Reakcje rozszczepienia jądra i ich wykorzystanie

Wielkość: px
Rozpocząć pokaz od strony:

Download "Reakcje rozszczepienia jądra i ich wykorzystanie"

Transkrypt

1 Reakcje rozszczepienia jądra i ich wykorzystanie 1. Warunki wystąpienia procesu rozszczepienia 2. Charakterystyka procesu rozszczepienia 3. Kontrolowana reakcja rozszczepienia 4. Zasada konstrukcji reaktora jądrowego 5. Broń jądrowa 6. Problemy energetyki jądrowej

2 264 jądra stabilne ok jąder znanych ok jąder przewidywanych Emisja p Mapa nuklidów Przemiana β + Z = 82 p n + e + + ν e 90 Th i 92 U liczba protonów, Z Emisja 2p ZX Z-1 Y + p Z = 50 N = 82 Przemiana β - N = 126 Emisja α Z X N Z-2 Y N-2 + α - trwałe - rozszczepienie Z = 20 Z = 28 N = 50 n p + e - + ν e - α - β - - β + Z = 2 Z = 8 N = 2 N = 8 N = 20 N = 28 liczba neutronów, N - p

3 Rozszczepienie jąder ciężkich B/A[MeV] Rozszczepienie jądra 238 U (B/A 7,6 MeV/u) na dwa fragmenty np. 119 Pd (B/A 8,5 MeV/u): Q = E f = 2 B(A/2, Z/2) - B(A,Z) = 238 (8,5-7,6) MeV= 214 MeV A

4 Rozszczepienie jąder ciężkich Przy rozszczepieniu jądra o (A,Z) na dwa fragmenty o równych masach: Energia rozszczepienia (w modelu kroplowym): B ( A, Z ) = Q/c 2 = E f /c 2 = M(A,Z) - 2 M(A/2, Z/2) M a ( ) ( ) V A, Z = ZM + ( A Z) m B A, Z H n A a S A ( A Z ) 2 2 / 3 Z 2 ac a 1/ 3 SYM E f /c 2 = a S A 2/3 (1-2 1/3 ) + a C Z 2 A -1/3 (1-2 -2/3 ) A A 2 + δ A 1/ 2 E f /c 2 0 dla jąder o A i Z większym od 90 Zr Przy rozszczepieniu jądra 238 U na dwa fragmenty np. 119 Pd Q = E f = 191 MeV

5 Warunki wystąpienia procesu rozszczepienia Rozszczepienie - wynik konkurencji między siłami jądrowymi i kulombowskimi B A F kul Z U rozszczepienie T 1/2 = lat rozpad α T 1/2 = lat

6 Warunki wystąpienia procesu rozszczepienia Rozszczepienie jądra 238 U na dwa fragmenty np. 119 Pd: 1. Energia uwalniana w procesie rozszczepienia E f = Q 200 MeV 2. Bariera kulombowska dla 2 fragmentów V c = Z 1 Z 2 e 2 ahc/r = 250 MeV Bardzo małe prawdopodobieństwo rozszczepienia i duży T 1/2!

7 Warunek na rozszczepienie samoistne energia aktywacji = 0 Q V c energia aktywacji Q

8 Warunek na rozszczepienie samoistne Q /c 2 = E f /c 2 = a S A 2/3 (1-2 1/3 ) + a C Z 2 A -1/3 (1-2 -2/3 ) V c = (Z/2) 2 e 2 ahc/ [2r 0 (A/2) 1/3 ] = C Z 2 A -1/3 Q V c a S A 2/3 + a C Z 2 A -1/3 C Z 2 A -1/3 warunek niestabilności: Z 2 / A a S / (C - a C )

9 Warunki wystąpienia procesu rozszczepienia

10 Warunek na rozszczepienie samoistne Wpływ deformacji na energię wiązania: sfera elipsoida B ( A, Z ) = a V A a A a b ( A Z ) 2 2 / 3 Z 2 ac a 1/ 3 SYM A warunek: V = (4/3)πab 2 = (4/3)πR 3 S S = 4πR 2 [1 + (2/5) ε 2 +..] = = R(1 + ε ) R A 2 ( 1 ε ) 2 + δ A 1/ 2

11 energia powierzchniowa energia kulombowska różnica energii względem jądra sferycznego ( ) ( ) ( ) ( ) ( ) ( ) [ ] = + + = + = + + = 1/3 2 2/ / / A Z a A a E E E E E E A Z a E A a E C S C S C S C C S S ε ε ε ε ε ε ε Zmiana energii wiązania jądra przy wzroście deformacji ε : DE = - [B(e) - B(0)] Warunek na rozszczepienie samoistne warunek niestabilności: E 0

12 Warunek na rozszczepienie samoistne E = 0 2a S A 2 Z A 2/3 2a a C S a C Z A 2 1/3 = 0 48 rozszczepienie parametr rozszczepienia: x = Z 2 / (48A) Z>114 A>270 Dla jąder występujących w przyrodzie rozszczepienie samoistne nie zachodzi

13 Energia aktywacji model kroplowy efekty powłokowe parametr rozszczepienia: x = Z 2 / (48A) dla 238 U Z 2 /A = 35.5 x = 0.74

14 Prawdopodobieństwo rozszczepienia Czas połowicznego zaniku ze względu na rozszczpienie silnie zależy od Z 2 /A parametr rozszczepialności x = Z 2 /(48 A ) x Jądro T 1/2 0, U lat 0, Fm 220 dni 0, ,01 s

15 Rozszczepienie wymuszone Energia aktywacji > 0 neutrony termiczne (0.025 ev, 2200 m/s)

16 Rozszczepienie wymuszone W wyniku wchłonięcia przez 235 U neutronu powstaje 236 U o energii wzbudzenia E x = [m ( 236 U*) - m( 236 U)]c 2 m ( 236 U*) = m( 235 U) + m n ; E kin n - b. mała m ( 236 U*) = 235, u + 1, u = 236, u m ( 236 U) = 236, u E x = (236, u - 236, u) 931,502 MeV/u = 6,5 MeV Energia aktywacji (energia progowa) dla 236 U: 6,2 MeV 235 U może ulegać rozszczepieniu już dla E n kin = 0.

17 Rozszczepienie wymuszone Dla n U Æ 239 U* Energia aktywacji E x = 4,8 MeV E prog ( 239 U) = 6,6 MeV 238 U może ulegać rozszczepieniu dla E n kin od ok. 2 MeV

18 Rozszczepienie wymuszone Przekrój czynny na rozszczepienie indukowane neutronami dla 235 U i 238 U

19 Charakterystyka procesu rozszczepienia 1. Rozkład masowy fragmentów rozszczepienia Rozszczepienie nie jest procesem symetrycznym. Silnie uprzywilejowany jest rozpad na dwa fragmenty znacznie różniące się masą.

