2/57. Pomiar mocy. Watomierz analogowy Watomierz cyfrowy Przetworniki AC/DC (RMS) Wykład nr

Wielkość: px
Rozpocząć pokaz od strony:

Download "2/57. Pomiar mocy. Watomierz analogowy Watomierz cyfrowy Przetworniki AC/DC (RMS) Wykład nr 8 04-06-2016"

Transkrypt

1

2 2/57 Pomiar mocy Watomierz analogowy Watomierz cyfrowy Przetworniki AC/DC (RMS) Wykład nr

3 3/57 Watomierz analogowy Watomierz jest elektrycznym miernikiem wskazówkowym przeznaczonym do pomiaru mocy czynnej prądu zmiennego, a w wykonaniu laboratoryjnym (gdzie stosowane są dobre materiały magnetyczne), także do pomiaru mocy prądu stałego. Moc czynna prądu zmiennego P U sk I sk cos Moc prądu stałego P U I

4 4/57 Dodajmy jeszcze że w układach trójfazowych zespół dwóch lub trzech watomierzy występujących w odpowiednim układzie, pozwala na pomiar mocy biernej odbiorników trójfazowych. Interesującą cechą watomierza jest to, że realizuje on operację mnożenia trzech wielkości: napięcia, natężenia prądu oraz kosinusa kąta przesunięcia fazowego między wspomnianym wyżej wielkościami. Nadaje się więc doskonale do budowy miernika mocy czynnej prądu zmiennego, która, jak wiadomo, wyraża się zależnością, P U sk I sk cos

5 Watomierz o ustroju ferrodynamicznym 5/57

6 6/57 Watomierz można w przybliżeniu uważać za złożenie dwóch przyrządów: woltomierza i amperomierza, z racji występowania w tym przyrządzie dwóch wyraźnie różniących się obwodów: napięciowego i prądowego. Takie traktowanie watomierza nie jest jednak zupełnie ścisłe.

7 7/57 Zakresy prądowe watomierza Podział cewki prądowej na dwie sekcje umożliwia uzyskanie dwóch zakresów prądowych w danym egzemplarzu watomierza. Szeregowe połączenie obu sekcji daje zakres prądowy I n1 (np. I n1 =2,5 A), natomiast połączenie równoległe - zakres dwa razy większy: I n2 = 2 I n1 (np. I n2 =5 A) 2,5 A Z Z 5 A Z Sposób uzyskiwania dwóch zakresów prądowych watomierza Z

8 8/57 Zakresy napięciowe watomierza Trzy zakresy napięciowe, jakie ma każdy egzemplarz watomierza uzyskuje się przez włączanie trzech odpowiednich rezystorów w szereg z cewką napięciową o z zwojach. Na ogół są to zakresy: 100V, 200V, 400V. Z R 1 R 2 R 3 * 100 V 400 V 200 V Sposób uzyskiwania trzech zakresów napięciowych watomierza

9 9/57 Jak włącza się cewki ustroju FD do obwodu jednofazowego R 2,L 2 I 2 R 1,L 1 I 2 I 1 U p I 0 I 1 W I V U U z 220 V U z 0 U R Z 0 Z o d o a) b) a) sposób włączania cewek ustroju FD do jednofazowego obwodu prądu zmiennego, b) sposób rysowania symbolu watomierza w schematach elektrycznych.

10 10/57 Parametry charakteryzujące watomierz Watomierz charakteryzują trzy następujące parametry podstawowe: Znamionowe napięcie U n (zakres napięciowy) Znamionowy prąd I n (zakres prądowy) Znamionowy współczynnik mocy cosφ n

11 11/57 Zakres pomiarowy watomierza Trzy wymienione parametry określają zakres pomiarowy watomierza P n P n = U n I n cosφ n [W] Każdy egzemplarz watomierza ma zwykle trzy zakresy napięciowe: U n = 100 V / 200 V / 400 V oraz po dwa zakresy prądowe, np. 0,5 A/1A 1A/2A 2,5A/5A 5A/10A Natomiast większość spotykanych w praktyce watomierz ma współczynnik mocy cosφ n = 1, choć buduje się watomierze o współczynnikach mocy: cosφ n = 0,8 / cosφ n = 0,5 / cosφ n = 0,1

12 12/57 Przykład obliczania mocy wskazywanej przez watomierz W pewnym pomiarze wskazówka watomierza spoczywała na 78 działce podziałki (d = 78 dz.). Oblicz moc, jaka mierzył ten przyrząd, jeżeli jego parametry miały następujące wartości: U n = 200 V I n = 2,5 A cosφ n =0,8

13 13/57 Rozwiązanie Ustalamy na wstępie zakres pomiarowy watomierza P n : P n = U n I n cosφ n = 200 V 2,5 A 0,8 = 400 W Następnie określamy stałą podziałki Stała podziałki c p watomierza, jest to ilość watów przypadająca na jedną działkę podziałki. Ponieważ na ogół podziałki watomierzy mają 100 działek, stała c p wyniesie w tym przypadku: c p = P n /100 dz = 400W/100dz = 4 W/dz

14 14/57 Poszukiwana moc mierzona jest iloczynem stałej podziałki i liczby wskazywanej przez przyrząd: P = c P d = 4 W/dz 78 dz = 312 W

15 15/57 Przeciążalność obwodów watomierza Konstruktorzy przewidzieli możliwość długotrwałego przeciążania obwodów watomierza do następujących granic: U max = 1,5 U n I max = 1,3 I n

16 16/57 Jakie znaczenie ma możliwość przeciążania obwodów watomierza? Przeciążalność ma umożliwić użytkownikowi uzyskiwanie podczas pomiarów możliwie dużych odchyleń wskazówki przyrządu, co wiąże się z dokładnością pomiaru mocy.

17 17/57 Bez dowodu przyjmiemy postać funkcji przetwarzania watomierza, gdzie: c UI cos U wartość skuteczna napięcia przykładanego do obwodu napięciowego, I - wartość skuteczna prądu płynącego w cewce prądowej, P - moc czynna wydzielająca się w odbiorniku, c - jest stałą konstrukcyjną ustroju ferrodynamicznego. c P

18 18/57 Jak wiadomo wartości skuteczne napięcia i prądu są zawsze dodatnie, kąt odchylenia organu ruchomego przyjmuje więc znak współczynnika mocy cos. Niewłaściwe włączenie cewek watomierza do obwodu może sprawić, że kąt przesunięcia fazowego między napięciem U i prądem I stanie się większy od 90 0, zaś kosinus tego kąta ujemny, co spowoduje odchylenie się wskazówki watomierza w lewą stronę, uniemożliwiając odczytanie wskazań.

19 19/57 Amperomierz kontrolny w układzie z watomierzem W poprawnie zrealizowanym układzie pomiarowym obok watomierza powinien znajdować się amperomierz kontrolny, którego zadaniem jest kontrolowanie prądu cewki prądowej watomierza A W U z Z 0 Watomierz z towarzyszącym mu amperomierzem kontrolnym

20 20/57 Kryteria doboru parametrów watomierza Kryteria doboru parametrów znamionowych watomierza (U n, I n, cos n ) do parametrów znamionowych odbiornika (U 0, I 0, cos 0 ), dla którego watomierz będzie mierzył moc czynną można zawrzeć w następujących trzech warunkach: U 0 k u U n gdzie k u = 1,5 I 0 k i I n gdzie k i = 1,3 U 0 I 0 cos o U n I n cos n

21 21/57 Warunki (1), (2) związane są z dopuszczalnymi przeciążeniami obwodów watomierza, natomiast warunek (3) nie dopuszcza do przekroczenia jego zakresu pomiarowego (odchylenia wskazówki poza zakres pomiarowy). Jeżeli warunki (1) - (3) spełnia kilka watomierzy, do pomiaru należy wybrać ten, dla którego iloraz, jest największy. k U U o n I I o n coso cos n

22 22/57 Bardzo ważne przykłady! Dotyczący właściwego doboru parametrów watomierza do danych parametrów odbiornika Przykład 1 Dobierz parametry znamionowe watomierza, który zostanie użyty do pomiaru mocy czynnej odbiornika o następujących parametrach znamionowych: U o = 220V, I o = 0,6A, cos o = 0,5.

