

FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych

FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych Wykład 10 Energetyka jądrowa Rozszczepienie 235 92 236 A1 A2 U n 92U Z F1 Z F2 2,5n 1 2 Q liczba neutronów 0 8, średnio 2,5 najbardziej prawdopodobne

Bardziej szczegółowo

Od Wielkiego Wybuchu do Gór Izerskich. Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słońca CBK PAN

Od Wielkiego Wybuchu do Gór Izerskich. Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słońca CBK PAN Od Wielkiego Wybuchu do Gór Izerskich Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słońca CBK PAN Góry Izerskie Góry Izerskie Góry Izerskie Góry Izerskie Góry Izerskie Góry Izerskie Góry Izerskie

Bardziej szczegółowo

ELEKTROWNIA JĄDROWA, TO NIE BOMBA Jerzy Kubowski

ELEKTROWNIA JĄDROWA, TO NIE BOMBA Jerzy Kubowski ELEKTROWNIA JĄDROWA, TO NIE BOMBA Jerzy Kubowski Elektrownię jądrową z bombą atomową łączy tylko jedno: ich działania są oparte na wykorzystaniu tego samego zjawiska, jakim jest rozszczepienie jądra atomu

Bardziej szczegółowo

Spis treści. Trwałość jądra atomowego. Okres połowicznego rozpadu

Spis treści. Trwałość jądra atomowego. Okres połowicznego rozpadu Spis treści 1 Trwałość jądra atomowego 2 Okres połowicznego rozpadu 3 Typy przemian jądrowych 4 Reguła przesunięć Fajansa-Soddy ego 5 Szeregi promieniotwórcze 6 Typy reakcji jądrowych 7 Przykłady prostych

Bardziej szczegółowo

Promieniowanie jonizujące

Promieniowanie jonizujące Promieniowanie jonizujące Wykład III Krzysztof Golec-Biernat Reakcje jądrowe Uniwersytet Rzeszowski, 8 listopada 2017 Wykład III Krzysztof Golec-Biernat Promieniowanie jonizujące 1 / 12 Energia wiązania

Bardziej szczegółowo

Fizyka jądrowa cz. 2. Reakcje jądrowe. Teraz stałem się Śmiercią, niszczycielem światów. Robert Oppenheimer

Fizyka jądrowa cz. 2. Reakcje jądrowe. Teraz stałem się Śmiercią, niszczycielem światów. Robert Oppenheimer Barcelona, Espania, May 204 W-29 (Jaroszewicz) 24 slajdy Na podstawie prezentacji prof. J. Rutkowskiego Reakcje jądrowe Fizyka jądrowa cz. 2 Teraz stałem się Śmiercią, niszczycielem światów Robert Oppenheimer

Bardziej szczegółowo

A - liczba nukleonów w jądrze (protonów i neutronów razem) Z liczba protonów A-Z liczba neutronów

A - liczba nukleonów w jądrze (protonów i neutronów razem) Z liczba protonów A-Z liczba neutronów Włodzimierz Wolczyński 40 FIZYKA JĄDROWA A - liczba nukleonów w jądrze (protonów i neutronów razem) Z liczba protonów A-Z liczba neutronów O nazwie pierwiastka decyduje liczba porządkowa Z, a więc ilość

Bardziej szczegółowo

Reakcje syntezy lekkich jąder

Reakcje syntezy lekkich jąder Reakcje syntezy lekkich jąder 1. Synteza jąder lekkich w gwiazdach 2. Warunki wystąpienia procesu syntezy 3. Charakterystyka procesu syntezy 4. Kontrolowana reakcja syntezy termojądrowej 5. Zasada konstrukcji

Bardziej szczegółowo

METODY DETEKCJI PROMIENIOWANIA JĄDROWEGO 3

METODY DETEKCJI PROMIENIOWANIA JĄDROWEGO 3 METODY DETEKCJI PROMIENIOWANIA JĄDROWEGO 3 ENERGETYKA JĄDROWA KONWENCJONALNA (Rozszczepienie fision) n + Z Z 2 A A A2 Z X Y + Y + m n + Q A ~ 240; A =A 2 =20 2 E w MeV / nukl. Q 200 MeV A ENERGETYKA TERMOJĄDROWA

Bardziej szczegółowo

Zadanie 3. (2 pkt) Uzupełnij zapis, podając liczbę masową i atomową produktu przemiany oraz jego symbol chemiczny. Th... + α

Zadanie 3. (2 pkt) Uzupełnij zapis, podając liczbę masową i atomową produktu przemiany oraz jego symbol chemiczny. Th... + α Zadanie: 1 (2 pkt) Określ liczbę atomową pierwiastka powstającego w wyniku rozpadów promieniotwórczych izotopu radu 223 88Ra, w czasie których emitowane są 4 cząstki α i 2 cząstki β. Podaj symbol tego

Bardziej szczegółowo

r. akad. 2012/2013 Wykład IX-X Podstawy Procesów i Konstrukcji Inżynierskich Fizyka jądrowa Zakład Biofizyki 1

r. akad. 2012/2013 Wykład IX-X Podstawy Procesów i Konstrukcji Inżynierskich Fizyka jądrowa Zakład Biofizyki 1 r. akad. 2012/2013 Wykład IX-X Podstawy Procesów i Konstrukcji Inżynierskich Fizyka jądrowa Zakład Biofizyki 1 Budowa jądra atomowego każde jądro atomowe składa się z dwóch rodzajów nukleonów: protonów