20 Charakterystyka procesu rozszczepienia 2. Emisja neutronów a) natychmiastowa, średnio 2,5 n, tª10-16 s b) opóźniona, emisja n po rozpadzie b fragmentów, ok. 0,7% liczby n, średnio tª12,5 s. A Z X b n A Z+1 X A-1 Z+1 X

21 Charakterystyka procesu rozszczepienia 3. Rozkład energii kinetycznej fragmentów Całkowita energia kinetyczna emitowanych cząstek wynosi ok. 180 MeV 4. Widmo energetyczne neutronów średnia E n = 2 MeV

22 Kontrolowana reakcja rozszczepienia Dla zapoczątkowania reakcji łańcuchowej konieczne jest aby liczba neutronów była > 1. n U Æ rozszczepienie Æ n U Æ... n U Æ... W przypadku 235 U neutrony muszą zostać spowolnione - moderator (woda, D 2 O, grafit, beryl)

23 Kontrolowana reakcja rozszczepienia Regulacja liczby neutronów - pręty regulacyjne (kadm)

24 Kontrolowana reakcja rozszczepienia Bilans liczby neutronów Straty n: ucieczka z reaktora absorpcja przez (n,g) absorpcja w moderatorze W chwili początkowej - N neutronów termicznych hn neutronów szybkich w wyniku rozszczepienia 235 U ehn neutronów szybkich w wyniku rozszczepienia 238 U k ef N neutronów termicznych w wyniku spowolnienia w moderatorze; k ef = eh P us P ut - współczynnik powielania n k ef = 1 układ jest krytyczny, reakcja przebiega stacjonarnie k ef < 1 układ jest podkrytyczny, reakcja zanika k ef > 1 układ jest nadkrytyczny, liczba n rośnie

25 P ut η P us ε

26 Zasada konstrukcji reaktora jądrowego Części reaktora: paliwo - materiał rozszczepialny moderator reflektor zbiornik zabezpieczający chłodziwo pręty regulacyjne (kontrola mocy) system bezpieczeństwa

27 Zasada konstrukcji reaktora jądrowego Reaktor wodny ciśnieniowy

28 Elektrownia jądrowa w Niemczech 1g węgla - 36 kj 1g uranu - 86 GJ 16% produkowanej w świecie energii elektrycznej pochodzi z reaktorów jądrowych.

29 Reaktor jądrowy

30 Promieniowanie Czerenkowa Reaktor jądrowy

31 Zasada konstrukcji reaktora jądrowego Paliwo jądrowe Uran- uran naturalny: 99,3 % 238 U, 0,7% 235 U uran wzbogacony w 235 U wytworzony sztucznie 233 U: 232 Th + n Æ 233 Th Æ 233 Pa Æ 233 U Pluton- wytworzony sztucznie 239 Pu 238 U + n Æ 239 U Æ 239 Np Æ 239 Pu

32 Zasada konstrukcji reaktora jądrowego Typy reaktorów jądrowych 1. Reaktory termiczne w Polsce reaktor MARIA w Świerku (uran wzbogacony, początkowo 80% 235 U, obecnie 36%) 2. Reaktory prędkie - możliwość powielania paliwa w cyklu uranowo-plutonowym n n n 239 Pu 239 Pu n 238 U 239 U 239 Np

33 Historia 1. Pierwsze eksperymenty - Enrico Fermi w 1934 r. próba produkcji pierwiastków transuranowych - Otto Hahn i Fritz Strassmann w 1938 r. - stwierdzenie produkcji Ba i Kr 2. Poprawna interpretacja teoretyczna - Lise Meitner i Otto Frisch w 1939 r. 3. Opis teoretyczny rozszczepienia w modelu kroplowym - Niels Bohr i J.A. Wheeler w 1939 r. 4. Pierwsza kontrolowana reakcja jądrowa - E. Fermi 2 grudnia 1942 r.

34 Kontrolowana reakcja rozszczepienia Enrico Fermi - w 1934 naświetlał n 235 U, w 1942 kierował budową pierwszego reaktora jądrowego w Chicago

35 Problemy energetyki jądrowej 1. Postępowanie z wypalonym paliwem i odpadami promieniotwórczymi a) w świecie zgromadzono ok. 220 tys ton wypalonego paliwa wyprodukowano z niego 70 tys TWh energii elektrycznej b) w Polsce 140 TWh energii na rok daje 25 mln ton popiołów c) składowanie w środowisku wodnym - przez około 50 lat d) składowanie w głębokich formach geologicznych e) przetwarzanie chemiczne f) transmutacja jądrowa długożyciowych izotopów radioaktywnych

36 Problemy energetyki jądrowej Społeczna obawa przed skutkami awarii Awaria reaktora w Czarnobylu

37 Kontrolowana reakcja rozszczepienia Względna liczba n, które uciekają z bryły uranu zależy od wielkości i kształtu tej bryły. a) procesy zależne od wielkości powierzchni: ucieczka z bryły b) procesy zależne od objętości: rozszczepienie absorpcja Masa krytyczna - masa najmniejszej ilości materiału rozszczepialnego, w której może się rozwinąć reakcja łańcuchowa

38 Warunki wybuchu: Wybuch jądrowy masa paliwa musi być większa od masy krytycznej masa krytyczna musi być osiągnięta w bardzo krótkim czasie (10-6 s) Masa krytyczna dla kształtu sferycznego 235 U 239 Pu dla samej kuli 56 kg 11 kg dla kuli otoczonej grubym reflektorem 15 kg 5 kg Masa krytyczna maleje, gdy gęstość materiału rozszczepialnego rośnie

39 Broń jądrowa - bomba atomowa 1. Typ gun (Hiroshima) 235 U pocisk 80% tarcza a) detonacja b) utworzenie masy nadkrytycznej o normalnej gęstości z 2 mas podkrytycznych 2. Typ implosion (Nagasaki) a) detonacja b) fala uderzeniowa - kompresja masy do masy nadkrytycznej o zwiększonej gęstości kula z 239 Pu lub 235 U -podkrytyczna reflektor 238 U

40 Broń jądrowa - bomba atomowa Broń jednofazowa - rozszczepienie pierwiastków ciężkich Materiał rozszczepialny: 233 U i 235 U lub 239 Pu Osiągnięcie masy nadkrytycznej: a) przez zmianę geometrii b) przez zmianę stosunku V/S i gęstości Zapalnik - konwencjonalne materiały wybuchowe

41 Manhattan Project Oak Ridge, USA 60 tys robotników pracowało przez 3 lata, aby wyseparować 2 kg 235 U

42 Pierwsza bomba atomowa Little Boy bomba uranowa (typ gun ) zrzucona na Hiroshimę (6 sierpnia 1945 r.): długość 3m, średnica 60 cm, 64 kg uranu wzbogaconego do 80% w 235 U

43 Bomby atomowe zrzucone na Japonię w 1945 Fat Man - bomba plutonowa typu implosion zrzucona na Nagasaki (9 sierpnia 1945 r.): długość 3,3 m,średnica 1,3 m, 6,2 kg 239 Pu

44 Bombardowanie Nagasaki 9 sierpnia 1945 Skutki eksplozji: podmuch % energii promieniowanie termiczne % energii promieniowanie jonizujące - 5% energii opad radioaktywny % energii

45 Nagasaki po wybuchu

Reakcje rozszczepienia jądra i ich wykorzystanie

Reakcje rozszczepienia jądra i ich wykorzystanie Reakcje rozszczepienia jądra i ich wykorzystanie 1. Warunki wystąpienia procesu rozszczepienia 2. Charakterystyka procesu rozszczepienia 3. Kontrolowana reakcja rozszczepienia 4. Zasada konstrukcji reaktora

Bardziej szczegółowo

Promieniowanie jonizujące

Promieniowanie jonizujące Promieniowanie jonizujące Wykład IV Krzysztof Golec-Biernat Promieniotwórczość naturalna Uniwersytet Rzeszowski, 22 listopada 2017 Wykład IV Krzysztof Golec-Biernat Promieniowanie jonizujące 1 / 21 Reakcja

Bardziej szczegółowo

Elementy Fizyki Jądrowej. Wykład 8 Rozszczepienie jąder i fizyka neutronów

Elementy Fizyki Jądrowej. Wykład 8 Rozszczepienie jąder i fizyka neutronów Elementy Fizyki Jądrowej Wykład 8 Rozszczepienie jąder i fizyka neutronów Rozszczepienie lata 30 XX w. poszukiwanie nowych nuklidów n + 238 92U 239 92U + reakcja przez jądro złożone 239 92 U 239 93Np +