23 23/57 Postępując ostrożnie należy wybrać na początku watomierz o następujących parametrach znamionowych: U n = 400V, I n =1A, cos n = 1 (zakłada się, że dostępny jest watomierz tylko o takim współczynniku mocy). Parametry te określają moc znamionową (zakres pomiarowy) watomierza. P n = U n I n cos n = 400V1A1 = 400 W Tymczasem moc odbiornika wynosi, P o = U o I o cos o = 220V0,6A0,5 = 66 W

24 24/57 Iloraz P0 k P n określa stopień wykorzystania zakresu pomiaro - wego, który w tym przypadku wynosi: k = P o /P n = 66W / 400W = 0,165 co oznacza odchylenie się wskazówki do około 1/6 zakresu pomiarowego. Odchylenie to uznać należy za niewystarczające. 1/3 2/3 0 W P n

25 25/57 W celu powiększenia odchylenia wskazówki spróbujemy zmniejszyć dwukrotnie zakres napię - ciowy watomierza, zmieniając go z 400 V do 200 V i wykorzystując przeciążalność obwodu napięciowego. Jak łatwo stwierdzić dla zakresu napięciowego 200 V, maksymalne napięcie dopuszczalne wynosi: U max = 1,5U n = 1,5200 V = 300 V które jest napięciem większym od napięcia zasila - jącego odbiornik V. Stwierdzamy więc możliwość użycia niższego zakresu napięciowego watomierza.

26 26/57 W rezultacie otrzymujemy dwukrotnie mniejszy zakres pomiarowy watomierza: P n = U n I n cos n = 200V1A1 = 200 W Współczynnik wykorzystania zakresu pomiarowego jest teraz równy: k = P o /P n = 66W / 200W = 0,33 Jest on dwa razy większy od poprzedniego i oznacza odchylenie się wskazówki do ok. 1/3 długości podziałki. Odchylenie to, jakkolwiek dwukrotnie większe od poprzedniego, jest w dalszym ciągu zbyt małe.

27 27/57 Współczynnik wykorzystania zakresu pomiarowego jest teraz równy: k = P o /P n = 66W / 200W = 0,33 Jest on dwa razy większy od poprzedniego i oznacza odchylenie się wskazówki do ok. 1/3 długości podziałki. 1/3 2/3 0 W P n

28 28/57 W kolejnym kroku sprawdzamy możliwość wykorzystania przeciążalności obwodu prądowego watomierza. Weźmy po uwagę zakres prądowy przyrządu I n = 0,5 A. Maksymalny długotrwały prąd na tym zakresie wynosi: I max = 1,3I n = 1,30,5A = 0,65A, który jest prądem mniejszym od prądu płynącego w odbiorniku - 0,6A. Nowy zakres pomiarowy watomierza wynosi teraz: P n = U n I n cos n = 200V0,5A1 = 100 W Współczynnik wykorzystania zakresu pomiarowego natomiast będzie równy: k = P o /P n = 66W/100W = 0,66 Jest to zadowalający już stopień odchylenia wskazówki watomierza.

29 29/57 Współczynnik wykorzystania zakresu pomiarowego natomiast będzie równy: k = P o /P n = 66W/100W = 0,66 1/3 2/3 0 W P n Jest to zadowalający już stopień odchylenia wskazówki watomierza i największy z możliwych w danych warunkach.

30 30/57 W ten sposób wykorzystane zostały wszystkie możliwości przeciążania obwodów watomierza i osiągnięty ostateczny cel tych poczynań największe możliwe odchylenie wskazówki przyrządu.

31 31/57 Zdecydowanie unikać należy jednak zbyt pośpiesznego i pochopnego wykorzystywania przeciążalności obydwu na raz obwodów watomierza. Może to prowadzić do cieplnego uszkodzenia obwodów watomierza. Najczęściej ma miejsce cieplne uszkodzenie cewki prądowej.

32 32/57 Przykład 2 Do pomiaru mocy odbiornika o parametrach: U o = 220 V I o = 1,3 A cos o = 0,15 zastosowano watomierz o parametrach znamionowych: U n = 200 V I n = 0,5 A cos n = 1

33 33/57 Moc czynna odbiornika wynosiła P o = U 0 I 0 cos o = 42,9 W Zakresie pomiarowy watomierza natomiast wynosił: P n = U n I n cos n = 100 W Wskazówka przyrządu nie odchyliła się nawet do połowy jego zakresu wskazań. k = P 0 /P n = 0,43 0,5 0 W P n

34 34/57 Tymczasem prąd płynący w cewce prądowej (1,3 A) będzie znacznie przekraczał jej prąd maksymalny, który wynosi: I max = 1,3I n = 1,30,5 A = 0,65 A Cewka ta zostanie więc dwukrotnie przeciążona prądowo (I 0 = 1,3 A) i niechybnie ulegnie uszkodzeniu cieplnemu. Z tego względu w poprawnie zaprojektowanym układzie pomiarowym, obok watomierza powinien występować amperomierz służący do kontroli prądu cewki prądowej.

35 35/57 Przykład 3 Parametry znamionowe odbiornika wynoszą: U o = 220 V I o = 1,2 A cos o = 0,8 a jego moc znamionowa P o = U 0 I 0 cos o = 211,2 W Mierzący, bez starannej analizy wybrał ostrożnie następujące parametry watomierza: U n = 200 V I n = 1 A cos n = 1 co daje następujący zakres pomiarowy watomierza: P n = U n I n cos n = 200 W

36 36/57 Łatwo stwierdzimy że w tym przypadku żaden z obwodów watomierza nie został nadmiernie przeciążony, ale odczyt wskazań przyrządu jest niemożliwy, bowiem jego wskazówka przekracza zakres wskazań watomierza: k = P 0 /P n = 211,2 / 200 = 1,06 0,5 0 W P n

37 37/57 Pomiar mocy czynnej w obwodach trójfazowych Układ Arona L1 (R) L2 (S) W I R I S A 1 A 2 U RT W 1 W 2 R, L, C R, L, C L3 (T) I T A 3 U ST R, L, C P P 1 P 2

38 38/57 Gdy układ przedstawiony na rysunku jest symetryczny, to znaczy symetryczny jest odbiornik trójfazowy i napięcia zasilające, prawdziwe są (przyjmiemy je bez dowodu) zależności, przedstawiające wskazania każdego z dwóch watomierzy. P1 U RT I R cos 30 o P2 U ST I S cos 30 o Z zależności drugiej wynika, że gdy kąt fazowy φ odbiornika wynosi 60 0, wskazanie watomierza W 2 jest równe zeru.

39 Wskazania względne 39/57 1,2 1 Względne w skazania w atomierzy w układzie Arona P 1 P 2 f ( ) f ( P P ) 0,8 0,6 0,4 0,2 0-0,2-0,4 Przy czym: P = U P I P, gdzie U P oznacza napięcie międzyprzewodowe linii zasilającej, zaś I P prąd przewodowy tej linii. Ujemne wartości kąta φ dotyczą odbiornika o charakterze pojemnościowym, dodatnie zaś odbiornika indukcyjnego -0, Kąt fazow y φ odbiornika arctg 3 P P 2 2 P 1 P 1

40 Z przebiegu krzywych na rysunku odczytać można następujące informacje: a) Rezystancyjny charakter odbiornika poznajemy po identycznych wskazaniach obydwu watomierzy (φ = 0). b) Indukcyjny charakter odbiornika poznajemy natomiast po tym, że w całym zakresie zmienności kąta fazowego (0 < φ 90 0 ) wskazania watomierza W 1 są większe niż watomierza W 2. c) Przy odbiorniku pojemnościowym jest odwrotnie, w całym zakresie zmienności kąta fazowego ( 90 0 φ < 0 0 ), watomierz W 2 wskazuje więcej niż watomierz W 1. d) Gdy kąt fazowy φ = 60 0 watomierz W 2 (nazywamy go watomierzem w fazie opóźniającej się) wskazuje zero. e) Gdy natomiast kąt φ = 60 0 watomierz W 1 (nazywamy go watomierzem w fazie wyprzedzającej) wskazuje moc zerową. f) Fakt, że kąt fazowy φ przekracza 60 0 lub 60 0, poznajemy po ujemnych wskazaniach odpowiednich watomierzy. Wskazówka jednego z watomierzy odchyla się wtedy w lewo i odczyt wskazania jest niemożliwy. Nie świadczy to o nieprawidłowym włączeniu takiego watomierza. Należy zmienić o 180 O fazę prądu płynącego przez cewkę prądową albo fazę napięcia przykładanego do obwodu napięciowego. 40/57

41 Układ Arona uznać można za układ uniwersalny, ponieważ mierzy on poprawnie (dowód pomijamy) moc czynną w następujących przypadkach. Dla dowolnego skojarzenia odbiornika trójfazowego. Dla odbiornika symetrycznego lub niesymetrycznego. Przy symetrycznych lub niesymetrycznych napięciach zasilających. Poprawnie mierzy moc nawet w linii czteroprzewodowej, jeśli tylko układ jest symetryczny (symetryczny odbiornik i symetryczne napięcia zasilające), w związku z czym w przewodzie zerowym nie płynie prąd. 41/57