Bardziej szczegółowo

ELEKTROWNIE. Czyste energie 2014-01-20. Energetyka jądrowa. Damazy Laudyn Maciej Pawlik Franciszek Strzelczyk

ELEKTROWNIE. Czyste energie 2014-01-20. Energetyka jądrowa. Damazy Laudyn Maciej Pawlik Franciszek Strzelczyk Czyste energie wykład 11 Energetyka jądrowa dr inż. Janusz Teneta Wydział EAIiIB Katedra Automatyki i Inżynierii Biomedycznej AGH Kraków 2014 ELEKTROWNIE Damazy Laudyn Maciej Pawlik Franciszek Strzelczyk

Bardziej szczegółowo

Reakcje rozpadu jądra atomowego

Reakcje rozpadu jądra atomowego Reakcje rozpadu jądra atomowego O P R A C O W A N I E : P A W E Ł Z A B O R O W S K I K O N S U L T A C J A M E R Y T O R Y C Z N A : M A Ł G O R Z A T A L E C H Trwałość izotopów Czynnikiem decydującym

Bardziej szczegółowo

Po 1 mld lat (temperatura Wszechświata ok. 10 K) powstają pierwsze gwiazdy.

Po 1 mld lat (temperatura Wszechświata ok. 10 K) powstają pierwsze gwiazdy. Nukleosynteza Mirosław Kwiatek Skrót ewolucji materii we Wszechświecie: Dominacja promieniowania: Wg. Gamowa (1948) Wszechświat powstał jako 10-wymiarowy i po 10-43 sekundy rozpadł się na 4- i 6-wymiarowy.

Bardziej szczegółowo

Następnie powstały trwały izotop - azot-14 - reaguje z trzecim protonem, przekształcając się w nietrwały tlen-15:

Następnie powstały trwały izotop - azot-14 - reaguje z trzecim protonem, przekształcając się w nietrwały tlen-15: Reakcje syntezy lekkich jąder są podstawowym źródłem energii wszechświata. Słońce - gwiazda, która dostarcza energii niezbędnej do życia na naszej planecie Ziemi, i w której 94% masy stanowi wodór i hel

Bardziej szczegółowo

Autorzy: Zbigniew Kąkol, Piotr Morawski

Autorzy: Zbigniew Kąkol, Piotr Morawski Rodzaje rozpadów jądrowych Autorzy: Zbigniew Kąkol, Piotr Morawski Rozpady jądrowe zachodzą zawsze (prędzej czy później) jeśli jądro o pewnej liczbie nukleonów znajdzie się w stanie energetycznym, nie

Bardziej szczegółowo

Czyste energie. Energetyka jądrowa. wykład 13. dr inż. Janusz Teneta. Wydział EAIiIB Katedra Automatyki i Inżynierii Biomedycznej

Czyste energie. Energetyka jądrowa. wykład 13. dr inż. Janusz Teneta. Wydział EAIiIB Katedra Automatyki i Inżynierii Biomedycznej Czyste energie wykład 13 Energetyka jądrowa dr inż. Janusz Teneta Wydział EAIiIB Katedra Automatyki i Inżynierii Biomedycznej AGH Kraków 2013 ELEKTROWNIE Damazy Laudyn Maciej Pawlik Franciszek Strzelczyk

Bardziej szczegółowo

Oddziaływanie cząstek z materią

Oddziaływanie cząstek z materią Oddziaływanie cząstek z materią Trzy główne typy mechanizmów reprezentowane przez Ciężkie cząstki naładowane (cięższe od elektronów) Elektrony Kwanty gamma Ciężkie cząstki naładowane (miony, p, cząstki

Bardziej szczegółowo

Model elektrowni jądrowej

Model elektrowni jądrowej Model elektrowni jądrowej Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z budową i działaniem elektrowni jądrowej. Wstęp Rozszczepienie jądra atomowego to proces polegający na rozpadzie wzbudzonego

Bardziej szczegółowo

Rozpad gamma. Przez konwersję wewnętrzną (emisję wirtualnego kwantu gamma, który przekazuje swą energię elektronom z powłoki atomowej)

Rozpad gamma. Przez konwersję wewnętrzną (emisję wirtualnego kwantu gamma, który przekazuje swą energię elektronom z powłoki atomowej) Rozpad gamma Deekscytacja jądra atomowego (przejście ze stanu wzbudzonego o energii do niższego stanu o energii ) może zachodzić dzięki oddziaływaniu elektromagnetycznemu przez tzw. rozpad gamma Przejście

Bardziej szczegółowo

25. Niespełniające się prognozy. Przy próbie opisu reakcji jądrowych, transfizyka napotyka na trudności, które przedstawię szczegółowiej, gdyż mogą

25. Niespełniające się prognozy. Przy próbie opisu reakcji jądrowych, transfizyka napotyka na trudności, które przedstawię szczegółowiej, gdyż mogą 25. Niespełniające się prognozy. Przy próbie opisu reakcji jądrowych, transfizyka napotyka na trudności, które przedstawię szczegółowiej, gdyż mogą mieć związek z trudnościami teoretycznymi fizyki, rzutującymi

Bardziej szczegółowo

Wykłady z Geochemii Ogólnej

Wykłady z Geochemii Ogólnej Wykłady z Geochemii Ogólnej III rok WGGiOŚ AGH 2010/11 dr hab. inż. Maciej Manecki A-0 p.24 www.geol.agh.edu.pl/~mmanecki ELEMENTY KOSMOCHEMII Nasza wiedza o składzie materii Wszechświata pochodzi z dwóch