Bardziej szczegółowo

Fizyka współczesna. Jądro atomowe podstawy Odkrycie jądra atomowego: 1911, Rutherford Rozpraszanie cząstek alfa na cienkich warstwach metalu

Fizyka współczesna. Jądro atomowe podstawy Odkrycie jądra atomowego: 1911, Rutherford Rozpraszanie cząstek alfa na cienkich warstwach metalu Odkrycie jądra atomowego: 9, Rutherford Rozpraszanie cząstek alfa na cienkich warstwach metalu Tor ruchu rozproszonych cząstek (fakt, że część cząstek rozprasza się pod bardzo dużym kątem) wskazuje na

Bardziej szczegółowo

Reakcja rozszczepienia

Reakcja rozszczepienia Reakcje jądrowe Reakcja rozszczepienia W reakcji rozszczepienia neutron powoduje rozszczepienie cięższego jądra na dwa lub więcej mniejsze jadra lżejszych pierwiastków oraz kilka neutronów. Podczas tej

Bardziej szczegółowo

Rozszczepienie (fission)

Rozszczepienie (fission) Rozszczepienie (fission) Odkryte w 1938 r. przy naświetlaniu jąder 238 U neutronami Zaobserwowano rozpad beta produktów reakcji, przypisany początkowo radowi 226 Ra Hahn i Strassmann pokazali metodami

Bardziej szczegółowo

Reakcje rozszczepienia i energetyka jądrowa

Reakcje rozszczepienia i energetyka jądrowa J. Pluta, Metody i technologie jądrowe Reakcje rozszczepienia i energetyka jądrowa Energia wiązania nukleonu w jądrze w funkcji liczby masowej jadra A: E w Warunek energetyczny deficyt masy: Reakcja rozszczepienia

Bardziej szczegółowo

Rozpad gamma. Przez konwersję wewnętrzną (emisję wirtualnego kwantu gamma, który przekazuje swą energię elektronom z powłoki atomowej)

Rozpad gamma. Przez konwersję wewnętrzną (emisję wirtualnego kwantu gamma, który przekazuje swą energię elektronom z powłoki atomowej) Rozpad gamma Deekscytacja jądra atomowego (przejście ze stanu wzbudzonego o energii do niższego stanu o energii ) może zachodzić dzięki oddziaływaniu elektromagnetycznemu przez tzw. rozpad gamma Przejście

Bardziej szczegółowo

FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych

FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych Wykład 10 Energetyka jądrowa Rozszczepienie 235 92 236 A1 A2 U n 92U Z F1 Z F2 2,5n 1 2 Q liczba neutronów 0 8, średnio 2,5 najbardziej prawdopodobne

Bardziej szczegółowo

Podstawowe własności jąder atomowych

Podstawowe własności jąder atomowych Podstawowe własności jąder atomowych 1. Ilość protonów i neutronów Z, N 2. Masa jądra M j = M p + M n - B 2 2 Q ( M c ) ( M c ) 3. Energia rozpadu p 0 k 0 Rozpad zachodzi jeżeli Q > 0, ta nadwyżka energii

Bardziej szczegółowo

ELEKTROWNIE. Czyste energie 2014-01-20. Energetyka jądrowa. Damazy Laudyn Maciej Pawlik Franciszek Strzelczyk

ELEKTROWNIE. Czyste energie 2014-01-20. Energetyka jądrowa. Damazy Laudyn Maciej Pawlik Franciszek Strzelczyk Czyste energie wykład 11 Energetyka jądrowa dr inż. Janusz Teneta Wydział EAIiIB Katedra Automatyki i Inżynierii Biomedycznej AGH Kraków 2014 ELEKTROWNIE Damazy Laudyn Maciej Pawlik Franciszek Strzelczyk

Bardziej szczegółowo

Czyste energie. Energetyka jądrowa. wykład 13. dr inż. Janusz Teneta. Wydział EAIiIB Katedra Automatyki i Inżynierii Biomedycznej

Czyste energie. Energetyka jądrowa. wykład 13. dr inż. Janusz Teneta. Wydział EAIiIB Katedra Automatyki i Inżynierii Biomedycznej Czyste energie wykład 13 Energetyka jądrowa dr inż. Janusz Teneta Wydział EAIiIB Katedra Automatyki i Inżynierii Biomedycznej AGH Kraków 2013 ELEKTROWNIE Damazy Laudyn Maciej Pawlik Franciszek Strzelczyk

Bardziej szczegółowo

Energetyka konwencjonalna odnawialna i jądrowa

Energetyka konwencjonalna odnawialna i jądrowa Energetyka konwencjonalna odnawialna i jądrowa Wykład 10-11.XII.2018 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Energetyka Jądrowa 11.XII.2018

Bardziej szczegółowo

Fizyka jądrowa cz. 2. Reakcje jądrowe. Teraz stałem się Śmiercią, niszczycielem światów. Robert Oppenheimer

Fizyka jądrowa cz. 2. Reakcje jądrowe. Teraz stałem się Śmiercią, niszczycielem światów. Robert Oppenheimer Barcelona, Espania, May 204 W-29 (Jaroszewicz) 24 slajdy Na podstawie prezentacji prof. J. Rutkowskiego Reakcje jądrowe Fizyka jądrowa cz. 2 Teraz stałem się Śmiercią, niszczycielem światów Robert Oppenheimer

Bardziej szczegółowo

Reakcje syntezy lekkich jąder

Reakcje syntezy lekkich jąder Reakcje syntezy lekkich jąder 1. Synteza jąder lekkich w gwiazdach 2. Warunki wystąpienia procesu syntezy 3. Charakterystyka procesu syntezy 4. Kontrolowana reakcja syntezy termojądrowej 5. Zasada konstrukcji

Bardziej szczegółowo

Elementy Fizyki Jądrowej. Wykład 9 Fizyka neutronów i reakcja łańcuchowa

Elementy Fizyki Jądrowej. Wykład 9 Fizyka neutronów i reakcja łańcuchowa Elementy Fizyki Jądrowej Wykład 9 Fizyka neutronów i reakcja łańcuchowa Charakterystyka procesu rozszczepienia Emisja neutronów 1. natychmiastowa, średnio 2,5 neutronów, 10 16 s 2. opóźniona, emisja neutronów

Bardziej szczegółowo

Podstawowe własności jąder atomowych

Podstawowe własności jąder atomowych Fizyka jądrowa Struktura jądra (stan podstawowy) Oznaczenia, terminologia Promienie jądrowe i kształt jąder Jądra stabilne; warunki stabilności; energia wiązania Jądrowe momenty magnetyczne Modele struktury

Bardziej szczegółowo

Broń jądrowa. Geneza Zasada działania Typy Skutki. Nazwa wydziału: Wydział Fizyki I Informatyki Stosowanej. Jakub Dąbrowski, Błażej Hadro

Broń jądrowa. Geneza Zasada działania Typy Skutki. Nazwa wydziału: Wydział Fizyki I Informatyki Stosowanej. Jakub Dąbrowski, Błażej Hadro Broń jądrowa Geneza Zasada działania Typy Skutki Nazwa wydziału: Wydział Fizyki I Informatyki Stosowanej Jakub Dąbrowski, Błażej Hadro www.agh.edu.pl Geneza przed bronią jądrową 1905 r. - Albert Einstein

Bardziej szczegółowo

OCHRONA RADIOLOGICZNA PACJENTA. Promieniotwórczość

OCHRONA RADIOLOGICZNA PACJENTA. Promieniotwórczość OCHRONA RADIOLOGICZNA PACJENTA Promieniotwórczość PROMIENIOTWÓRCZOŚĆ (radioaktywność) zjawisko samorzutnego rozpadu jąder atomowych niektórych izotopów, któremu towarzyszy wysyłanie promieniowania α, β,