42 42/57 Pomiar mocy biernej w obwodach trójfazowych L1 (R) L2 (S) W I R I S A 1 A 2 W 1 U S W 2 R, L, C -U R R, L, C L3 (T) I T A 3 R, L, C W 3 0

43 43/57 P o P U, I U I cosu, I U I cos U I 1 P2 URT IR cos RT R ST S ST S RT R 1 ST S cos 2 U R -U T 1 2 U RT I R U ST -U T Watomierze mogłyby mierzyć moc bierną odbiornika gdyby ich wskazania były proporcjonalne do sinusów kątów 1, 2. Można to osiągnąć, zasilając obwód napięciowy watomierza W 1 napięciem opóźnionym względem napięcia U RT o kąt 90 0 (jest nim napięcie U S, zaś obwód napięciowy watomierza W 2, napięciem opóźnionym względem napięcia U ST o kąt 90 0 (jest nim napięcie U R ). U T U S I S -U R Q o U RT I R sin U I 1 ST S sin 2

44 44/57 1 P2 USIR cos S R U, I U I cos U I P, R S R S o o 1 P P2 US I R cos( 90 1) U RIS cos(90 2) U S I R sin 1U RI S sin 2 U UST sin 1 IS sin 3 RT IR U RT I R sin 1U ST I S sin 2 Qo 1 3 Q o 3 P P 1 2 [var]

45 Watomierz cyfrowy 45/57

46 46/57 Schemat ideowy watomierza cyfrowego Wejście 1 Przetwornik AC/DC (RMS) Operacje arytmetyczne - mikroprocesor Wejście 2 Przetwornik AC/DC (RMS)

47 47/57 Zasada działania Przyrządy cyfrowe do pomiaru mocy działają na innej zasadzie niż analogowe. Polega ona (w dużym uproszczeniu) na próbkowaniu przebiegów napięcia u(t) i prądu i(t), a następnie wykonaniu operacji matematycznych na uzyskanych próbkach u(n) oraz i(n) tak, aby wyznaczyć wartość mocy czynnej z zależności gdzie N jest liczbą próbek przypadających na jeden okres T sygnału.

48 48/57 Większość cyfrowych watomierzy umożliwia pomiar wartości skutecznych napięcia i prądu, mocy pozornej S, mocy biernej Q oraz współczynnika mocy cos φ. Wartości skuteczne (RMS) napięcia i prądu:

49 49/57 Moc pozorna (apparent power) Współczynnik mocy (power factor) Moc bierna (reactive power)

50 Przetworniki AC/DC (RMS) 50/57

51 51/57 Parametry sygnałów przemiennych (okresowych) wartość chwilowa, średnia, skuteczna, U AVG 1 T T maksymalna, międzyszczytowa, t 0 t 0 u( t) dt t U cos( t ) Częstotliwość f, okres T, przesunięcie fazowe φ. u U RMS m t0 T 1 2 T U PP t Bardzo ważne wzory!!!! 0 u ( t) dt U max U min Wartość skuteczna prądu przemiennego jest taką wartością prądu stałego, która w ciągu czasu równego okresowi prądu przemiennego spowoduje ten sam efekt cieplny, co dany sygnał prądu przemiennego.

52 52/57 Rodzaj przebiegu Wykres czasowy Wartość średnia Wartość skuteczna sinusoidalny U AVG 0 1 U RMS U 2 m sinusoidalny wyprostowany dwupołówkowo 2 U AVG U m 1 U RMS U m 2 prostokątny U AVG 0 U RMS U m trójkątny U AVG 0 1 U RMS U m 3

53 53/57 Układ prostownika dwupołówkowego u u

54 54/57 Przetwarzanie AC/DC (RMS) 1. Wartość średnia sygnału przemiennego Uśr lub UAVG 2. Wartość skuteczna sygnału przemiennego Usk lub URMS 3. Wartość szczytowa - Umax i międzyszczytowa (peak to peak) - UPP Z definicji : U AVG 1 T t 0 T t 0 u( t) dt U RMS t0 T 1 2 T t 0 u ( t) dt u( t) V IN Bezpośredni przetwornik AC / DC (RMS)

55 55/57 Przetwornik AC/DC (TRUE RMS) Całki zastępujemy uśrednianiem bieżącym: 1) 2) 3) U AVG AVG( u( t)) N 1 AVG( u( t)) u( ti ) ( ti 1 N i1 N AVG u ( t) u ( ti ) ( t N i1 i1 t i ) t i ) U 2 RMS 2 U RMS U RMS t0 T 1 2 u T t0 AVG u RMS 2 AVG( u 2 ( t)) U ( t) dt ( t) 4) 5) 6) u( t) V IN U RMS V RMS Układ praktyczny pośredni przetwornik AC/ DC (TRUE RMS) V RMS V AVG V IN RMS 2

56 56/57 TRUE RMS Przy pomiarze wartości skutecznej napięć zmiennych odbiegających kształtem od sinusoidy należy wybierać te mierniki, które mają funkcję TRUE RMS (z ang. TRUE Root Mean Square prawdziwa wartość skuteczna) oraz zwracać uwagę na częstotliwość mierzonego przebiegu napięcia (każdy miernik posiada górną granicę częstotliwości, przy której jeszcze mierzy poprawnie). True RMS-to-DC Conversion Computes RMS of AC and DC Signals Wide Response: 2MHz Bandwidth for V RMS > 1V (MX536A) 1MHz Bandwidth for V RMS > 100mV (MX636)

57 Dziękuję za uwagę! 57/57

Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii. Instrukcja do zajęć laboratoryjnych z przedmiotu METROLOGIA.

Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii. Instrukcja do zajęć laboratoryjnych z przedmiotu METROLOGIA. Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do zajęć laboratoryjnych z przedmiotu METROLOGIA Kod przedmiotu ES1C 200 012 Ćwiczenie pt. POMIAR

Bardziej szczegółowo

Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii. Instrukcja do zajęć laboratoryjnych z przedmiotu METROLOGIA.

Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii. Instrukcja do zajęć laboratoryjnych z przedmiotu METROLOGIA. Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do zajęć laboratoryjnych z przedmiotu METROLOGIA Kod przedmiotu ES1C 200 012 POMIAR MOCY WATOMIERZEM

Bardziej szczegółowo

POMIARY MOCY (OBWODY JEDNO- I TRÓJFAZOWE). POMIARY PRĄDÓW I NAPIĘĆ W OBWODACH TRÓJFAZOWYCH

POMIARY MOCY (OBWODY JEDNO- I TRÓJFAZOWE). POMIARY PRĄDÓW I NAPIĘĆ W OBWODACH TRÓJFAZOWYCH POMIRY MOCY (OBWODY JEDNO- I TRÓJFZOWE). POMIRY PRĄDÓW I NPIĘĆ W OBWODCH TRÓJFZOWYCH. Pomiary mocy w obwodach jednofazowych W obwodach prądu stałego moc określamy jako iloczyn napięcia i prądu stałego,

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 7. Pomiar mocy czynnej, biernej i cosφ

INSTRUKCJA DO ĆWICZENIA NR 7. Pomiar mocy czynnej, biernej i cosφ INSTRUKCJA DO ĆWICZENIA NR 7 Pomiar mocy czynnej, biernej i cosφ Wstęp Układy elektryczne w postaci szeregowego połączenia RL, podczas zasilania z sieci napięcia przemiennego, pobierają moc czynną, bierną

Bardziej szczegółowo

Pomiar mocy czynnej, biernej i pozornej

Pomiar mocy czynnej, biernej i pozornej Pomiar mocy czynnej, biernej i pozornej 1. Cel ćwiczenia: Celem ćwiczenia jest zapoznanie się z różnymi metodami pomiaru mocy w obwodach prądu przemiennego.. Wprowadzenie: Wykonując pomiary z wykorzystaniem

Bardziej szczegółowo

2.3. Pomiary wielkości elektrycznych i mechanicznych. (1h wykładu)

2.3. Pomiary wielkości elektrycznych i mechanicznych. (1h wykładu) 2.3. Pomiary wielkości elektrycznych i mechanicznych. (1h wykładu) 2.3.1. Pomiary wielkości elektrycznych Rezystancja wejściowa mierników cyfrowych Przykład: Do sprawdzenia braku napięcia przemiennego

Bardziej szczegółowo

Cyfrowy pomiar czasu i częstotliwości Przetwarzanie sygnałów pomiarowych (analogowych)

Cyfrowy pomiar czasu i częstotliwości Przetwarzanie sygnałów pomiarowych (analogowych) Cyfrowy pomiar czasu i częstotliwości Przetwarzanie sygnałów pomiarowych (analogowych) Wykład 10 2/38 Cyfrowy pomiar czasu i częstotliwości 3/38 Generatory, rezonatory, kwarce f w temperatura pracy np.-10

Bardziej szczegółowo

Przyrządy i przetworniki pomiarowe

Przyrządy i przetworniki pomiarowe Przyrządy i przetworniki pomiarowe Są to narzędzia pomiarowe: Przyrządy -służące do wykonywania pomiaru i służące do zamiany wielkości mierzonej na sygnał pomiarowy Znajomość zasady działania przyrządów

Bardziej szczegółowo

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 3 Zagadnienie mocy w obwodzie RLC przy wymuszeniu sinusoidalnym Przypomnienie ostatniego wykładu Prąd i napięcie sinusoidalnie

Bardziej szczegółowo

Impedancje i moce odbiorników prądu zmiennego

Impedancje i moce odbiorników prądu zmiennego POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH LABORATORIUM ELEKTRYCZNE Impedancje i moce odbiorników prądu zmiennego (E 6) Opracował: Dr inż.