Bardziej szczegółowo

Elementy Fizyki Jądrowej. Wykład 9 Fizyka neutronów i reakcja łańcuchowa

Elementy Fizyki Jądrowej. Wykład 9 Fizyka neutronów i reakcja łańcuchowa Elementy Fizyki Jądrowej Wykład 9 Fizyka neutronów i reakcja łańcuchowa Charakterystyka procesu rozszczepienia Emisja neutronów 1. natychmiastowa, średnio 2,5 neutronów, 10 16 s 2. opóźniona, emisja neutronów

Bardziej szczegółowo

Tworzenie protonów neutronów oraz jąder atomowych

Tworzenie protonów neutronów oraz jąder atomowych Tworzenie protonów neutronów oraz jąder atomowych kwarki, elektrony, neutrina oraz ich antycząstki anihilują aby stać się cząstkami 10-10 s światła fotonami energia kwarków jest już wystarczająco mała

Bardziej szczegółowo

Rozwój oraz budowa broni jądrowej i termojądrowej w XX wieku.

Rozwój oraz budowa broni jądrowej i termojądrowej w XX wieku. Politechnika Warszawska Metody i techniki jądrowe Warszawa 2014 Rozwój oraz budowa broni jądrowej i termojądrowej w XX wieku. Krzysztof Lenartowicz Maciej Radomski 1 A. Historia broni nuklearnej: 1. Badania

Bardziej szczegółowo

Energetyka jądrowa. Energetyka jądrowa

Energetyka jądrowa. Energetyka jądrowa Energetyka jądrowa Zasada zachowania energii i E=mc 2 Budowa jąder atomowych i ich energia wiązania Synteza: z gwiazd na Ziemię... Neutrony i rozszczepienie jąder atomowych Reaktory: klasyczne i akceleratorowe

Bardziej szczegółowo

Podstawowe własności jąder atomowych

Podstawowe własności jąder atomowych Podstawowe własności jąder atomowych 1. Ilość protonów i neutronów Z, N 2. Masa jądra M j = M p + M n - B 2 2 Q ( M c ) ( M c ) 3. Energia rozpadu p 0 k 0 Rozpad zachodzi jeżeli Q > 0, ta nadwyżka energii

Bardziej szczegółowo

Rozszczepienie jądra atomowego

Rozszczepienie jądra atomowego Rozszczepienie jądra atomowego W przypadku izotopów 235 U i 239 Pu energia wzbudzenia jądra po wychwycie neutronu jest większa od wysokości bariery, którą trzeba pokonać aby nastąpiło rozszczepienie. Izotop

Bardziej szczegółowo

I ,11-1, 1, C, , 1, C

I ,11-1, 1, C, , 1, C Materiał powtórzeniowy - budowa atomu - cząstki elementarne, izotopy, promieniotwórczość naturalna, okres półtrwania, średnia masa atomowa z przykładowymi zadaniami I. Cząstki elementarne atomu 1. Elektrony

Bardziej szczegółowo

ODKRYCIE PROMIENIOTWÓRCZOŚCI PROMIENIOWANIE JĄDROWE I JEGO WŁAŚCIWOŚCI

ODKRYCIE PROMIENIOTWÓRCZOŚCI PROMIENIOWANIE JĄDROWE I JEGO WŁAŚCIWOŚCI ODKRYCIE PROMIENIOTWÓRCZOŚCI PROMIENIOWANIE JĄDROWE I JEGO WŁAŚCIWOŚCI Wilhelm Roentgen 1896 Stan wiedzy na rok 1911 1. Elektron masa i ładunek znikomy ułamek masy atomu 2. Niektóre atomy samorzutnie emitują

Bardziej szczegółowo

Liceum dla Dorosłych semestr 1 FIZYKA MAŁGORZATA OLĘDZKA

Liceum dla Dorosłych semestr 1 FIZYKA MAŁGORZATA OLĘDZKA Liceum dla Dorosłych semestr 1 FIZYKA MAŁGORZATA OLĘDZKA Temat 10 : PRAWO HUBBLE A. TEORIA WIELKIEGO WYBUCHU. 1) Prawo Hubble a [czyt. habla] 1929r. Edwin Hubble, USA, (1889-1953) Jedno z największych

Bardziej szczegółowo

Fizyka promieniowania jonizującego. Zygmunt Szefliński

Fizyka promieniowania jonizującego. Zygmunt Szefliński Fizyka promieniowania jonizującego Zygmunt Szefliński 1 Wykład 3 Ogólne własności jąder atomowych (masy ładunki, izotopy, izobary, izotony izomery). 2 Liczba atomowa i masowa Liczba nukleonów (protonów

Bardziej szczegółowo

doświadczenie Rutheforda Jądro atomowe składa się z nuklonów: neutronów (obojętnych elektrycznie) i protonów (posiadających ładunek dodatni +e)

doświadczenie Rutheforda Jądro atomowe składa się z nuklonów: neutronów (obojętnych elektrycznie) i protonów (posiadających ładunek dodatni +e) 1 doświadczenie Rutheforda Jądro atomowe składa się z nuklonów: neutronów (obojętnych elektrycznie) i protonów (posiadających ładunek dodatni +e) Ilość protonów w jądrze określa liczba atomowa Z Ilość

Bardziej szczegółowo

Reakcje jądrowe dr inż. Romuald Kędzierski

Reakcje jądrowe dr inż. Romuald Kędzierski Reakcje jądrowe dr inż. Romuald Kędzierski Wybuch bomby Ivy Mike (fot. National Nuclear Security Administration/Nevada Site Office, domena publiczna) Przemiany jądrowe 1. Spontaniczne (niewymuszone) związane