Bardziej szczegółowo

pobrano z serwisu Fizyka Dla Każdego - - zadania z fizyki, wzory fizyczne, fizyka matura

pobrano z serwisu Fizyka Dla Każdego -  - zadania z fizyki, wzory fizyczne, fizyka matura 14. Fizyka jądrowa zadania z arkusza I 14.10 14.1 14.2 14.11 14.3 14.12 14.4 14.5 14.6 14.13 14.7 14.8 14.14 14.9 14. Fizyka jądrowa - 1 - 14.15 14.23 14.16 14.17 14.24 14.18 14.25 14.19 14.26 14.27 14.20

Bardziej szczegółowo

A - liczba nukleonów w jądrze (protonów i neutronów razem) Z liczba protonów A-Z liczba neutronów

A - liczba nukleonów w jądrze (protonów i neutronów razem) Z liczba protonów A-Z liczba neutronów Włodzimierz Wolczyński 40 FIZYKA JĄDROWA A - liczba nukleonów w jądrze (protonów i neutronów razem) Z liczba protonów A-Z liczba neutronów O nazwie pierwiastka decyduje liczba porządkowa Z, a więc ilość

Bardziej szczegółowo

Zadanie 3. (2 pkt) Uzupełnij zapis, podając liczbę masową i atomową produktu przemiany oraz jego symbol chemiczny. Th... + α

Zadanie 3. (2 pkt) Uzupełnij zapis, podając liczbę masową i atomową produktu przemiany oraz jego symbol chemiczny. Th... + α Zadanie: 1 (2 pkt) Określ liczbę atomową pierwiastka powstającego w wyniku rozpadów promieniotwórczych izotopu radu 223 88Ra, w czasie których emitowane są 4 cząstki α i 2 cząstki β. Podaj symbol tego

Bardziej szczegółowo

r. akad. 2012/2013 Wykład IX-X Podstawy Procesów i Konstrukcji Inżynierskich Fizyka jądrowa Zakład Biofizyki 1

r. akad. 2012/2013 Wykład IX-X Podstawy Procesów i Konstrukcji Inżynierskich Fizyka jądrowa Zakład Biofizyki 1 r. akad. 2012/2013 Wykład IX-X Podstawy Procesów i Konstrukcji Inżynierskich Fizyka jądrowa Zakład Biofizyki 1 Budowa jądra atomowego każde jądro atomowe składa się z dwóch rodzajów nukleonów: protonów

Bardziej szczegółowo

Cykl paliwowy cd. Reakcja rozszczepienia Zjawisko rozszczepienia (własności) Jądrowy cykl paliwowy cd.

Cykl paliwowy cd. Reakcja rozszczepienia Zjawisko rozszczepienia (własności) Jądrowy cykl paliwowy cd. Reakcja rozszczepienia Zjawisko rozszczepienia (własności) Rozkład mas fragmentów rozszczepienia Cykl paliwowy cd. (14 MeV) (eksploatacja paliwa) & Aspekty bezpieczeństwa jądrowego 239 Pu Widmo mas fragmentów

Bardziej szczegółowo

Energetyka Jądrowa. Wykład 3 14 marca Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Energetyka Jądrowa. Wykład 3 14 marca Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Energetyka Jądrowa Wykład 3 14 marca 2017 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Henri Becquerel 1896 Promieniotwórczość 14.III.2017 EJ

Bardziej szczegółowo

NEUTRONOWA ANALIZA AKTYWACYJNA ANALITYKA W KONTROLI JAKOŚCI PODSTAWOWE INFORMACJE O REAKCJACH JĄDROWYCH - NEUTRONOWA ANALIZA AKTYWACYJNA

NEUTRONOWA ANALIZA AKTYWACYJNA ANALITYKA W KONTROLI JAKOŚCI PODSTAWOWE INFORMACJE O REAKCJACH JĄDROWYCH - NEUTRONOWA ANALIZA AKTYWACYJNA ANALITYKA W KONTROLI JAKOŚCI WYKŁAD 3 NEUTRONOWA ANALIZA AKTYWACYJNA - PODSTAWOWE INFORMACJE O REAKCJACH JĄDROWYCH - NEUTRONOWA ANALIZA AKTYWACYJNA REAKCJE JĄDROWE Rozpad promieniotwórczy: A B + y + ΔE

Bardziej szczegółowo

Reakcje syntezy lekkich jąder

Reakcje syntezy lekkich jąder Reakcje syntezy lekkich jąder 1. Synteza jąder lekkich w gwiazdach 2. Warunki wystąpienia procesu syntezy 3. Charakterystyka procesu syntezy 4. Kontrolowana reakcja syntezy termojądrowej 5. Zasada konstrukcji

Bardziej szczegółowo

CYKL PALIWOWY: OTWARTY CZY ZAMKNIĘTY CZY TO WYSTARCZY?

CYKL PALIWOWY: OTWARTY CZY ZAMKNIĘTY CZY TO WYSTARCZY? CYKL PALIWOWY: OTWARTY CZY ZAMKNIĘTY CZY TO WYSTARCZY? Stefan Chwaszczewski Instytut Energii Atomowej POLATOM W obecnie eksploatowanych reaktorach energetycznych, w procesach rozszczepienia jądrowego wykorzystywane

Bardziej szczegółowo

Co to są jądra superciężkie?

Co to są jądra superciężkie? Jądra superciężkie 1. Co to są jądra superciężkie? 2. Metody syntezy jąder superciężkich 3. Odkryte jądra superciężkie 4. Współczesne eksperymenty syntezy j.s. 5. Metody identyfikacji j.s. 6. Przewidywania

Bardziej szczegółowo

CHEMIA LEKCJA 1. Budowa atomu, Izotopy Promieniotwórczość naturalna i sztuczna. Model atomu Bohra

CHEMIA LEKCJA 1. Budowa atomu, Izotopy Promieniotwórczość naturalna i sztuczna. Model atomu Bohra CHEMIA LEKCJA 1. Budowa atomu, Izotopy Promieniotwórczość naturalna i sztuczna Model atomu Bohra SPIS TREŚCI: 1. Modele budowy atomu Thomsona, Rutherforda i Bohra 2. Budowa atomu 3. Liczba atomowa a liczba

Bardziej szczegółowo

Odkrycie jądra atomowego - doświadczenie Rutherforda 1909 r.

Odkrycie jądra atomowego - doświadczenie Rutherforda 1909 r. Odkrycie jądra atomowego - doświadczenie Rutherforda 1909 r. 1 Budowa jądra atomowego Liczba atomowa =Z+N Liczba masowa Liczba neutronów Izotopy Jądra o jednakowej liczbie protonów, różniące się liczbą

Bardziej szczegółowo

PODSTAWY FIZYCZNE ENERGETYKI JĄDROWEJ

PODSTAWY FIZYCZNE ENERGETYKI JĄDROWEJ EERGETYKA EKOLOGA Część - EERGETYKA 22 ODSTAWY FZYCZE EERGETYK JĄDROWEJ ( jak powstaje energia jądrowa ) Stanisław Drobniak STYTT MASZY CELYCH 1. rzegląd podstawowych pojęć. 2. Bilans energetyczny reakcji

Bardziej szczegółowo

Reakcje jądrowe. X 1 + X 2 Y 1 + Y b 1 + b 2

Reakcje jądrowe. X 1 + X 2 Y 1 + Y b 1 + b 2 Reakcje jądrowe X 1 + X 2 Y 1 + Y 2 +...+ b 1 + b 2 kanał wejściowy kanał wyjściowy Reakcje wywołane przez nukleony - mechanizm reakcji Wielkości mierzone Reakcje wywołane przez ciężkie jony a) niskie

Bardziej szczegółowo

NATURALNY REAKTOR JĄDROWY

NATURALNY REAKTOR JĄDROWY Piotr Bednarczyk Instytut Fizyki Jądrowej im. Henryka Niewodniczańskiego Polskiej Akademii Nauk NATURALNY REAKTOR JĄDROWY CZY WARTOŚĆ STAŁEJ STRUKTURY SUBTELNEJ ZMIENIA SIĘ W CZASIE? WYKŁAD HABILITACYJNY

Bardziej szczegółowo

Pracownia Jądrowa. dr Urszula Majewska. Spektrometria scyntylacyjna promieniowania γ.