Bardziej szczegółowo

PRACOWNIA ELEKTRYCZNA I ELEKTRONICZNA. Zespół Szkół Technicznych w Skarżysku-Kamiennej. Sprawozdanie z ćwiczenia nr Temat ćwiczenia: POMIARY MOCY

PRACOWNIA ELEKTRYCZNA I ELEKTRONICZNA. Zespół Szkół Technicznych w Skarżysku-Kamiennej. Sprawozdanie z ćwiczenia nr Temat ćwiczenia: POMIARY MOCY Zespół zkół Technicznych w karżysku-kamiennej prawozdanie z ćwiczenia nr Temat ćwiczenia: OWN ELEKTYZN ELEKTONZN imię i nazwisko OMY MOY rok szkolny klasa grupa data wykonania. el ćwiczenia: oznanie pośredniej

Bardziej szczegółowo

PRZYRZĄDY POMIAROWE. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

PRZYRZĄDY POMIAROWE. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego PRZYRZĄDY POMIAROWE Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Przyrządy pomiarowe Ogólny podział: mierniki, rejestratory, detektory, charakterografy.

Bardziej szczegółowo

Politechnika Warszawska

Politechnika Warszawska Politechnika Warszawska Wydział Elektryczny Laboratorium Teletechniki Skrypt do ćwiczenia T.02. Woltomierz RMS oraz Analizator Widma 1. Woltomierz RMS oraz Analizator Widma Ćwiczenie to ma na celu poznanie

Bardziej szczegółowo

29 PRĄD PRZEMIENNY. CZĘŚĆ 2

29 PRĄD PRZEMIENNY. CZĘŚĆ 2 Włodzimierz Wolczyński 29 PRĄD PRZEMIENNY. CZĘŚĆ 2 Opory bierne Indukcyjny L - indukcyjność = Szeregowy obwód RLC Pojemnościowy C pojemność = = ( + ) = = = = Z X L Impedancja (zawada) = + ( ) φ R X C =

Bardziej szczegółowo

PL 196881 B1. Trójfazowy licznik indukcyjny do pomiaru nadwyżki energii biernej powyżej zadanego tg ϕ

PL 196881 B1. Trójfazowy licznik indukcyjny do pomiaru nadwyżki energii biernej powyżej zadanego tg ϕ RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 196881 (13) B1 (21) Numer zgłoszenia: 340516 (51) Int.Cl. G01R 11/40 (2006.01) G01R 21/00 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)

Bardziej szczegółowo

Ć w i c z e n i e 1 6 BADANIE PROSTOWNIKÓW NIESTEROWANYCH

Ć w i c z e n i e 1 6 BADANIE PROSTOWNIKÓW NIESTEROWANYCH Ć w i c z e n i e 6 BADANIE PROSTOWNIKÓW NIESTEROWANYCH. Wiadomości ogólne Prostowniki są to urządzenia przetwarzające prąd przemienny na jednokierunkowy. Prostowniki stosowane są m.in. do ładowania akumulatorów,

Bardziej szczegółowo

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2014/2015

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2014/2015 EROELEKTR Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 014/015 Zadania z elektrotechniki na zawody II stopnia (grupa elektryczna) Zadanie 1 W układzie jak na rysunku 1 dane są:,

Bardziej szczegółowo

Ćwiczenie: "Pomiary mocy w układach trójfazowych dla różnych charakterów obciążenia"

Ćwiczenie: Pomiary mocy w układach trójfazowych dla różnych charakterów obciążenia Ćwiczenie: "Pomiary mocy w układach trójfazowych dla różnych charakterów obciążenia" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską

Bardziej szczegółowo

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa

Bardziej szczegółowo

Pomiary mocy i energii elektrycznej

Pomiary mocy i energii elektrycznej olitechnika Rzeszowska Zakład Metrologii i ystemów omiarowych omiary mocy i energii elektrycznej Grupa Nr ćwicz. 1 1... kierownik... 3... 4... Data Ocena I. Cel ćwiczenia Celem ćwiczenia jest poznanie

Bardziej szczegółowo

Ćwiczenie nr 9. Pomiar rezystancji metodą porównawczą.

Ćwiczenie nr 9. Pomiar rezystancji metodą porównawczą. Ćwiczenie nr 9 Pomiar rezystancji metodą porównawczą. 1. Cel ćwiczenia Celem ćwiczenia jest praktyczne poznanie różnych metod pomiaru rezystancji, a konkretnie zapoznanie się z metodą porównawczą. 2. Dane

Bardziej szczegółowo

Podstawy miernictwa. Mierniki magnetoelektryczne

Podstawy miernictwa. Mierniki magnetoelektryczne Podstawy miernictwa Miernik - przyrząd pozwalający określić wartość mierzonej wielkości (np. napięcia elektrycznego, ciśnienia, wilgotności), zazwyczaj przy pomocy podziałki ze wskazówką lub wyświetlacza

Bardziej szczegółowo

Badziak Zbigniew Kl. III te. Temat: Budowa, zasada działania oraz rodzaje mierników analogowych i cyfrowych.

Badziak Zbigniew Kl. III te. Temat: Budowa, zasada działania oraz rodzaje mierników analogowych i cyfrowych. Badziak Zbigniew Kl. III te Temat: Budowa, zasada działania oraz rodzaje mierników analogowych i cyfrowych. 1. MIERNIKI ANALOGOWE Mierniki magnetoelektryczne. Miernikami magnetoelektrycznymi nazywamy mierniki,

Bardziej szczegółowo

Lekcja 10. Temat: Moc odbiorników prądu stałego. Moc czynna, bierna i pozorna w obwodach prądu zmiennego.

Lekcja 10. Temat: Moc odbiorników prądu stałego. Moc czynna, bierna i pozorna w obwodach prądu zmiennego. Lekcja 10. Temat: Moc odbiorników prądu stałego. Moc czynna, bierna i pozorna w obwodach prądu zmiennego. 1. Moc odbiorników prądu stałego Prąd płynący przez odbiornik powoduje wydzielanie się określonej

Bardziej szczegółowo

Moc (praca w jednostce czasu) pobierana przez urządzenie elektryczne wynosi:

Moc (praca w jednostce czasu) pobierana przez urządzenie elektryczne wynosi: Ćwiczenie POMIARY MOCY. Wprowadzenie Moc (praca w jednostce czasu) pobierana przez urządzenie elektryczne wynosi: P = U I (.) Jest to po prostu (praca/ładunek)*(ładunek/czas). Dla napięcia mierzonego w

Bardziej szczegółowo

Ć w i c z e n i e 1 POMIARY W OBWODACH PRĄDU STAŁEGO

Ć w i c z e n i e 1 POMIARY W OBWODACH PRĄDU STAŁEGO Ć w i c z e n i e POMIAY W OBWODACH PĄDU STAŁEGO. Wiadomości ogólne.. Obwód elektryczny Obwód elektryczny jest to układ odpowiednio połączonych elementów przewodzących prąd i źródeł energii elektrycznej.