Bardziej szczegółowo

Fizyka 3. Konsultacje: p. 329, Mechatronika

Fizyka 3. Konsultacje: p. 329, Mechatronika Fizyka 3 Konsultacje: p. 329, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 2 sprawdziany (10 pkt każdy) lub egzamin (2 części po 10 punktów) 10.1 12 3.0 12.1 14 3.5 14.1 16 4.0 16.1 18 4.5 18.1 20 5.0

Bardziej szczegółowo

Broń jądrowa. Geneza Zasada działania Typy Skutki. Nazwa wydziału: Wydział Fizyki I Informatyki Stosowanej. Jakub Dąbrowski, Błażej Hadro

Broń jądrowa. Geneza Zasada działania Typy Skutki. Nazwa wydziału: Wydział Fizyki I Informatyki Stosowanej. Jakub Dąbrowski, Błażej Hadro Broń jądrowa Geneza Zasada działania Typy Skutki Nazwa wydziału: Wydział Fizyki I Informatyki Stosowanej Jakub Dąbrowski, Błażej Hadro www.agh.edu.pl Geneza przed bronią jądrową 1905 r. - Albert Einstein

Bardziej szczegółowo

BOMBA WODOROWA WYMYKA SIĘ SPOD KONTROLI?

BOMBA WODOROWA WYMYKA SIĘ SPOD KONTROLI? aut. Maksymilian Dura 08.01.2016 BOMBA WODOROWA WYMYKA SIĘ SPOD KONTROLI? Jeżeli Korea Północna rzeczywiście przeprowadziła próby ładunku termojądrowego (wodorowego) to oznacza, że zagrożenie zagładą nuklearną

Bardziej szczegółowo

Energetyka konwencjonalna odnawialna i jądrowa

Energetyka konwencjonalna odnawialna i jądrowa Energetyka konwencjonalna odnawialna i jądrowa Wykład 8-27.XI.2018 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Wykład 8 Energia atomowa i jądrowa

Bardziej szczegółowo

Nukleony. Nukleony cząstki jądra atomowego suma protonów i neutronów.

Nukleony. Nukleony cząstki jądra atomowego suma protonów i neutronów. JĄDRO ATOMOWE Nukleony Nukleony cząstki jądra atomowego suma protonów i neutronów. A Z X np. dla izotopów wodoru: -jądro najpospolitszego izotopu H (Z=, A=) składa się z jednego protonu: H -jądro deuteru

Bardziej szczegółowo

Reakcje rozszczepienia i energetyka jądrowa

Reakcje rozszczepienia i energetyka jądrowa J. Pluta, Metody i technologie jądrowe Reakcje rozszczepienia i energetyka jądrowa Energia wiązania nukleonu w jądrze w funkcji liczby masowej jadra A: E w Warunek energetyczny deficyt masy: Reakcja rozszczepienia

Bardziej szczegółowo

CHEMIA LEKCJA 1. Budowa atomu, Izotopy Promieniotwórczość naturalna i sztuczna. Model atomu Bohra

CHEMIA LEKCJA 1. Budowa atomu, Izotopy Promieniotwórczość naturalna i sztuczna. Model atomu Bohra CHEMIA LEKCJA 1. Budowa atomu, Izotopy Promieniotwórczość naturalna i sztuczna Model atomu Bohra SPIS TREŚCI: 1. Modele budowy atomu Thomsona, Rutherforda i Bohra 2. Budowa atomu 3. Liczba atomowa a liczba

Bardziej szczegółowo

CYKL PALIWOWY: OTWARTY CZY ZAMKNIĘTY CZY TO WYSTARCZY?

CYKL PALIWOWY: OTWARTY CZY ZAMKNIĘTY CZY TO WYSTARCZY? CYKL PALIWOWY: OTWARTY CZY ZAMKNIĘTY CZY TO WYSTARCZY? Stefan Chwaszczewski Instytut Energii Atomowej POLATOM W obecnie eksploatowanych reaktorach energetycznych, w procesach rozszczepienia jądrowego wykorzystywane

Bardziej szczegółowo

Przykłady: zderzenia ciał

Przykłady: zderzenia ciał Strona 1 z 5 Przykłady: zderzenia ciał Zderzenie, to proces w którym na uczestniczące w nim ciała działają wielkie siły, ale w stosunkowo krótkim czasie. Wynikają z tego ważne dla praktycznej analizy wnioski

Bardziej szczegółowo

Zadanie 2. (1 pkt) Jądro izotopu U zawiera A. 235 neutronów. B. 327 nukleonów. C. 143 neutrony. D. 92 nukleony

Zadanie 2. (1 pkt) Jądro izotopu U zawiera A. 235 neutronów. B. 327 nukleonów. C. 143 neutrony. D. 92 nukleony Zadanie 1. (1 pkt) W jednym z naturalnych szeregów promieniotwórczych występują m.in. trzy izotopy polonu, których okresy półtrwania podano w nawiasach: Po-218 (T 1/2 = 3,1minuty), Po-214 (T 1/2 = 0,0016

Bardziej szczegółowo

Synteza jądrowa (fuzja) FIZYKA 3 MICHAŁ MARZANTOWICZ

Synteza jądrowa (fuzja) FIZYKA 3 MICHAŁ MARZANTOWICZ Synteza jądrowa (fuzja) Cykl życia gwiazd Narodziny gwiazd: obłok molekularny Rozmiary obłoków (Giant Molecular Cloud) są rzędu setek lat świetlnych. Masa na ogół pomiędzy 10 5 a 10 7 mas Słońca. W obłoku