Pracownia Jądrowa. dr Urszula Majewska. Spektrometria scyntylacyjna promieniowania γ. Ćwiczenie nr 1 Spektrometria scyntylacyjna promieniowania γ. 3. Oddziaływanie promieniowania γ z materią: Z elektronami: zjawisko fotoelektryczne, rozpraszanie Rayleigha, zjawisko Comptona, rozpraszanie

Bardziej szczegółowo

Spis treści. Trwałość jądra atomowego. Okres połowicznego rozpadu

Spis treści. Trwałość jądra atomowego. Okres połowicznego rozpadu Spis treści 1 Trwałość jądra atomowego 2 Okres połowicznego rozpadu 3 Typy przemian jądrowych 4 Reguła przesunięć Fajansa-Soddy ego 5 Szeregi promieniotwórcze 6 Typy reakcji jądrowych 7 Przykłady prostych

Bardziej szczegółowo

Rodzaje bomb atomowych

Rodzaje bomb atomowych Artykuł pobrano ze strony eioba.pl Rodzaje bomb atomowych Bomba jądrowa nazywana jest potocznie bombą atomową. Około 90% energii wyzwalanej w wybuchy stanowi energia kinetyczna produktów reakcji, z czego

Bardziej szczegółowo

METODY DETEKCJI PROMIENIOWANIA JĄDROWEGO 3

METODY DETEKCJI PROMIENIOWANIA JĄDROWEGO 3 METODY DETEKCJI PROMIENIOWANIA JĄDROWEGO 3 ENERGETYKA JĄDROWA KONWENCJONALNA (Rozszczepienie fision) n + Z Z 2 A A A2 Z X Y + Y + m n + Q A ~ 240; A =A 2 =20 2 E w MeV / nukl. Q 200 MeV A ENERGETYKA TERMOJĄDROWA

Bardziej szczegółowo

Promieniowanie jonizujące

Promieniowanie jonizujące Promieniowanie jonizujące Wykład III Krzysztof Golec-Biernat Reakcje jądrowe Uniwersytet Rzeszowski, 8 listopada 2017 Wykład III Krzysztof Golec-Biernat Promieniowanie jonizujące 1 / 12 Energia wiązania

Bardziej szczegółowo

ODKRYCIE PROMIENIOTWÓRCZOŚCI PROMIENIOWANIE JĄDROWE I JEGO WŁAŚCIWOŚCI

ODKRYCIE PROMIENIOTWÓRCZOŚCI PROMIENIOWANIE JĄDROWE I JEGO WŁAŚCIWOŚCI ODKRYCIE PROMIENIOTWÓRCZOŚCI PROMIENIOWANIE JĄDROWE I JEGO WŁAŚCIWOŚCI Wilhelm Roentgen 1896 Stan wiedzy na rok 1911 1. Elektron masa i ładunek znikomy ułamek masy atomu 2. Niektóre atomy samorzutnie emitują

Bardziej szczegółowo

FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych

FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych Wykład 9 Reakcje jądrowe Reakcje jądrowe Historyczne reakcje jądrowe 1919 E.Rutherford 4 He + 14 7N 17 8O + p (Q = -1.19 MeV) powietrze błyski na ekranie

Bardziej szczegółowo

Fizyka atomowa i jądrowa

Fizyka atomowa i jądrowa Fizyka atomowa i jądrowa Widma atomowe kwantowanie poziomów Budowa atomu: eksperyment Geigera-Marsdena-Rutherforda Atom wodoru w mechanice kwantowej; liczby kwantowe Atomy wieloelektronowe układ okresowy

Bardziej szczegółowo

ELEKTROWNIA JĄDROWA, TO NIE BOMBA Jerzy Kubowski

ELEKTROWNIA JĄDROWA, TO NIE BOMBA Jerzy Kubowski ELEKTROWNIA JĄDROWA, TO NIE BOMBA Jerzy Kubowski Elektrownię jądrową z bombą atomową łączy tylko jedno: ich działania są oparte na wykorzystaniu tego samego zjawiska, jakim jest rozszczepienie jądra atomu

Bardziej szczegółowo

Podstawy bezpieczeństwa energetyki jądrowej, REAKTOR JĄDROWY W STANIE KRYTYCZNYM

Podstawy bezpieczeństwa energetyki jądrowej, REAKTOR JĄDROWY W STANIE KRYTYCZNYM Wydział Fizyki UW Podstawy bezpieczeństwa energetyki jądrowej, 2018 4. REAKTOR JĄDROWY W STANIE KRYTYCZNYM Prof. NCBJ dr inż. A. Strupczewski Spis treści wykładu (1) Jądro atomowe Równoważność masy i energii

Bardziej szczegółowo

Fizyka promieniowania jonizującego. Zygmunt Szefliński

Fizyka promieniowania jonizującego. Zygmunt Szefliński Fizyka promieniowania jonizującego Zygmunt Szefliński 1 Wykład 3 Ogólne własności jąder atomowych (masy ładunki, izotopy, izobary, izotony izomery). 2 Liczba atomowa i masowa Liczba nukleonów (protonów

Bardziej szczegółowo

Rozszczepienie jądra atomowego

Rozszczepienie jądra atomowego Rozszczepienie jądra atomowego W przypadku izotopów 235 U i 239 Pu energia wzbudzenia jądra po wychwycie neutronu jest większa od wysokości bariery, którą trzeba pokonać aby nastąpiło rozszczepienie. Izotop

Bardziej szczegółowo

Widma atomowe. Fizyka atomowa i jądrowa. Dawne modele atomu. Widma atomowe. Linie emisyjne kwantowanie poziomów energetycznych

Widma atomowe. Fizyka atomowa i jądrowa. Dawne modele atomu. Widma atomowe. Linie emisyjne kwantowanie poziomów energetycznych Fizyka atomowa i jądrowa Widma atomowe kwantowanie poziomów Widma atomowe Linie emisyjne kwantowanie poziomów energetycznych Budowa atomu: eksperyment Geigera-Marsdena-Rutherforda Atom wodoru w mechanice

Bardziej szczegółowo

Budowa jądra atomowego - MODEL

Budowa jądra atomowego - MODEL Budowa jądra atomowego - MODEL - Centralna część atomu (rozmiar: ~10-10 m) - Rozmiar liniowy jąder atomowych ~ 10-15 m - skupiona prawie cała masa - Jądra stabilne (czas życia b. długi), jądra niestabilne

Bardziej szczegółowo

Energetyka jądrowa. Energetyka jądrowa

Energetyka jądrowa. Energetyka jądrowa Energetyka jądrowa Zasada zachowania energii i E=mc 2 Budowa jąder atomowych i ich energia wiązania Synteza: z gwiazd na Ziemię... Neutrony i rozszczepienie jąder atomowych Reaktory: klasyczne i akceleratorowe

Bardziej szczegółowo

Eksperymenty z wykorzystaniem wiązek radioaktywnych

Eksperymenty z wykorzystaniem wiązek radioaktywnych Eksperymenty z wykorzystaniem wiązek radioaktywnych 1. Co to są wiązki radioaktywne 2. Metody wytwarzania wiązek radioaktywnych 3. Ośrodki wytwarzające wiązki radioaktywne 4. Nowe zagadnienia możliwe do