Bardziej szczegółowo

PODSTAWY ELEKTRONIKI I MIERNICTWA

PODSTAWY ELEKTRONIKI I MIERNICTWA PODSTAWY ELEKTRONIKI I MIERNICTWA Konsultacje: - czwartki 15.05-15.35 WEL, pok. 56/100 tel. 839-082 jjakubowski@wat.edu.pl 4.1. Pojęcia podstawowe M E T R O L O G I A OGÓLNA TEOTERYCZNA PRAWNA STOSOWANA

Bardziej szczegółowo

WZORCOWANIE URZĄDZEŃ DO SPRAWDZANIA LICZNIKÓW ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO

WZORCOWANIE URZĄDZEŃ DO SPRAWDZANIA LICZNIKÓW ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO Mirosław KAŹMIERSKI Okręgowy Urząd Miar w Łodzi 90-132 Łódź, ul. Narutowicza 75 oum.lodz.w3@gum.gov.pl WZORCOWANIE URZĄDZEŃ DO SPRAWDZANIA LICZNIKÓW ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO 1. Wstęp Konieczność

Bardziej szczegółowo

ZAKŁAD ELEKTRYCZNY Laboratorium Wielkości Elektrycznych Małej Częstotliwości Robert Rzepakowski

ZAKŁAD ELEKTRYCZNY Laboratorium Wielkości Elektrycznych Małej Częstotliwości Robert Rzepakowski ZAKŁAD ELEKTRYCZNY Laboratorium Wielkości Elektrycznych Małej Częstotliwości Kierownik Robert Rzepakowski tel.: (22) 8 9 faks: (22) 8 9 99 e-mail: electricity@gum.gov.pl e-mail: LFquantities@gum.gov.pl;

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z PRZEDMIOTU POMIARY W ELEKTROTECHNICE I ELEKTRONICE

WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z PRZEDMIOTU POMIARY W ELEKTROTECHNICE I ELEKTRONICE WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z PRZEDMIOTU POMIARY W ELEKTROTECHNICE I ELEKTRONICE Klasa: 1 i 2 ZSZ Program: elektryk 741103 Wymiar: kl. 1-3 godz. tygodniowo, kl. 2-4 godz. tygodniowo Klasa

Bardziej szczegółowo

Ćwiczenie 5 BADANIA ODBIORNIKÓW TRÓJFAZOWYCH

Ćwiczenie 5 BADANIA ODBIORNIKÓW TRÓJFAZOWYCH Ćwiczenie 5 BADANIA ODBIORNIKÓW TRÓJFAOWYCH Celem ćwiczenia jest poznanie własności odbiorników trójfazowych symetrycznych i niesymetrycznych połączonych w trójkąt i gwiazdę w układach z przewodem neutralnym

Bardziej szczegółowo

XXXIV OOwEE - Kraków 2011 Grupa Elektryczna

XXXIV OOwEE - Kraków 2011 Grupa Elektryczna 1. Przed zamknięciem wyłącznika prąd I = 9A. Po zamknięciu wyłącznika będzie a) I = 27A b) I = 18A c) I = 13,5A d) I = 6A 2. Prąd I jest równy a) 0,5A b) 0 c) 1A d) 1A 3. Woltomierz wskazuje 10V. W takim

Bardziej szczegółowo

Ćwiczenie: "Właściwości wybranych elementów układów elektronicznych"

Ćwiczenie: Właściwości wybranych elementów układów elektronicznych Ćwiczenie: "Właściwości wybranych elementów układów elektronicznych" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki.

Bardziej szczegółowo

MIERNICTWO WIELKOŚCI ELEKTRYCZNYCH I NIEELEKTRYCZNYCH

MIERNICTWO WIELKOŚCI ELEKTRYCZNYCH I NIEELEKTRYCZNYCH Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do zajęć laboratoryjnych z przedmiotu MIERNICTWO WIELKOŚCI ELEKTRYCZNYCH I NIEELEKTRYCZNYCH Kod

Bardziej szczegółowo

Elementy elektroniczne i przyrządy pomiarowe

Elementy elektroniczne i przyrządy pomiarowe Elementy elektroniczne i przyrządy pomiarowe Cel ćwiczenia. Nabycie umiejętności posługiwania się miernikami uniwersalnymi, oscyloskopem, generatorem, zasilaczem, itp. Nabycie umiejętności rozpoznawania

Bardziej szczegółowo

Ć w i c z e n i e 4 OBWODY TRÓJFAZOWE

Ć w i c z e n i e 4 OBWODY TRÓJFAZOWE Ć w i c z e n i e 4 OBWODY TRÓJFAZOWE 1. Wiadomości ogólne Wytwarzanie i przesyłanie energii elektrycznej odbywa się niemal wyłącznie za pośrednictwem prądu przemiennego trójazowego. Głównymi zaletami

Bardziej szczegółowo

7 Dodatek II Ogólna teoria prądu przemiennego

7 Dodatek II Ogólna teoria prądu przemiennego 7 Dodatek II Ogólna teoria prądu przemiennego AC (ang. Alternating Current) oznacza naprzemienne zmiany natężenia prądu i jest symbolizowane przez znak ~. Te zmiany dotyczą zarówno amplitudy jak i kierunku

Bardziej szczegółowo

BADANIE DIOD PÓŁPRZEWODNIKOWYCH

BADANIE DIOD PÓŁPRZEWODNIKOWYCH BAANE O PÓŁPZEWONKOWYCH nstytut izyki Akademia Pomorska w Słupsku Cel i ćwiczenia. Celem ćwiczenia jest: - zapoznanie się z przebiegiem charakterystyk prądowo-napięciowych diod różnych typów, - zapoznanie

Bardziej szczegółowo

Celem ćwiczenia jest poznanie metod pomiaru podstawowych wielkości fizycznych w obwodach prądu stałego za pomocą przyrządów pomiarowych.

Celem ćwiczenia jest poznanie metod pomiaru podstawowych wielkości fizycznych w obwodach prądu stałego za pomocą przyrządów pomiarowych. 1. Cel ćwiczenia. Celem ćwiczenia jest poznanie metod pomiaru podstawowych wielkości fizycznych w obwodach prądu stałego za pomocą przyrządów pomiarowych. 2. Wstęp teoretyczny. Pomiary podstawowych wielkości

Bardziej szczegółowo

Katedra Elektroniki ZSTi. Lekcja 12. Rodzaje mierników elektrycznych. Pomiary napięći prądów

Katedra Elektroniki ZSTi. Lekcja 12. Rodzaje mierników elektrycznych. Pomiary napięći prądów Katedra Elektroniki ZSTi Lekcja 12. Rodzaje mierników elektrycznych. Pomiary napięći prądów Symbole umieszczone na przyrządzie Katedra Elektroniki ZSTiO Mierniki magnetoelektryczne Budowane: z ruchomącewkąi

Bardziej szczegółowo

8 K A T E D R A F I ZYKI S T O S O W AN E J

8 K A T E D R A F I ZYKI S T O S O W AN E J 8 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 8. Badanie prostowników niesterowanych Wprowadzenie Prostownikiem nazywamy

Bardziej szczegółowo

METROLOGIA. Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki

METROLOGIA. Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki METROLOGIA Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EINS Zjazd 8, wykład nr 15 Prawo autorskie Niniejsze materiały podlegają ochronie

Bardziej szczegółowo

ELEMENTY RLC W OBWODACH PRĄDU SINUSOIDALNIE ZMIENNEGO

ELEMENTY RLC W OBWODACH PRĄDU SINUSOIDALNIE ZMIENNEGO Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii nstrukcja do zajęć laboratoryjnych ELEMENTY RLC W OBWODACH PRĄD SNSODALNE ZMENNEGO Numer ćwiczenia E0 Opracowanie:

Bardziej szczegółowo

Panelowe przyrządy cyfrowe. Ogólne cechy techniczne

Panelowe przyrządy cyfrowe. Ogólne cechy techniczne DHB Panelowe przyrządy cyfrowe Panelowe przyrządy cyfrowe, pokazujące na ekranie, w zależności od modelu, wartość mierzonej zmiennej elektrycznej lub wartość proporcjonalną sygnału procesowego. Zaprojektowane

Bardziej szczegółowo

Narzędzia pomiarowe Wzorce Parametrami wzorca są:

Narzędzia pomiarowe Wzorce Parametrami wzorca są: Narzędzia pomiarowe zespół środków technicznych umożliwiających wykonanie pomiaru. Obejmują: wzorce przyrządy pomiarowe przetworniki pomiarowe układy pomiarowe systemy pomiarowe Wzorce są to narzędzia

Bardziej szczegółowo

Przykład zastosowania. x12. Pomiar, wizualizacja i rejestracja ponad 300 parametrów 3-fazowej symetrycznej i niesymetrycznej sieci energetycznej

Przykład zastosowania. x12. Pomiar, wizualizacja i rejestracja ponad 300 parametrów 3-fazowej symetrycznej i niesymetrycznej sieci energetycznej Cechy użytkowe: THD IP65 RTC Ochrona hasłem Wejście: ND1 analizator jakości sieci energetycznej PKWiU 33.20.70-90.00 Pomiar i rejestracja ponad 300 parametrów jakości energii elektrycznej wg normy PN-EN