Bardziej szczegółowo

Ewolucja w układach podwójnych

Ewolucja w układach podwójnych Ewolucja w układach podwójnych Tylko światło Temperatura = barwa różnica dodatnia różnica równa 0 różnica ujemna Jasnośd absolutna m M 5 log R 10 pc Diagram H-R Powstawanie gwiazd Powstawanie gwiazd ciśnienie

Bardziej szczegółowo

FIZYKA IV etap edukacyjny zakres podstawowy

FIZYKA IV etap edukacyjny zakres podstawowy FIZYKA IV etap edukacyjny zakres podstawowy Cele kształcenia wymagania ogólne I. Wykorzystanie wielkości fizycznych do opisu poznanych zjawisk lub rozwiązania prostych zadań obliczeniowych. II. Przeprowadzanie

Bardziej szczegółowo

Elementy fizyki jądrowej

Elementy fizyki jądrowej Elementy fizyki jądrowej Cząstka elementarna Fermiony (cząstki materii) -leptony: elektron, neutrino elektronowe, mion, neutrino mionowe, taon, neutrino taonowe -kwarki: kwark dolny, kwark górny, kwark

Bardziej szczegółowo

Energetyka Jądrowa. Wykład 3 14 marca Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Energetyka Jądrowa. Wykład 3 14 marca Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Energetyka Jądrowa Wykład 3 14 marca 2017 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Henri Becquerel 1896 Promieniotwórczość 14.III.2017 EJ

Bardziej szczegółowo

Promieniotwórczość naturalna. Jądro atomu i jego budowa.

Promieniotwórczość naturalna. Jądro atomu i jego budowa. Promieniotwórczość naturalna. Jądro atomu i jego budowa. Doświadczenie Rutherforda (1909). Polegało na bombardowaniu złotej folii strumieniem cząstek alfa (jąder helu) i obserwacji odchyleń ich toru ruchu.

Bardziej szczegółowo

PODSTAWY FIZYCZNE ENERGETYKI JĄDROWEJ

PODSTAWY FIZYCZNE ENERGETYKI JĄDROWEJ EERGETYKA EKOLOGA Część - EERGETYKA 22 ODSTAWY FZYCZE EERGETYK JĄDROWEJ ( jak powstaje energia jądrowa ) Stanisław Drobniak STYTT MASZY CELYCH 1. rzegląd podstawowych pojęć. 2. Bilans energetyczny reakcji

Bardziej szczegółowo

Skonstruowanie litowo-deuterowego konwertera neutronów termicznych na neutrony prędkie o energii 14 MeV w reaktorze MARIA (Etap 14, 5.1.

Skonstruowanie litowo-deuterowego konwertera neutronów termicznych na neutrony prędkie o energii 14 MeV w reaktorze MARIA (Etap 14, 5.1. Skonstruowanie litowo-deuterowego konwertera neutronów termicznych na neutrony prędkie o energii 14 MeV w reaktorze MARIA (Etap 14, 5.1.) Krzysztof Pytel, Rafał Prokopowicz Badanie wytrzymałości radiacyjnej

Bardziej szczegółowo

Wykres Herzsprunga-Russela (H-R) Reakcje termojądrowe - B.Kamys 1

Wykres Herzsprunga-Russela (H-R) Reakcje termojądrowe - B.Kamys 1 Wykres Herzsprunga-Russela (H-R) 2012-06-07 Reakcje termojądrowe - B.Kamys 1 Proto-gwiazdy na wykresie H-R 2012-06-07 Reakcje termojądrowe - B.Kamys 2 Masa-jasność, temperatura-jasność n=3.5 2012-06-07

Bardziej szczegółowo

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 40 FIZYKA JĄDROWA

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 40 FIZYKA JĄDROWA autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 40 FIZYKA JĄDROWA Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania TEST JEDNOKROTNEGO WYBORU UWAGA: Tekst poniżej,

Bardziej szczegółowo

Teoria Wielkiego Wybuchu FIZYKA 3 MICHAŁ MARZANTOWICZ

Teoria Wielkiego Wybuchu FIZYKA 3 MICHAŁ MARZANTOWICZ Teoria Wielkiego Wybuchu Epoki rozwoju Wszechświata Wczesny Wszechświat Epoka Plancka (10-43 s): jedno podstawowe oddziaływanie Wielka Unifikacja (10-36 s): oddzielenie siły grawitacji od reszty oddziaływań

Bardziej szczegółowo

Podstawowe własności jąder atomowych

Podstawowe własności jąder atomowych Fizyka jądrowa Struktura jądra (stan podstawowy) Oznaczenia, terminologia Promienie jądrowe i kształt jąder Jądra stabilne; warunki stabilności; energia wiązania Jądrowe momenty magnetyczne Modele struktury

Bardziej szczegółowo

Know-how bomby atomowej (wtorek, 22 marzec 2005) - Dodał wtorek

Know-how bomby atomowej (wtorek, 22 marzec 2005) - Dodał wtorek Know-how bomby atomowej (wtorek, 22 marzec 2005) - Dodał wtorek 2 sierpnia 1939, na krótko przed wybuchem II wojny światowej, Albert Einstein napisał list do ówczesnego prezydenta USA, Franklina D. Roosvelta,

Bardziej szczegółowo

Fizyka 2. Janusz Andrzejewski

Fizyka 2. Janusz Andrzejewski Fizyka 2 wykład 15 Janusz Andrzejewski Janusz Andrzejewski 2 Egzamin z fizyki I termin 31 stycznia2014 piątek II termin 13 luty2014 czwartek Oba egzaminy odbywać się będą: sala 301 budynek D1 Janusz Andrzejewski

