Ćwiczenie 11. Spektrometr beta.
|
|
- Justyna Chrzanowska
- 6 lat temu
- Przeglądów:
Transkrypt
1 Ćwiczenie 11 Spektrometr beta. 1. Student winien wykazać się znajomością: 1. Ruch cząstki naładowanej w polu magnetycznym i elektrycznym. 2. Spektrometr magnetyczny zasada działania. 3. Promieniowanie beta, rodzaje przemian, rozkład energetyczny tego promieniowania. 4. Wyznaczanie energii maksymalnej przy użyciu spektrometru magnetycznego.
2 Pomoc merytoryczna do opracowania wyników. Cząstka naładowana o ładunku q poruszając się w polu magnetycznym o indukcji magnetycznej B r z prędkością v doznaje ze strony tego pola działania siły F r równej r r r 1. F = q v B Zatem, wprowadzając w obszar o znanej konfiguracji pola magnetycznego cząstkę naładowaną można z jej zachowania się w tym polu (np. toru ruchu) wnioskować o jej prędkości, a w konsekwencji o jej pędzie i energii. Wpływ pola magnetycznego na ruch cząstki naładowanej jest wykorzystany w urządzeniach zwanych magnetycznymi spektrometrami beta. Zastosowany w ćwiczeniu spektrometr należy do grupy spektrometrów o cienkiej soczewce magnetycznej z pojedynczym ogniskowaniem. Ponieważ ilościowy opis działania cienkiej soczewki -magnetycznej jest dość skomplikowany, omówimy spektrometr magnetyczny, w którym cały obszar, w jakim poruszają się cząstki beta (w drodze od źródła do detektora) obejmuje jednorodne pole magnetyczne z wektorem indukcji magnetycznej B r równoległym do linii łączącej źródło i detektor (oś spektrometru). W takim polu magnetycznym cząstka beta, która wyleciała ze źródła pod kątem Θ względem osi spektrometru porusza się po linii śrubowej o skoku ( por. rys. 1): m 2. L = 2π v cosθ eb gdzie: m - masa (relatywistyczna) cząstki beta; e - ładunek elementarny; B - wartość indukcji magnetycznej; v - prędkość cząstki beta.
3 Oznacza to, że cząstki beta spełniające warunek (2) przecinałyby oś spektrometru po przemieszczeniu się w kierunku pola o odległość 3. L n = n L, gdzie n = 1, 2, 3K Z reguły dobiera się takie warunki geometryczne dla możliwych torów cząstek beta (poprzez zastosowanie odpowiedniej konfiguracji przesłon), że do detektora mogą dotrzeć jedynie te cząstki, których prędkości tworzą z osią spektrometru kąt θ z małego przedziału θ (1/2) θ, θ + (1/2) θ, a odpowiadający im skok linii śrubowej jest równy odległości od źródła do detektora. Oznacza to, że ze źródła do detektora (przy dodatkowym założeniu małych rozmiarów źródła i detektora) docierają tylko te cząstki p, które mają pęd równy [stosownie do wzoru (2)]: 4. gdzie wprowadzono oznaczenie: 5. a kąt θ spełnia związek: L e 1 1 p = B = D B 2π cosθ cosθ L e D =, 2π 6. θ (1/2) θ θ θ + (1/2) θ. Uwaga: Przy takim ograniczeniu kątowym do detektora mogą dotrzeć (i są poddawane analizie prędkości) jedynie cząstki beta, które są emitowane ze źródła w kąt bryłowy (zawarty między dwoma powierzchniami stożkowymi o rozwartościach kątowych 2 θ θ i θ + θ ) równy 2π sinθ θ, co stanowi ułamek 2π sinθ θ 1 7. T = = θ sinθ 4π 2 pełnego kąta bryłowego (4π). Różniczkując zależność (4) po θ otrzymujemy dp sinθ 8. = D B, dθ cos 2 θ lub po zastąpieniu różniczek końcowymi przyrostami (w tym kładąc θ zamiast dθ) 9. p = p tgθ θ, gdzie 1. p = D B 1 cosθ jest środkiem przedziału pędów tych elektronów, które przy danej indukcji magnetycznej (B) docierają od źródła do detektora, a p jest szerokością tego przedziału.