Bardziej szczegółowo

3. CZYNNA I BIERNA MOC PRĄDU ELEKTRYCZNEGO. Cel zadania: Poznanie sposobów mierzenia oraz wykorzystania czynnej i biernej mocy

3. CZYNNA I BIERNA MOC PRĄDU ELEKTRYCZNEGO. Cel zadania: Poznanie sposobów mierzenia oraz wykorzystania czynnej i biernej mocy 3. CZYNNA I BIERNA MOC PRĄDU ELEKTRYCZNEGO Cel zadania: Poznanie sposobów mierzenia oraz wykorzystania czynnej i biernej mocy przemiennego prądu elektrycznego w obwodach elektrycznych z grzejnikiem, transformatorem

Bardziej szczegółowo

Ć W I C Z E N I E nr 9 BADANIE TRANSFORMATORA JEDNOFAZOWEGO

Ć W I C Z E N I E nr 9 BADANIE TRANSFORMATORA JEDNOFAZOWEGO Ć W I C Z E N I E nr 9 BADANIE TRANSFORMATORA JEDNOFAZOWEGO CEL ĆWICZENIA: poznanie zasady działania, budowy, właściwości i metod badania transformatora. PROGRAM ĆWICZENIA. Wiadomości ogólne.. Budowa i

Bardziej szczegółowo

Ć wiczenie 2 POMIARY REZYSTANCJI, INDUKCYJNOŚCI I POJEMNOŚCI

Ć wiczenie 2 POMIARY REZYSTANCJI, INDUKCYJNOŚCI I POJEMNOŚCI 37 Ć wiczenie POMIARY REZYSTANCJI, INDUKCYJNOŚCI I POJEMNOŚCI 1. Wiadomości ogólne 1.1. Rezystancja Zasadniczą rolę w obwodach elektrycznych odgrywają przewodniki metalowe, z których wykonuje się przesyłowe

Bardziej szczegółowo

AC/DC. Jedno połówkowy, jednofazowy prostownik

AC/DC. Jedno połówkowy, jednofazowy prostownik AC/DC Przekształtniki AC/DC można podzielić na kilka typów, mianowicie: prostowniki niesterowane; prostowniki sterowane. Zależnie od stopnia skomplikowania układu i miejsca przyłączenia do sieci elektroenergetycznej

Bardziej szczegółowo

Opublikowane na Sonel S.A. - Przyrządy pomiarowe, kamery termowizyjne (http://www.sonel.pl)

Opublikowane na Sonel S.A. - Przyrządy pomiarowe, kamery termowizyjne (http://www.sonel.pl) Opublikowane na Sonel S.A. Przyrządy pomiarowe, kamery termowizyjne PQM701 Indeks: WMPLPQM701 Analizator jakości zasilania Opis Analizator adresowany do osób kontrolujących jakość energii elektrycznej

Bardziej szczegółowo

Ćwiczenie: "Mierniki cyfrowe"

Ćwiczenie: Mierniki cyfrowe Ćwiczenie: "Mierniki cyfrowe" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: Próbkowanie

Bardziej szczegółowo

Miernictwo elektryczne i elektroniczne

Miernictwo elektryczne i elektroniczne Miernictwo elektryczne i elektroniczne Metrologia jest specjalnością obejmującą teorię mierzenia i problemy technicznej realizacji procesu pomiarowego. Wielkości aktywne można mierzyć bez dodatkowego źródła

Bardziej szczegółowo

Prostowniki. Prostownik jednopołówkowy

Prostowniki. Prostownik jednopołówkowy Prostowniki Prostownik jednopołówkowy Prostownikiem jednopołówkowym nazywamy taki prostownik, w którym po procesie prostowania pozostają tylko te części przebiegu, które są jednego znaku a części przeciwnego

Bardziej szczegółowo

15. UKŁADY POŁĄCZEŃ PRZEKŁADNIKÓW PRĄDOWYCH I NAPIĘCIOWYCH

15. UKŁADY POŁĄCZEŃ PRZEKŁADNIKÓW PRĄDOWYCH I NAPIĘCIOWYCH 15. UKŁDY POŁĄCZEŃ PRZEKŁDNIKÓW PRĄDOWYCH I NPIĘCIOWYCH 15.1. Cel i zakres ćwiczenia Celem ćwiczenia jest zapoznanie się z najczęściej spotykanymi układami połączeń przekładników prądowych i napięciowych

Bardziej szczegółowo

Badanie układów prostowniczych

Badanie układów prostowniczych Instrukcja do ćwiczenia: Badanie układów prostowniczych (wersja robocza) Laboratorium Elektroenergetyki 1 1. Cel ćwiczenia Poznanie budowy, zasady działania i właściwości podstawowych układów elektronicznych,

Bardziej szczegółowo

Laboratorium Metrologii I Nr ćwicz. Ocena dokładności przyrządów pomiarowych 3

Laboratorium Metrologii I Nr ćwicz. Ocena dokładności przyrządów pomiarowych 3 Laboratorium Metrologii Elektrycznej i Elektronicznej Politechnika Rzeszowska Zakład Metrologii i Systemów Pomiarowych Laboratorium Metrologii I Grupa Nr ćwicz. Ocena dokładności przyrządów pomiarowych

Bardziej szczegółowo

Sprawozdanie z ćwiczenia na temat. Badanie dokładności multimetru cyfrowego dla funkcji pomiaru napięcia zmiennego

Sprawozdanie z ćwiczenia na temat. Badanie dokładności multimetru cyfrowego dla funkcji pomiaru napięcia zmiennego Szablon sprawozdania na przykładzie ćwiczenia badanie dokładności multimetru..... ================================================================== Stronę tytułową można wydrukować jak podano niżej lub

Bardziej szczegółowo

Wykaz ćwiczeń realizowanych w Pracowni Urządzeń Mechatronicznych

Wykaz ćwiczeń realizowanych w Pracowni Urządzeń Mechatronicznych Centrum Kształcenia Zawodowego 2000 Wykaz ćwiczeń realizowanych w Pracowni Urządzeń Mechatronicznych Nr ćwiczenia Temat Wiadomości i umiejętności wymagane do realizacji ćwiczenia na pracowni 1 Badanie

Bardziej szczegółowo

UT 33 B UT 33 C UT 33 D

UT 33 B UT 33 C UT 33 D MULTIMETRY CYFROWE UT 33 B UT 33 C UT 33 D INSTRUKCJA OBSŁUGI Instrukcja obsługi dostarcza informacji dotyczących parametrów technicznych, sposobu uŝytkowania oraz bezpieczeństwa pracy. Strona 1 1.WPROWADZENIE:

Bardziej szczegółowo

ENS1C BADANIE OBWODU TRÓJFAZOWEGO Z ODBIORNIKIEM POŁĄCZONYM W TRÓJKĄT E10

ENS1C BADANIE OBWODU TRÓJFAZOWEGO Z ODBIORNIKIEM POŁĄCZONYM W TRÓJKĄT E10 Politechnika iałostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii nstrukcja do zajęć laboratoryjnych ENS1200 013 DNE OWOD TRÓJFOWEGO ODORNKEM POŁĄONYM W TRÓJKĄT Numer ćwiczenia

Bardziej szczegółowo

POMIARY BEZPOŚREDNIE I POŚREDNIE PODSTAWOWYCH WIELKOŚCI ELEKTRYCZNYCH

POMIARY BEZPOŚREDNIE I POŚREDNIE PODSTAWOWYCH WIELKOŚCI ELEKTRYCZNYCH ĆWICZENIE 1 POMIY BEZPOŚEDNIE I POŚEDNIE PODSTWOWYCH WIELKOŚCI ELEKTYCZNYCH 1.1. Cel ćwiczenia Celem ćwiczenia jest nauczenie posługiwania multimetrem cyfrowym i przyrządami analogowymi przy pomiarach

Bardziej szczegółowo

UT 30 B UT 30 C UT 30 D UT 30 F

UT 30 B UT 30 C UT 30 D UT 30 F MULTIMETRY CYFROWE UT 30 B UT 30 C UT 30 D UT 30 F INSTRUKCJA OBSŁUGI Instrukcja obsługi dostarcza informacji dotyczących parametrów technicznych, sposobu uŝytkowania oraz bezpieczeństwa pracy. Strona