Bardziej szczegółowo

Budowa atomu. Izotopy

Budowa atomu. Izotopy Budowa atomu. Izotopy Zadanie. atomu lub jonu Fe 3+ atomowa Z 9 masowa A Liczba protonów elektronów neutronów 64 35 35 36 Konfiguracja elektronowa Zadanie 2. Atom pewnego pierwiastka chemicznego o masie

Bardziej szczegółowo

Jądro atomowe Wielkości charakteryzujące jądro atomowe

Jądro atomowe Wielkości charakteryzujące jądro atomowe Fizyka jądrowa Jądro atomowe Wielkości charakteryzujące jądro atomowe A - liczba masowa Z - liczba porządkowa pierwiastka w układzie okresowym N - liczba neutronów Oznaczenie jądra atomowego : A X lub

Bardziej szczegółowo

Zadania powtórkowe do egzaminu maturalnego z chemii Budowa atomu, układ okresowy i promieniotwórczość

Zadania powtórkowe do egzaminu maturalnego z chemii Budowa atomu, układ okresowy i promieniotwórczość strona 1/11 Zadania powtórkowe do egzaminu maturalnego z chemii Budowa atomu, układ okresowy i promieniotwórczość Monika Gałkiewicz Zad. 1 () Przedstaw pełną konfigurację elektronową atomu pierwiastka

Bardziej szczegółowo

OCHRONA RADIOLOGICZNA PACJENTA. Promieniotwórczość

OCHRONA RADIOLOGICZNA PACJENTA. Promieniotwórczość OCHRONA RADIOLOGICZNA PACJENTA Promieniotwórczość PROMIENIOTWÓRCZOŚĆ (radioaktywność) zjawisko samorzutnego rozpadu jąder atomowych niektórych izotopów, któremu towarzyszy wysyłanie promieniowania α, β,

Bardziej szczegółowo

Zadanie 2 budowa atomu 1. Opisz budowę atomu wodoru.

Zadanie 2 budowa atomu 1. Opisz budowę atomu wodoru. Zadanie 1- struktura materii 1. Z jakich cząstek składa się proton, neutron, elektron? 2. Jakimi własnościami fizycznymi różnią się te cząstki? (masa, ładunek elektryczny) 3. Czy pojedyncze kwarki mogą

Bardziej szczegółowo

Widma atomowe. Fizyka atomowa i jądrowa. Dawne modele atomu. Widma atomowe. Linie emisyjne kwantowanie poziomów energetycznych

Widma atomowe. Fizyka atomowa i jądrowa. Dawne modele atomu. Widma atomowe. Linie emisyjne kwantowanie poziomów energetycznych Fizyka atomowa i jądrowa Widma atomowe kwantowanie poziomów Widma atomowe Linie emisyjne kwantowanie poziomów energetycznych Budowa atomu: eksperyment Geigera-Marsdena-Rutherforda Atom wodoru w mechanice

Bardziej szczegółowo

Fizyka atomowa i jądrowa

Fizyka atomowa i jądrowa Fizyka atomowa i jądrowa Widma atomowe kwantowanie poziomów Budowa atomu: eksperyment Geigera-Marsdena-Rutherforda Atom wodoru w mechanice kwantowej; liczby kwantowe Atomy wieloelektronowe układ okresowy

Bardziej szczegółowo

Anna Grych Test z budowy atomu i wiązań chemicznych

Anna Grych Test z budowy atomu i wiązań chemicznych Anna Grych Test z budowy atomu i wiązań chemicznych 1. Uzupełnij tabelkę wpisując odpowiednie dane: Nazwa atomu Liczba nukleonów protonów neutronów elektronów X -... 4 2 Y -... 88 138 Z -... 238 92 W -...

Bardziej szczegółowo

Energetyka w Środowisku Naturalnym

Energetyka w Środowisku Naturalnym Energetyka w Środowisku Naturalnym Energia w Środowisku -technika ograniczenia i koszty Wykład 12 17/24 stycznia 2017 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/

Bardziej szczegółowo

Promieniowanie w środowisku człowieka

Promieniowanie w środowisku człowieka Promieniowanie w środowisku człowieka Jeżeli przyjrzymy się szczegółom mapy nuklidów zauważymy istniejące w przyrodzie w stosunkowo dużych ilościach nuklidy nietrwałe. Ich czasy zaniku są duże, większe

Bardziej szczegółowo

Obliczenia chemiczne

Obliczenia chemiczne strona 1/8 Obliczenia chemiczne Dorota Lewandowska, Anna Warchoł, Lidia Wasyłyszyn Treść podstawy programowej: Wagowe stosunki stechiometryczne w związkach chemicznych i reakcjach chemicznych masa atomowa

Bardziej szczegółowo

I etap ewolucji :od ciągu głównego do olbrzyma

I etap ewolucji :od ciągu głównego do olbrzyma I etap ewolucji :od ciągu głównego do olbrzyma Spalanie wodoru a następnie helu i cięższych jąder doprowadza do zmiany składu gwiazdy i do przesunięcia gwiazdy na wykresie H-R II etap ewolucji: od olbrzyma

Bardziej szczegółowo

Podstawy fizyki subatomowej. 3 kwietnia 2019 r.

Podstawy fizyki subatomowej. 3 kwietnia 2019 r. Podstawy fizyki subatomowej Wykład 7 3 kwietnia 2019 r. Atomy, nuklidy, jądra atomowe Atomy obiekt zbudowany z jądra atomowego, w którym skupiona jest prawie cała masa i krążących wokół niego elektronów.