4 Oznaczając θ tgθ przez 2k (wielkość stała dla danego spektrometru uwarunkowana jego geometrią) otrzymujemy: p 11. = 2k. p Zatem przy danej indukcji magnetycznej B = B (w spektrometrze z polem jednorodnym, ogólnie przy danym natężeniu I = I prądu w solenoidzie spektrometru) detektor rejestruje cząstki beta o pędach zawartych w przedziale p - kp, p + kp, którego szerokość zwana pędową zdolnością rozdzielczą spektrometru równa 2kp jest proporcjonalna do średniego pędu aktualnie rejestrowanych cząstek. Oznacza to, że przy danym p (określonym natężeniem prądu I ), szybkość zliczeń w detektorze może być określona wzorem: 12. N( p ) N( I ) = n( p ) A S ε ( p ), 2kp gdzie: A - aktywność źródła, S - tzw. świetlność spektrometru (określająca jaka część elektronów emitowanych ze źródła z pędem p dociera do detektora), ε(p ) - wydajność detektora, n(p) - rozkład pędów cząstek beta. Komentarz: Gdyby źródło i detektor spektrometru były punktowe, to S byłoby równe zero, bowiem przy danym polu magnetycznym mogłyby do detektora dotrzeć cząstki beta o zadanym pędzie p lecące pod ściśle określonym kątem (θ ) do osi spektrometru, a więc emitowane w zerowy kąt bryłowy. Wskutek niezerowych rozmiarów źródła i detektora, do detektora mogą docierać również cząstki o pędzie p, których kierunki ruchu tworzyły z osią spektrometru kąty różniące się nieco od θ, co prowadzi do niezerowej wartości S, z tym, że wpływa to na pogorszenie pędowej zdolności rozdzielczej (coś za coś) w stosunku do określonej np. wzorem (11). Oczywiście warunkiem niezbędnym aby S mogło być różne od zera, jest niezerowość T [por. wzór (7)]. Przyjmując ε(p ) za niezależne od pędu i wprowadzając oznaczenie: 13. C = k S A ε ( p ), otrzymujemy z (12) 14. ( p ) 2 ( p ) N( I ) N n = C p = C. p Stosownie do wcześniejszych uwag, I jest natężeniem prądu w uzwojeniu soczewki spektrometru, przy którym zarejestrowano szybkość zliczeń detektora równą N(I ); oczywiście, natężeniu prądu I odpowiada środek przedziału pędów rejestrowanych cząstek beta równy p. Dokładne wyliczenie stałej C jest z reguły dość trudne, ale można ją wyznaczyć z warunku normowania funkcji n(p), a mianowicie ( ) 15. n p dp = 1. Aby z kolei przejść od rozkładu pędów do rozkładu energii zauważmy, że dla funkcji złożonej
5 y[p(e)] (gdzie p - pęd, a E energia cząstki) mamy: dy dy dp 16. =, de dp de przy czym dp =. de v Ostatecznie rozkład energetyczny n(e) cząstek beta można przedstawić zależnością: 1 n = C v 18. ( E ) = C n( p ) N p ( I ), gdzie v i E to prędkość i energia cząstki beta odpowiadająca pędowi p. Zgodnie ze wzorem (17) można oszacować przedział energii cząstek beta rejestrowanych przy danym I stosując wzór: 19. E = v p. Dla małych energii cząstek beta (E k << m e c 2 ): Ek p 2. = 2 Ek p i wtedy wzór (18) może być zastąpiony wzorem 21. ( E ) n = C N ' E ( I ), gdzie stałą C' można znaleźć z warunku: 22. n( E) de = 1. Oczywiście, gdy interesuje nas jedynie kształt rozkładu a nie konkretne wartości n(e) czy n(p), znajomość stałych C i C nie jest istotna. Znając rozkład n(e) można obliczyć średnią energię kinetyczną cząstek beta na podstawie przybliżonej zależności: v 23. E sr = i i E i n n ( E ) ( E ) i i, gdzie energię E i uzyskuje się odkładając na osi energii równe odstępy E; wtedy E i+1 = E i + E tak, aby zakres energii, dla którego n(e), podzielić na co najmniej 2 odcinków.