Bardziej szczegółowo

BADANIE AMPEROMIERZA

BADANIE AMPEROMIERZA BADANIE AMPEROMIERZA 1. Cel ćwiczenia Celem ćwiczenia jest poznanie metod pomiaru prądu, nabycie umiejętności łączenia prostych obwodów elektrycznych, oraz poznanie warunków i zasad sprawdzania amperomierzy

Bardziej szczegółowo

LABORATORIUM ELEKTROTECHNIKI POMIAR PRZESUNIĘCIA FAZOWEGO

LABORATORIUM ELEKTROTECHNIKI POMIAR PRZESUNIĘCIA FAZOWEGO POLITECHNIKA ŚLĄSKA WYDZIAŁ TRANSPORTU KATEDRA LOGISTYKI I TRANSPORTU PRZEMYSŁOWEGO NR 1 POMIAR PRZESUNIĘCIA FAZOWEGO Katowice, październik 5r. CEL ĆWICZENIA Poznanie zjawiska przesunięcia fazowego. ZESTAW

Bardziej szczegółowo

ELEKTROTECHNIKA I ELEKTRONIKA

ELEKTROTECHNIKA I ELEKTRONIKA UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY W BYDGOSZCZY WYDZIAŁ INŻYNIERII MECHANICZNEJ INSTYTUT EKSPLOATACJI MASZYN I TRANSPORTU ZAKŁAD STEROWANIA ELEKTROTECHNIKA I ELEKTRONIKA ĆWICZENIE: E11 BADANIE NIESTABILIZOWANYCH

Bardziej szczegółowo

WYDZIAŁ.. LABORATORIUM FIZYCZNE

WYDZIAŁ.. LABORATORIUM FIZYCZNE W S E i Z W WASZAWE WYDZAŁ.. LABOATOUM FZYCZNE Ćwiczenie Nr 10 Temat: POMA OPOU METODĄ TECHNCZNĄ. PAWO OHMA Warszawa 2009 Prawo Ohma POMA OPOU METODĄ TECHNCZNĄ Uporządkowany ruch elektronów nazywa się

Bardziej szczegółowo

ELEKTROTECHNIKA I ELEKTRONIKA

ELEKTROTECHNIKA I ELEKTRONIKA UNIERSYTET TECHNOLOGICZNO-PRZYRODNICZY BYDGOSZCZY YDZIAŁ INŻYNIERII MECHANICZNEJ INSTYTUT EKSPLOATACJI MASZYN I TRANSPORTU ZAKŁAD STEROANIA ELEKTROTECHNIKA I ELEKTRONIKA ĆICZENIE: E1 POSŁUGIANIE SIĘ MIERNIKAMI

Bardziej szczegółowo

Elektryczne mierniki analogowe firmy ETI Polam

Elektryczne mierniki analogowe firmy ETI Polam 54 Elektryczne mierniki analogowe firmy ETI Polam Roman Kłopocki Elektryczne mierniki analogowe to elektryczne przyrzπdy pomiarowe wyskalowane w jednostkach wielkoúci mierzonej. Mimo, øe sπ wypierane przez

Bardziej szczegółowo

Indukcja wzajemna. Transformator. dr inż. Romuald Kędzierski

Indukcja wzajemna. Transformator. dr inż. Romuald Kędzierski Indukcja wzajemna Transformator dr inż. Romuald Kędzierski Do czego służy transformator? Jest to urządzenie (zwane też maszyną elektryczną), które wykorzystując zjawisko indukcji elektromagnetycznej pozwala

Bardziej szczegółowo

Technika pomiaru prądu i energii

Technika pomiaru prądu i energii Technika pomiaru prądu i energii Pomiar prądu i analiza danych Rozwiązania WAGO do monitorowania i redukcji zużycia energii Cewki Rogowskiego, seria 855 do przetwarzania prądów przemiennych o maksymalnej

Bardziej szczegółowo

Uniwersytet Pedagogiczny im. Komisji Edukacji Narodowej w Krakowie

Uniwersytet Pedagogiczny im. Komisji Edukacji Narodowej w Krakowie Uniwersytet Pedagogiczny im. Komisji Edukacji Narodowej w Krakowie Laboratorium elektroniki Ćwiczenie nr 1 Temat: PRZYRZĄDY POMIAROWE Rok studiów Grupa Imię i nazwisko Data Podpis Ocena 1. Wprowadzenie

Bardziej szczegółowo

Obliczanie i pomiary parametrów obwodu prądu trójfazowego 724[01].O1.06

Obliczanie i pomiary parametrów obwodu prądu trójfazowego 724[01].O1.06 MINISTERSTWO EDUKACJI NARODOWEJ Teresa Birecka Obliczanie i pomiary parametrów obwodu prądu trójfazowego 724[01].O1.06 Poradnik dla ucznia Wydawca Instytut Technologii Eksploatacji Państwowy Instytut Badawczy

Bardziej szczegółowo

Rozwiązanie zadania opracowali: H. Kasprowicz, A. Kłosek

Rozwiązanie zadania opracowali: H. Kasprowicz, A. Kłosek Treść zadania praktycznego Rozwiązanie zadania opracowali: H. Kasprowicz, A. Kłosek Opracuj projekt realizacji prac związanych z uruchomieniem i sprawdzeniem działania zasilacza impulsowego małej mocy

Bardziej szczegółowo

Laboratorium Metrologii

Laboratorium Metrologii Laboratorium Metrologii Ćwiczenie nr 3 Oddziaływanie przyrządów na badany obiekt I Zagadnienia do przygotowania na kartkówkę: 1 Zdefiniować pojęcie: prąd elektryczny Podać odpowiednią zależność fizyczną

Bardziej szczegółowo

07 K AT E D R A FIZYKI STOSOWA N E J

07 K AT E D R A FIZYKI STOSOWA N E J 07 K AT E D R A FIZYKI STOSOWA N E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 7a. Pomiary w układzie szeregowym RLC Wprowadzenie Prąd zmienny płynący w

Bardziej szczegółowo

www.revalco.pl MIERNIKI MODUŁOWE

www.revalco.pl MIERNIKI MODUŁOWE MIERNIKI MODUŁOWE MIERNIKI ANALOGOWE ROZMIAR: 3 moduły DIN WYMIENIALNE SKALE 90 amperomierze elektromagnetyczne dla prądu AC amperomierze magnetoelektryczne dla prądu DC mierniki częstotliwości zerowoltomierze

Bardziej szczegółowo

strona 1 MULTIMETR CYFROWY M840D INSTRUKCJA OBSŁUGI

strona 1 MULTIMETR CYFROWY M840D INSTRUKCJA OBSŁUGI strona 1 MULTIMETR CYFROWY M840D INSTRUKCJA OBSŁUGI 1. WPROWADZENIE. Prezentowany multimetr cyfrowy jest zasilany bateryjnie. Wynik pomiaru wyświetlany jest w postaci 3 1 / 2 cyfry. Miernik może być stosowany

Bardziej szczegółowo

1. Wiadomości ogólne o prostownikach niesterowalnych

1. Wiadomości ogólne o prostownikach niesterowalnych . Wiadomości ogólne o prostownikach niesterowalnych Układy prostownikowe niesterowalne są przekształtnikami statycznymi. Średnia wartość napięcia wyprostowanego, a tym samym średnia wartości prądu i mocy

Bardziej szczegółowo

SPECYFIKACJA PRZETWORNIK RÓŻNICY CIŚNIEŃ DPC250; DPC250-D; DPC4000; DPC4000-D

SPECYFIKACJA PRZETWORNIK RÓŻNICY CIŚNIEŃ DPC250; DPC250-D; DPC4000; DPC4000-D SPECYFIKACJA PRZETWORNIK RÓŻNICY CIŚNIEŃ DPC250; DPC250-D; DPC4000; DPC4000-D 1. Wprowadzenie...3 1.1. Funkcje urządzenia...3 1.2. Charakterystyka urządzenia...3 1.3. Warto wiedzieć...3 2. Dane techniczne...4

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 41: Busola stycznych

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 41: Busola stycznych Nazwisko i imię: Zespół: Data: Ćwiczenie nr 41: Busola stycznych Cel ćwiczenia: Wyznaczenie składowej poziomej ziemskiego pola magnetycznego. Literatura [1] Kąkol Z., Fizyka dla inżynierów, OEN Warszawa,

Bardziej szczegółowo

Ćwiczenie 3: Pomiar parametrów przebiegów sinusoidalnych, prostokątnych i trójkątnych. REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU

Ćwiczenie 3: Pomiar parametrów przebiegów sinusoidalnych, prostokątnych i trójkątnych. REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU R C E Z w B I Ł G O R A J U LABORATORIUM pomiarów elektronicznych UKŁADÓW ANALOGOWYCH Ćwiczenie 3: Pomiar parametrów przebiegów sinusoidalnych, prostokątnych

Bardziej szczegółowo

30R4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV POZIOM ROZSZERZONY

30R4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV POZIOM ROZSZERZONY 30R4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV POZIOM ROZSZERZONY Magnetyzm Indukcja elektromagnetyczna Prąd przemienny Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod

Bardziej szczegółowo

3. Poprawa współczynnika mocy. Pomiar mocy odbiorników jednofazowych

3. Poprawa współczynnika mocy. Pomiar mocy odbiorników jednofazowych 3. oprawa współczynnika mocy. omiar mocy odbiorników jednofazowych Celem ćwiczenia jest poznanie metod pomiaru mocy odbiorników prądu przemiennego jednofazowego oraz metody poprawy współczynnika mocy odbiornika

Bardziej szczegółowo

Pytania podstawowe dla studentów studiów II-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych

Pytania podstawowe dla studentów studiów II-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych Pytania podstawowe dla studentów studiów II-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych 0 Podstawy metrologii 1. Co to jest pomiar? 2. Niepewność pomiaru, sposób obliczania. 3.