Bardziej szczegółowo

Energetyka Jądrowa. źródło: Wszystko o energetyce jądrowej, AREVA

Energetyka Jądrowa. źródło: Wszystko o energetyce jądrowej, AREVA Energetyka Jądrowa Wykład 7 11 kwietnia 2017 źródło: Wszystko o energetyce jądrowej, AREVA Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Moderator

Bardziej szczegółowo

przyziemnych warstwach atmosfery.

przyziemnych warstwach atmosfery. Źródła a promieniowania jądrowego j w przyziemnych warstwach atmosfery. Pomiar radioaktywności w powietrzu w Lublinie. Jan Wawryszczuk Radosław Zaleski Lokalizacja monitora skażeń promieniotwórczych rczych

Bardziej szczegółowo

Odkrycie jądra atomowego - doświadczenie Rutherforda 1909 r.

Odkrycie jądra atomowego - doświadczenie Rutherforda 1909 r. Odkrycie jądra atomowego - doświadczenie Rutherforda 1909 r. 1 Budowa jądra atomowego Liczba atomowa =Z+N Liczba masowa Liczba neutronów Izotopy Jądra o jednakowej liczbie protonów, różniące się liczbą

Bardziej szczegółowo

Wykłady z Chemii Ogólnej i Biochemii. Dr Sławomir Lis

Wykłady z Chemii Ogólnej i Biochemii. Dr Sławomir Lis Wykłady z Chemii Ogólnej i Biochemii Dr Sławomir Lis Chemia, jako nauka zajmuje się otrzymywaniem i wszechstronnym badaniem własności, struktury oraz reakcji chemicznych pierwiastków i ich połączeń. Chemia

Bardziej szczegółowo

Podstawy Fizyki Jądrowej

Podstawy Fizyki Jądrowej Podstawy Fizyki Jądrowej III rok Fizyki Kurs WFAIS.IF-D008.0 Składnik egzaminu licencjackiego (sesja letnia)! OPCJA (zalecana): Po uzyskaniu zaliczenia z ćwiczeń możliwość zorganizowania ustnego egzaminu

Bardziej szczegółowo

Energetyka konwencjonalna odnawialna i jądrowa

Energetyka konwencjonalna odnawialna i jądrowa Energetyka konwencjonalna odnawialna i jądrowa Wykład 10-11.XII.2018 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Energetyka Jądrowa 11.XII.2018

Bardziej szczegółowo

Opracowała: mgr Agata Wiśniewska PRZYKŁADOWE SPRAWDZIANY WIADOMOŚCI l UMIEJĘTNOŚCI Współczesny model budowy atomu (wersja A)

Opracowała: mgr Agata Wiśniewska PRZYKŁADOWE SPRAWDZIANY WIADOMOŚCI l UMIEJĘTNOŚCI Współczesny model budowy atomu (wersja A) PRZYKŁADOW SPRAWDZIANY WIADOMOŚCI l UMIJĘTNOŚCI Współczesny model budowy atomu (wersja A) 1. nuklid A. Zbiór atomów o tej samej wartości liczby atomowej. B. Nazwa elektrycznie obojętnej cząstki składowej

Bardziej szczegółowo

Budowa i ewolucja gwiazd I. Skale czasowe Równania budowy wewnętrznej Modele Diagram H-R Ewolucja gwiazd

Budowa i ewolucja gwiazd I. Skale czasowe Równania budowy wewnętrznej Modele Diagram H-R Ewolucja gwiazd Budowa i ewolucja gwiazd I Skale czasowe Równania budowy wewnętrznej Modele Diagram H-R Ewolucja gwiazd Dynamiczna skala czasowa Dla Słońca: 3 h Twierdzenie o wiriale Temperatura wewnętrzna Cieplna skala

Bardziej szczegółowo

Reaktor jądrowy. Schemat. Podstawy fizyki jądrowej - B.Kamys

Reaktor jądrowy. Schemat. Podstawy fizyki jądrowej - B.Kamys Reaktor jądrowy Schemat Elementy reaktora Rdzeń Pręty paliwowe (np. UO 2 ) Pręty regulacyjne i bezpieczeństwa (kadm, bor) Moderator (woda, ciężka woda, grafit, ) Kanały chłodzenia (woda, ciężka woda, sód,

Bardziej szczegółowo

1. JĄDROWA BUDOWA ATOMU. A1 - POZIOM PODSTAWOWY.

1. JĄDROWA BUDOWA ATOMU. A1 - POZIOM PODSTAWOWY. . JĄDROWA BUDOWA ATOMU. A - POIOM PODSTAWOWY. Na początek - przeczytaj uważnie tekst i wykonaj zawarte pod nim polecenia.. Dwie reakcje jądrowe zachodzące w górnych warstwach atmosfery: N + n C + p N +

Bardziej szczegółowo

Szkolny konkurs chemiczny Grupa B. Czas pracy 80 minut

Szkolny konkurs chemiczny Grupa B. Czas pracy 80 minut Szkolny konkurs chemiczny Grupa B Czas pracy 80 minut Piła 1 czerwca 2017 1 Zadanie 1. (0 3) Z konfiguracji elektronowej atomu (w stanie podstawowym) pierwiastka X wynika, że w tym atomie: elektrony rozmieszczone

Bardziej szczegółowo

Słońce na... Ziemi. Autor: prof. zw. dr hab. inŝ. Włodzimierz Kotowski. ( Energia Gigawat lipiec 2007)

Słońce na... Ziemi. Autor: prof. zw. dr hab. inŝ. Włodzimierz Kotowski. ( Energia Gigawat lipiec 2007) Słońce na... Ziemi Autor: prof. zw. dr hab. inŝ. Włodzimierz Kotowski ( Energia Gigawat lipiec 2007) Źródłem wytwarzania gigantycznych ilości ciepła z kaŝdej gwiazdy wszechświata są przebiegające w niej

Bardziej szczegółowo

PROMIENIOTWÓRCZOŚĆ. A) równa B) mniejsza C) większa D) nie mniejsza (sumie) od sumy mas protonów i neutronów wchodzących w jego skład.