Bardziej szczegółowo

Fragmentacja pocisków

Fragmentacja pocisków Wybrane zagadnienia spektroskopii jądrowej 2004 Fragmentacja pocisków Marek Pfützner 823 18 96 pfutzner@mimuw.edu.pl http://zsj.fuw.edu.pl/pfutzner Plan wykładu 1. Wiązki radioaktywne i główne metody ich

Bardziej szczegółowo

Autorzy: Zbigniew Kąkol, Piotr Morawski

Autorzy: Zbigniew Kąkol, Piotr Morawski Rodzaje rozpadów jądrowych Autorzy: Zbigniew Kąkol, Piotr Morawski Rozpady jądrowe zachodzą zawsze (prędzej czy później) jeśli jądro o pewnej liczbie nukleonów znajdzie się w stanie energetycznym, nie

Bardziej szczegółowo

doświadczenie Rutheforda Jądro atomowe składa się z nuklonów: neutronów (obojętnych elektrycznie) i protonów (posiadających ładunek dodatni +e)

doświadczenie Rutheforda Jądro atomowe składa się z nuklonów: neutronów (obojętnych elektrycznie) i protonów (posiadających ładunek dodatni +e) 1 doświadczenie Rutheforda Jądro atomowe składa się z nuklonów: neutronów (obojętnych elektrycznie) i protonów (posiadających ładunek dodatni +e) Ilość protonów w jądrze określa liczba atomowa Z Ilość

Bardziej szczegółowo

Model elektrowni jądrowej

Model elektrowni jądrowej Model elektrowni jądrowej Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z budową i działaniem elektrowni jądrowej. Wstęp Rozszczepienie jądra atomowego to proces polegający na rozpadzie wzbudzonego

Bardziej szczegółowo

Oddziaływanie promieniowania jonizującego z materią

Oddziaływanie promieniowania jonizującego z materią Oddziaływanie promieniowania jonizującego z materią Plan Promieniowanie ( particle radiation ) Źródła (szybkich) elektronów Ciężkie cząstki naładowane Promieniowanie elektromagnetyczne (fotony) Neutrony

Bardziej szczegółowo

Fizyka jądrowa. Podstawowe pojęcia. Izotopy. budowa jądra atomowego przemiany promieniotwórcze reakcje jądrowe. jądra atomowe (nuklidy) dzielimy na:

Fizyka jądrowa. Podstawowe pojęcia. Izotopy. budowa jądra atomowego przemiany promieniotwórcze reakcje jądrowe. jądra atomowe (nuklidy) dzielimy na: Fizyka jądrowa budowa jądra atomowego przemiany promieniotwórcze reakcje jądrowe Podstawowe pojęcia jądra atomowe (nuklidy) dzielimy na: trwałe (stabilne) nietrwałe (promieniotwórcze) jądro składa się

Bardziej szczegółowo

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 40 FIZYKA JĄDROWA

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 40 FIZYKA JĄDROWA autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 40 FIZYKA JĄDROWA Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania TEST JEDNOKROTNEGO WYBORU UWAGA: Tekst poniżej,

Bardziej szczegółowo

Energetyka konwencjonalna odnawialna i jądrowa

Energetyka konwencjonalna odnawialna i jądrowa Energetyka konwencjonalna odnawialna i jądrowa Wykład 9-4.XII.2018 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Rozpad gamma 152 Dy * 152 Dy+gamma

Bardziej szczegółowo

Podstawy bezpieczeństwa energetyki jądrowej, ZMIANY REAKTYWNOŚCI I DYNAMIKA REAKTORA

Podstawy bezpieczeństwa energetyki jądrowej, ZMIANY REAKTYWNOŚCI I DYNAMIKA REAKTORA Wydział Fizyki UW Podstawy bezpieczeństwa energetyki jądrowej, 2018 5. ZMIANY REAKTYWNOŚCI I DYNAMIKA REAKTORA Prof. NCBJ dr inż. A. Strupczewski Spis treści wykładu (1) Równanie dyfuzji, Zalety jądrowe

Bardziej szczegółowo

Rozwój oraz budowa broni jądrowej i termojądrowej w XX wieku.

Rozwój oraz budowa broni jądrowej i termojądrowej w XX wieku. Politechnika Warszawska Metody i techniki jądrowe Warszawa 2014 Rozwój oraz budowa broni jądrowej i termojądrowej w XX wieku. Krzysztof Lenartowicz Maciej Radomski 1 A. Historia broni nuklearnej: 1. Badania

Bardziej szczegółowo

Reaktor jądrowy. Schemat. Podstawy fizyki jądrowej - B.Kamys

Reaktor jądrowy. Schemat. Podstawy fizyki jądrowej - B.Kamys Reaktor jądrowy Schemat Elementy reaktora Rdzeń Pręty paliwowe (np. UO 2 ) Pręty regulacyjne i bezpieczeństwa (kadm, bor) Moderator (woda, ciężka woda, grafit, ) Kanały chłodzenia (woda, ciężka woda, sód,

Bardziej szczegółowo

Eksperymenty z wykorzystaniem wiązek radioaktywnych

Eksperymenty z wykorzystaniem wiązek radioaktywnych Eksperymenty z wykorzystaniem wiązek radioaktywnych 1. Co to są wiązki radioaktywne 2. Metody wytwarzania wiązek radioaktywnych 3. Ośrodki wytwarzające wiązki radioaktywne 4. Nowe zagadnienia możliwe do

Bardziej szczegółowo

Energetyka jądrowa. 900s. Reakcje wywołane przez neutrony (nie ma problemu odpychania elektrostatycznego)

Energetyka jądrowa. 900s. Reakcje wywołane przez neutrony (nie ma problemu odpychania elektrostatycznego) Energetyka jądrowa Zasada zachowania energii i E=mc 2 Budowa jąder atomowych i ich energia wiązania Synteza: z gwiazd na Ziemię... Neutrony i rozszczepienie jąder atomowych Reaktory: klasyczne i akceleratorowe

Bardziej szczegółowo

Zadania powtórkowe do egzaminu maturalnego z chemii Budowa atomu, układ okresowy i promieniotwórczość

Zadania powtórkowe do egzaminu maturalnego z chemii Budowa atomu, układ okresowy i promieniotwórczość strona 1/11 Zadania powtórkowe do egzaminu maturalnego z chemii Budowa atomu, układ okresowy i promieniotwórczość Monika Gałkiewicz Zad. 1 () Przedstaw pełną konfigurację elektronową atomu pierwiastka

Bardziej szczegółowo

Reakcje rozpadu jądra atomowego

Reakcje rozpadu jądra atomowego Reakcje rozpadu jądra atomowego O P R A C O W A N I E : P A W E Ł Z A B O R O W S K I K O N S U L T A C J A M E R Y T O R Y C Z N A : M A Ł G O R Z A T A L E C H Trwałość izotopów Czynnikiem decydującym

Bardziej szczegółowo

4.6. Bomba atomowa, energetyka jądrowa

4.6. Bomba atomowa, energetyka jądrowa 2012 R ZamKor ZamKor R 7 4.6. Bomba atomowa, energetyka jądrowa fizyka agrawitacja jądrowa 201 Po zapoznaniu się z treścią tego paragrafu potrafisz: Opisać budowę i zasadę działania bomby atomowej. Opisać

Bardziej szczegółowo

Elementy fizyki jądrowej

Elementy fizyki jądrowej Elementy fizyki jądrowej Cząstka elementarna Fermiony (cząstki materii) -leptony: elektron, neutrino elektronowe, mion, neutrino mionowe, taon, neutrino taonowe -kwarki: kwark dolny, kwark górny, kwark