Bardziej szczegółowo

Ćwiczenie nr 1. Regulacja i pomiar napięcia stałego oraz porównanie wskazań woltomierzy.

Ćwiczenie nr 1. Regulacja i pomiar napięcia stałego oraz porównanie wskazań woltomierzy. Ćwiczenie nr 1 Regulacja i pomiar napięcia stałego oraz porównanie wskazań woltomierzy. 1. Cel ćwiczenia Celem ćwiczenia jest analiza wpływów i sposobów włączania przyrządów pomiarowych do obwodu elektrycznego

Bardziej szczegółowo

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym Ćwiczenie E6 Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym E6.1. Cel ćwiczenia Na zamkniętą pętlę przewodnika z prądem, umieszczoną w jednorodnym polu magnetycznym, działa skręcający moment

Bardziej szczegółowo

Przystawki prądowe (AC) seria MINI

Przystawki prądowe (AC) seria MINI Przystawki prądowe (AC) seria MINI Seria MINI Małe, kompaktowe i bardzo odporne. Seria eria miniaturowych cęgów nadaje się do pomiaru prądu w zakresie od kilku miliamperów do 150 A Ac. Odpowiedni kształt

Bardziej szczegółowo

Ćwiczenie 13. Pomiary mocy w obwodach prądu trójfazowego

Ćwiczenie 13. Pomiary mocy w obwodach prądu trójfazowego Ćwiczenie 13 Pomiary mocy w obwodach prądu trójfazowego Program ćwiczenia: 1. Wyznaczanie kolejności faz i sprawdzenie symetrii zasilania 2. Pomiar mocy odbiornika trójfazowego za pomocą jednego watomierza

Bardziej szczegółowo

Pracownia Automatyki Katedry Tworzyw Drzewnych Ćwiczenie 2 str. 1/7 ĆWICZENIE 2

Pracownia Automatyki Katedry Tworzyw Drzewnych Ćwiczenie 2 str. 1/7 ĆWICZENIE 2 Pracownia Automatyki Katedry Tworzyw Drzewnych Ćwiczenie 2 str. 1/7 ĆWICZENIE 2 WYBRANE ELEKTRYCZNE CZUJNIKI-PRZETWORNIKI PRZESUNIĘĆ LINIOWYCH I KĄTOWYCH 1.CEL ĆWICZENIA: zapoznanie się z podstawowymi

Bardziej szczegółowo

ZASTOSOWANIA WYBRANYCH UKŁADÓW SCALONYCH W POMIARACH POBORU MOCY MASZYN I URZĄDZEŃ ODLEWNICZYCH

ZASTOSOWANIA WYBRANYCH UKŁADÓW SCALONYCH W POMIARACH POBORU MOCY MASZYN I URZĄDZEŃ ODLEWNICZYCH ZASTOSOWANIA WYBRANYCH UKŁADÓW SCALONYCH W POMIARACH POBORU MOCY MASZYN I URZĄDZEŃ ODLEWNICZYCH ZASTOSOWANIA WYBRANYCH UKŁADÓW SCALONYCH W POMIARACH POBORU MOCY MASZYN I URZĄDZEŃ ODLEWNICZYCH E. ZIÓŁKOWSKI

Bardziej szczegółowo

12.7 Sprawdzenie wiadomości 225

12.7 Sprawdzenie wiadomości 225 Od autora 8 1. Prąd elektryczny 9 1.1 Budowa materii 9 1.2 Przewodnictwo elektryczne materii 12 1.3 Prąd elektryczny i jego parametry 13 1.3.1 Pojęcie prądu elektrycznego 13 1.3.2 Parametry prądu 15 1.4

Bardziej szczegółowo

WYŁĄCZNIKI RÓŻNICOWOPRĄDOWE SPECJALNE LIMAT Z WBUDOWANYM ZABEZPIECZENIEM NADPRĄDOWYM FIRMY ETI POLAM

WYŁĄCZNIKI RÓŻNICOWOPRĄDOWE SPECJALNE LIMAT Z WBUDOWANYM ZABEZPIECZENIEM NADPRĄDOWYM FIRMY ETI POLAM inż. Roman Kłopocki ETI POLAM Sp. z o.o., Pułtusk WYŁĄCZNIKI RÓŻNICOWOPRĄDOWE SPECJALNE LIMAT Z WBUDOWANYM ZABEZPIECZENIEM NADPRĄDOWYM FIRMY ETI POLAM Abstrakt: Instalacja elektryczna niejednokrotnie wymaga

Bardziej szczegółowo

Dioda półprzewodnikowa

Dioda półprzewodnikowa COACH 10 Dioda półprzewodnikowa Program: Coach 6 Projekt: na MN060c CMA Coach Projects\PTSN Coach 6\ Elektronika\dioda_2.cma Przykład wyników: dioda2_2.cmr Cel ćwiczenia - Pokazanie działania diody - Wyznaczenie

Bardziej szczegółowo

Obwody liniowe. Sprawdzanie praw Kirchhoffa

Obwody liniowe. Sprawdzanie praw Kirchhoffa POLTECHNK ŚLĄSK WYDZŁ NŻYNER ŚRODOWSK ENERGETYK NSTYTT MSZYN RZĄDZEŃ ENERGETYCZNYCH LBORTORM ELEKTRYCZNE Obwody liniowe. Sprawdzanie praw Kirchhoffa (E 2) Opracował: Dr inż. Włodzimierz OGLEWCZ 3 1. Cel

Bardziej szczegółowo

Instrukcja obsługi miernika uniwersalnego MU-02D

Instrukcja obsługi miernika uniwersalnego MU-02D Instrukcja obsługi miernika uniwersalnego MU-02D 1. Informacje ogólne Miernik MU-02D umożliwia pomiary napięć stałych (do 1000V) i przemiennych (do 750V), natężenia prądu stałego (do 10A), oporności (do

Bardziej szczegółowo

Załącznik nr 1 do umowy sprzedaży opis techniczny urządzenia

Załącznik nr 1 do umowy sprzedaży opis techniczny urządzenia Załącznik nr 1 do umowy sprzedaży opis techniczny urządzenia Urządzenie BLIX POWER służy do oszczędzania energii elektrycznej w obwodach jedno i trójfazowych. W urządzeniu zastosowano szereg rozwiązań

Bardziej szczegółowo

Podstawy elektroniki i metrologii

Podstawy elektroniki i metrologii Politechnika Gdańska WYDZIAŁ ELEKTRONIKI TELEKOMUNIKACJI I INFORMATYKI Katedra Metrologii i Optoelektroniki Podstawy elektroniki i metrologii Studia I stopnia kier. Informatyka semestr 2 Ilustracje do

Bardziej szczegółowo

WSTĘP DO ELEKTRONIKI

WSTĘP DO ELEKTRONIKI WSTĘP DO ELEKTONIKI Część II Podstawowe elementy elektroniczne dwójniki bierne LC Formalizm zespolony opisu napięć i prądów harmonicznie zmiennych w czasie impedancja Źródła napięcia i prądu Przekazywanie

Bardziej szczegółowo

dr inż. Krzysztof Stawicki ks@zut.edu.pl

dr inż. Krzysztof Stawicki ks@zut.edu.pl Zakłócenia w układach elektroenergetycznych dr inż. Krzysztof Stawicki ks@zut.edu.pl e-mail: w temacie wiadomości proszę wpisywać tylko słowo STUDENT strona www: ks.zut.edu.pl/z Literatura Kacejko P.,

Bardziej szczegółowo