PROMIENIOTWÓRCZOŚĆ. A) równa B) mniejsza C) większa D) nie mniejsza (sumie) od sumy mas protonów i neutronów wchodzących w jego skład. 1. Promień atomu jest większy od promienia jądra atomu PROMIENIOTWÓRCZOŚĆ A) 5 razy. B) 100 razy. C) 10 5 razy. D) terminy promień atomu i promień jądra są synonimami. 2. Jeśliby, zachowując skalę, powiększyć

Bardziej szczegółowo

W2. Struktura jądra atomowego

W2. Struktura jądra atomowego W2. Struktura jądra atomowego Doświadczenie Rutherforda - badanie odchylania wiązki cząstek alfa w cienkiej folii metalicznej Hans Geiger, Ernest Marsden, Ernest Rutherford ( 1911r.) detektor pierwiastek

Bardziej szczegółowo

Budowa atomu. Wiązania chemiczne

Budowa atomu. Wiązania chemiczne strona /6 Budowa atomu. Wiązania chemiczne Dorota Lewandowska, Anna Warchoł, Lidia Wasyłyszyn Treść podstawy programowej: Budowa atomu; jądro i elektrony, składniki jądra, izotopy. Promieniotwórczość i

Bardziej szczegółowo

NEUTRONOWA ANALIZA AKTYWACYJNA ANALITYKA W KONTROLI JAKOŚCI PODSTAWOWE INFORMACJE O REAKCJACH JĄDROWYCH - NEUTRONOWA ANALIZA AKTYWACYJNA

NEUTRONOWA ANALIZA AKTYWACYJNA ANALITYKA W KONTROLI JAKOŚCI PODSTAWOWE INFORMACJE O REAKCJACH JĄDROWYCH - NEUTRONOWA ANALIZA AKTYWACYJNA ANALITYKA W KONTROLI JAKOŚCI WYKŁAD 3 NEUTRONOWA ANALIZA AKTYWACYJNA - PODSTAWOWE INFORMACJE O REAKCJACH JĄDROWYCH - NEUTRONOWA ANALIZA AKTYWACYJNA REAKCJE JĄDROWE Rozpad promieniotwórczy: A B + y + ΔE

Bardziej szczegółowo

Foton, kwant światła. w klasycznym opisie świata, światło jest falą sinusoidalną o częstości n równej: c gdzie: c prędkość światła, długość fali św.

Foton, kwant światła. w klasycznym opisie świata, światło jest falą sinusoidalną o częstości n równej: c gdzie: c prędkość światła, długość fali św. Foton, kwant światła Wielkość fizyczna jest skwantowana jeśli istnieje w pewnych minimalnych (elementarnych) porcjach lub ich całkowitych wielokrotnościach w klasycznym opisie świata, światło jest falą

Bardziej szczegółowo

BUDOWA ATOMU KRYSTYNA SITKO

BUDOWA ATOMU KRYSTYNA SITKO BUDOWA ATOMU KRYSTYNA SITKO Ziarnista budowa materii Otaczająca nas materia to świat różnorodnych substancji np. woda, powietrze, drewno, metale. Sprawiają one wrażenie, że mają budowę ciągłą, to znaczy

Bardziej szczegółowo

Wstęp do fizyki jądrowej Tomasz Pawlak, 2009

Wstęp do fizyki jądrowej Tomasz Pawlak, 2009 05-05-07 Wstęp do fizyki jądrowej Tomasz Pawlak, 2009 część 8 reakcje jądrowe od początku... 1919 E.Rutherford, (Po, ZnS, transmutacja) 4 2 He + 14 7N 17 8O + p (Q = -1.19 MeV) 1932 protony z generatora

Bardziej szczegółowo

KONKURS Z FIZYKI I ASTRONOMII. Fuzja jądrowa. dla uczniów gimnazjum i uczniów klas I i II szkół ponadgimnazjalnych

KONKURS Z FIZYKI I ASTRONOMII. Fuzja jądrowa. dla uczniów gimnazjum i uczniów klas I i II szkół ponadgimnazjalnych KONKURS Z FIZYKI I ASTRONOMII Fuzja jądrowa dla uczniów gimnazjum i uczniów klas I i II szkół ponadgimnazjalnych I. Organizatorem konkursu jest Krajowy Punkt Kontaktowy Euratom przy Instytucie Fizyki Plazmy

Bardziej szczegółowo

Energia słoneczna i cieplna biosfery Pojęcia podstawowe

Energia słoneczna i cieplna biosfery Pojęcia podstawowe Dr inż. Mariusz Szewczyk Politechnika Rzeszowska im. I. Łukasiewicza Wydział Budowy Maszyn i Lotnictwa Katedra Termodynamiki 35-959 Rzeszów, ul. W. Pola 2 Energia słoneczna i cieplna biosfery Pojęcia podstawowe

Bardziej szczegółowo