Bardziej szczegółowo

Reakcje jądrowe dr inż. Romuald Kędzierski

Reakcje jądrowe dr inż. Romuald Kędzierski Reakcje jądrowe dr inż. Romuald Kędzierski Wybuch bomby Ivy Mike (fot. National Nuclear Security Administration/Nevada Site Office, domena publiczna) Przemiany jądrowe 1. Spontaniczne (niewymuszone) związane

Bardziej szczegółowo

ROZDZIAŁ III. WYTWARZANIE NEUTRONÓW. REAKCJA ROZSZCZEPIENIA

ROZDZIAŁ III. WYTWARZANIE NEUTRONÓW. REAKCJA ROZSZCZEPIENIA ROZDZIAŁ III. WYTWARZANIE NEUTRONÓW. REAKCJA ROZSZCZEPIENIA 3.1 Słabe źródła neutronowe W najstarszej reakcji jądrowej służącej do wytwarzania neutronów wykorzystywano naturalne źródło alfapromieniotwórcze

Bardziej szczegółowo

Promieniowanie jonizujące

Promieniowanie jonizujące Promieniowanie jonizujące Wykład II Promieniotwórczość Fizyka MU, semestr 2 Uniwersytet Rzeszowski, 8 marca 2017 Wykład II Promieniotwórczość Promieniowanie jonizujące 1 / 22 Jądra pomieniotwórcze Nuklidy

Bardziej szczegółowo

Promieniowanie jonizujące

Promieniowanie jonizujące Promieniowanie jonizujące Wykład II Krzysztof Golec-Biernat Promieniotwórczość Uniwersytet Rzeszowski, 18 października 2017 Wykład II Krzysztof Golec-Biernat Promieniowanie jonizujące 1 / 23 Jądra pomieniotwórcze

Bardziej szczegółowo

PROMIENIOTWÓRCZOŚĆ. A) równa B) mniejsza C) większa D) nie mniejsza (sumie) od sumy mas protonów i neutronów wchodzących w jego skład.

PROMIENIOTWÓRCZOŚĆ. A) równa B) mniejsza C) większa D) nie mniejsza (sumie) od sumy mas protonów i neutronów wchodzących w jego skład. 1. Promień atomu jest większy od promienia jądra atomu PROMIENIOTWÓRCZOŚĆ A) 5 razy. B) 100 razy. C) 10 5 razy. D) terminy promień atomu i promień jądra są synonimami. 2. Jeśliby, zachowując skalę, powiększyć

Bardziej szczegółowo

Rozpady promieniotwórcze

Rozpady promieniotwórcze Rozpady promieniotwórcze Przez rozpady promieniotwórcze rozumie się spontaniczne procesy, w których niestabilne jądra atomowe przekształcają się w inne jądra atomowe i emitują specyficzne promieniowanie

Bardziej szczegółowo

I ,11-1, 1, C, , 1, C

I ,11-1, 1, C, , 1, C Materiał powtórzeniowy - budowa atomu - cząstki elementarne, izotopy, promieniotwórczość naturalna, okres półtrwania, średnia masa atomowa z przykładowymi zadaniami I. Cząstki elementarne atomu 1. Elektrony

Bardziej szczegółowo

dra superci kie 1. Co to s dra superci kie? 2. Metody syntezy j der superci kich 3. Odkryte j dra superci

dra superci kie 1. Co to s dra superci kie? 2. Metody syntezy j der superci kich 3. Odkryte j dra superci Jądra superciężkie 1. Co to są jądra superciężkie? 2. Metody syntezy jąder superciężkich 3. Odkryte jądra superciężkie 4. Współczesne eksperymenty syntezy j.s. 5. Metody identyfikacji j.s. 6. Przewidywania

Bardziej szczegółowo

W2. Struktura jądra atomowego

W2. Struktura jądra atomowego W2. Struktura jądra atomowego Doświadczenie Rutherforda - badanie odchylania wiązki cząstek alfa w cienkiej folii metalicznej Hans Geiger, Ernest Marsden, Ernest Rutherford ( 1911r.) detektor pierwiastek

Bardziej szczegółowo

Rozpad alfa. albo od stanów wzbudzonych (np. po rozpadzie beta) są to tzw. długozasięgowe cząstki alfa

Rozpad alfa. albo od stanów wzbudzonych (np. po rozpadzie beta) są to tzw. długozasięgowe cząstki alfa Rozpad alfa Samorzutny rozpad jądra (Z,A) na cząstkę α i jądro (Z-2,A-4) tj. rozpad 2-ciałowy, stąd Widmo cząstek α jest dyskretne bo przejścia zachodzą między określonymi stanami jądra początkowego i

Bardziej szczegółowo

O egzotycznych nuklidach i ich promieniotwórczości

O egzotycznych nuklidach i ich promieniotwórczości O egzotycznych nuklidach i ich promieniotwórczości Marek Pfützner Instytut Fizyki Doświadczalnej Uniwersytet Warszawski Tydzień Kultury w VIII LO im. Władysława IV, 13 XII 2005 Instytut Radowy w Paryżu

Bardziej szczegółowo

1. JĄDROWA BUDOWA ATOMU. A1 - POZIOM PODSTAWOWY.

1. JĄDROWA BUDOWA ATOMU. A1 - POZIOM PODSTAWOWY. . JĄDROWA BUDOWA ATOMU. A - POIOM PODSTAWOWY. Na początek - przeczytaj uważnie tekst i wykonaj zawarte pod nim polecenia.. Dwie reakcje jądrowe zachodzące w górnych warstwach atmosfery: N + n C + p N +

Bardziej szczegółowo

Gospodarka wypalonym paliwem jądrowym analiza opcji dla energetyki jądrowej w Polsce

Gospodarka wypalonym paliwem jądrowym analiza opcji dla energetyki jądrowej w Polsce Gospodarka wypalonym paliwem jądrowym analiza opcji dla energetyki jądrowej w Polsce Stefan Chwaszczewski Program energetyki jądrowej w Polsce: Zainstalowana moc: 6 000 MWe; Współczynnik wykorzystania

Bardziej szczegółowo

Opracowała: mgr Agata Wiśniewska PRZYKŁADOWE SPRAWDZIANY WIADOMOŚCI l UMIEJĘTNOŚCI Współczesny model budowy atomu (wersja A)

Opracowała: mgr Agata Wiśniewska PRZYKŁADOWE SPRAWDZIANY WIADOMOŚCI l UMIEJĘTNOŚCI Współczesny model budowy atomu (wersja A) PRZYKŁADOW SPRAWDZIANY WIADOMOŚCI l UMIJĘTNOŚCI Współczesny model budowy atomu (wersja A) 1. nuklid A. Zbiór atomów o tej samej wartości liczby atomowej. B. Nazwa elektrycznie obojętnej cząstki składowej

Bardziej szczegółowo

Energetyka Jądrowa. źródło: Wszystko o energetyce jądrowej, AREVA

Energetyka Jądrowa. źródło: Wszystko o energetyce jądrowej, AREVA Energetyka Jądrowa Wykład 5 28 marca 2017 źródło: Wszystko o energetyce jądrowej, AREVA Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Kiedy efektywne

Bardziej szczegółowo

Promieniotwórczość naturalna. Jądro atomu i jego budowa.

Promieniotwórczość naturalna. Jądro atomu i jego budowa. Promieniotwórczość naturalna. Jądro atomu i jego budowa. Doświadczenie Rutherforda (1909). Polegało na bombardowaniu złotej folii strumieniem cząstek alfa (jąder helu) i obserwacji odchyleń ich toru ruchu.

Bardziej szczegółowo

Energetyka konwencjonalna odnawialna i jądrowa

Energetyka konwencjonalna odnawialna i jądrowa Energetyka konwencjonalna odnawialna i jądrowa Wykład 8-27.XI.2018 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Wykład 8 Energia atomowa i jądrowa

Bardziej szczegółowo

Promieniowanie w środowisku człowieka

Promieniowanie w środowisku człowieka Promieniowanie w środowisku człowieka Jeżeli przyjrzymy się szczegółom mapy nuklidów zauważymy istniejące w przyrodzie w stosunkowo dużych ilościach nuklidy nietrwałe. Ich czasy zaniku są duże, większe

Bardziej szczegółowo

2008/2009. Seweryn Kowalski IVp IF pok.424

2008/2009. Seweryn Kowalski IVp IF pok.424 2008/2009 seweryn.kowalski@us.edu.pl Seweryn Kowalski IVp IF pok.424 Plan wykładu Wstęp, podstawowe jednostki fizyki jądrowej, Własności jądra atomowego, Metody wyznaczania własności jądra atomowego, Wyznaczanie

Bardziej szczegółowo

r. akad. 2012/2013 Wykład IX-X Podstawy Procesów i Konstrukcji Inżynierskich Fizyka jądrowa Zakład Biofizyki 1

r. akad. 2012/2013 Wykład IX-X Podstawy Procesów i Konstrukcji Inżynierskich Fizyka jądrowa Zakład Biofizyki 1 r. akad. 2012/2013 Wykład IX-X Podstawy Procesów i Konstrukcji Inżynierskich Fizyka jądrowa Zakład Biofizyki 1 Budowa jądra atomowego każde jądro atomowe składa się z dwóch rodzajów nukleonów: protonów

Bardziej szczegółowo

Fizyka 3. Konsultacje: p. 329, Mechatronika

Fizyka 3. Konsultacje: p. 329, Mechatronika Fizyka 3 Konsultacje: p. 329, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 2 sprawdziany (10 pkt każdy) lub egzamin (2 części po 10 punktów) 10.1 12 3.0 12.1 14 3.5 14.1 16 4.0 16.1 18 4.5 18.1 20 5.0

Bardziej szczegółowo

Foton, kwant światła. w klasycznym opisie świata, światło jest falą sinusoidalną o częstości n równej: c gdzie: c prędkość światła, długość fali św.

Foton, kwant światła. w klasycznym opisie świata, światło jest falą sinusoidalną o częstości n równej: c gdzie: c prędkość światła, długość fali św. Foton, kwant światła Wielkość fizyczna jest skwantowana jeśli istnieje w pewnych minimalnych (elementarnych) porcjach lub ich całkowitych wielokrotnościach w klasycznym opisie świata, światło jest falą

Bardziej szczegółowo

Katedra Fizyki Jądrowej i Bezpieczeństwa Radiacyjnego PRACOWNIA JĄDROWA ĆWICZENIE 6. Wyznaczanie krzywej aktywacji

Katedra Fizyki Jądrowej i Bezpieczeństwa Radiacyjnego PRACOWNIA JĄDROWA ĆWICZENIE 6. Wyznaczanie krzywej aktywacji Katedra Fizyki Jądrowej i Bezpieczeństwa Radiacyjnego PRACOWNIA JĄDROWA ĆWICZENIE 6 Wyznaczanie krzywej aktywacji Łódź 2017 I. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie kształtu krzywej zależności

Bardziej szczegółowo

Wykłady z Geochemii Ogólnej

Wykłady z Geochemii Ogólnej Wykłady z Geochemii Ogólnej III rok WGGiOŚ AGH 2010/11 dr hab. inż. Maciej Manecki A-0 p.24 www.geol.agh.edu.pl/~mmanecki ELEMENTY KOSMOCHEMII Nasza wiedza o składzie materii Wszechświata pochodzi z dwóch

Bardziej szczegółowo

ROZDZIAŁ III. WYTWARZANIE NEUTRONÓW. REAKCJA ROZSZCZEPIENIA

ROZDZIAŁ III. WYTWARZANIE NEUTRONÓW. REAKCJA ROZSZCZEPIENIA ROZDZIAŁ III. WYTWARZANIE NEUTRONÓW. REAKCJA ROZSZCZEPIENIA 3.1 Słabe źródła neutronowe W najstarszej reakcji jądrowej służącej do wytwarzania neutronów wykorzystywano naturalne źródło alfapromieniotwórcze

Bardziej szczegółowo

2008/2009. Seweryn Kowalski IVp IF pok.424

2008/2009. Seweryn Kowalski IVp IF pok.424 2008/2009 seweryn.kowalski@us.edu.pl Seweryn Kowalski IVp IF pok.424 Model powłokowy Moment kwadrupolowy w jednocząstkowym modelu powłokowym: Dla pojedynczego protonu znajdującego się na orbicie j (m j

Bardziej szczegółowo

Energetyka Jądrowa. źródło: Wszystko o energetyce jądrowej, AREVA

Energetyka Jądrowa. źródło: Wszystko o energetyce jądrowej, AREVA Energetyka Jądrowa Wykład 7 11 kwietnia 2017 źródło: Wszystko o energetyce jądrowej, AREVA Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Moderator

Bardziej szczegółowo

Promieniowanie jądrowe w środowisku człowieka

Promieniowanie jądrowe w środowisku człowieka Promieniowanie jądrowe w środowisku człowieka Prof. dr hab. ndrzej Płochocki (z wykorzystaniem elementów wykładu dr Piotra Jaracza) Cz. 1. Podstawowe własności jąder atomowych, jądra nietrwałe, elementy

Bardziej szczegółowo

WSTĘP DO FIZYKI JADRA ATOMOWEGOO Wykład 11. IV ROK FIZYKI - semestr zimowy Janusz Braziewicz - Zakład Fizyki Atomowej IF AŚ

WSTĘP DO FIZYKI JADRA ATOMOWEGOO Wykład 11. IV ROK FIZYKI - semestr zimowy Janusz Braziewicz - Zakład Fizyki Atomowej IF AŚ WSTĘP DO FIZYKI JADRA ATOMOWEGOO Wykład 11 IV ROK FIZYKI - semestr zimowy Janusz Braziewicz - Zakład Fizyki Atomowej IF AŚ 1 ENERGIA JĄDROWA SPALANIE WĘGLA W PIECU to manipulacja atomami węgla i tlenu

Bardziej szczegółowo

Podstawy fizyki subatomowej. 3 kwietnia 2019 r.

Podstawy fizyki subatomowej. 3 kwietnia 2019 r. Podstawy fizyki subatomowej Wykład 7 3 kwietnia 2019 r. Atomy, nuklidy, jądra atomowe Atomy obiekt zbudowany z jądra atomowego, w którym skupiona jest prawie cała masa i krążących wokół niego elektronów.

Bardziej szczegółowo

Budowa atomu. Izotopy

Budowa atomu. Izotopy Budowa atomu. Izotopy Zadanie. atomu lub jonu Fe 3+ atomowa Z 9 masowa A Liczba protonów elektronów neutronów 64 35 35 36 Konfiguracja elektronowa Zadanie 2. Atom pewnego pierwiastka chemicznego o masie

Bardziej szczegółowo

Oddziaływanie cząstek z materią

Oddziaływanie cząstek z materią Oddziaływanie cząstek z materią Trzy główne typy mechanizmów reprezentowane przez Ciężkie cząstki naładowane (cięższe od elektronów) Elektrony Kwanty gamma Ciężkie cząstki naładowane (miony, p, cząstki

Bardziej szczegółowo

Fizyka jądrowa. Podstawowe pojęcia

Fizyka jądrowa. Podstawowe pojęcia Fizyka jądrowa budowa jądra atomowego przemiany promieniotwórcze reakcje jądrowe Podstawowe pojęcia jądra atomowe (nuklidy) dzielimy na: trwałe (stabilne) nietrwałe (promieniotwórcze) jądro składa się

Bardziej szczegółowo