6 2. Cel doświadczenia Celem doświadczenia jest wyznaczenie "widma" energetycznego promieniowania beta. Spektrometr, z którego korzystamy, jest spektrometrem magnetycznym z cienką soczewką. Schematyczny przekrój spektrometru pokazuje rysunek (1). Rys. l K - komora spektrometru, W - "krzyżak" na którym umieszczono trzy źródła promieniotwórcze, Ż 1, Ż 2 - przedstawiciele źródeł promieniotwórczych; PR - połączenie komory spektrometru z pompą dyfuzyjną i rotacyjną; D 1,2,3,4 diafragmy, P - przesłona ołowiowa; L. GM. - licznik Geigera-Miillera; S - solenoid. W tym spektrometrze komorę stanowi długa, mosiężna rura, z której przy pomocy pompy rotacyjnej (komora próżni wstępnej) i pompy dyfuzyjnej odpompowuje się powietrze do ciśnienia -rzędu 1-4 Tr. Na lewym końcu komory (gdy ćwiczący patrzy wprost na zestaw) znajduje się metalowy krzyżak przytwierdzony do szlifu umożliwiającego jego obrót; to daje możliwość zmiany źródła promieniotwórczego, umieszczonego wewnątrz spektrometru. W naszym ćwiczeniu badamy trzy źródła: Na 22, C 14, Cl 36. Sposób przekręcenia krzyża i umieszczenia źródła na osi spektrometru jest zaznaczony na obudowie. Przesłona D 1 skupia wiązkę emitowaną ze źródła, a pozostałe diafragmy D 2,3,4 służą do ograniczenia kąta θ, θ +d θ i tym samym decydują o zdolności rozdzielczej i jasności przyrządu. Przesłony te wykonane są z mosiądzu. Przesłona P, wykonana z ołowiu o grubości przekraczającej zasięg cząstek beta użytych w doświadczeniu, ma na celu wyeliminowanie cząstek beta biegnących na wprost oraz absorbcję fotonów gamma, towarzyszących promieniowaniu beta. Detektor cząstek beta umieszczony jest na prawym końcu komory, w ognisku soczewki
7 magnetycznej. Jest to ostrzowy licznik Geigera-Mullera z cienkim okienkiem mikowym. Napięcie pracy licznika podaje prowadzący ćwiczenia. Solenoid S jest źródłem pola magnetycznego, w tym przypadku podłużnego, niejednorodnego, może być silniejsze dookoła osi niż przy samej osi, a może również zmieniać się wzdłuż osi. Niejednorodność pola uzyskuje się poprzez odpowiedni kształt końcówek elektromagnetycznych. Cewka ta jest odpowiednikiem soczewki. Nie jest to soczewka idealna., posiada wadę zwaną aberracją sferyczną, która powoduje rozmycie obrazu; do usunięcia jej stosuje się wyżej opisane diafragmy. Wartość pola magnetycznego sterującego działaniem soczewki możemy zmieniać w sposób pośredni zmieniając przy pomocy włączonego w obwód zasilacza niskiego napięcia natężenie prądu płynącego przez cewkę. Sposób obsługi tego zasilacza zależy od jego typu; dokładniejsze informacje udziela Opiekun Pracowni. 3. Technika pomiarów: a) Ponieważ proces odpompowania aparatury trwa około 3 minut, dla oszczędności czasu istotnego dla ćwiczącego, czynność tę wykonuje Opiekun pracowni. Udziela on również wszelkich informacji dotyczących tej procedury. b) Zapoznać się z zestawem pomiarowym i w obecności prowadzącego ćwiczenia uruchomić pozostałą jego część. c) Zmierzyć tło dla pola B = O, pomiar przeprowadzić kilkakrotnie z dokładnością 5%. d) Zmierzyć zależność szybkości zliczeń N(I) od natężenia prądu I w cewce spektrometru dla źródeł promieniowania p (wyznaczonych przez prowadzącego ćwiczenia lub Opiekuna Pracowni). Dla źródeł o maksymalnej energii cząstek beta E max mniejszej od,4 [MeV] natężenie prądu zmieniać o I =,1 [A], a dla E max większej niż,4 [MeV] o I =,2 [A]. Czas pojedynczego pomiaru dobrać tak, aby błąd dla środkowej części widma był nie większy niż 5%. 4. Opracowanie wyników: a) Na podstawie otrzymanych pomiarów wykreślić krzywe N=N(I) gdzie N jest szybkością zliczeń po odjęciu tła, a I wartością natężenia prądu w cewce. Wykonać to dla wszystkich badanych źródeł. b) Korzystając z krzywej cechowania spektrometru (dołączona do zestawu pomiarowego) lub też z odpowiedniego zestawu zależności pędu, energii i prędkości elektronu od natężenia prądu w spektrometrze beta odczytać wartości energii E cząstek beta dla poszczególnych wartości natężenia prądu i na podstawie wzoru: ( B) N( I ) N( I ) N n( E) = = = pv pv 2E wyznaczyć rozkłady energetyczne cząstek beta dla zbadanych źródeł. c) Ekstrapolując krzywe rozkładu energetycznego do n = O (w stronę dużych energii) określić maksymalną energię promieniowania beta dla zbadanych źródeł. d) 4. Z powierzchni ograniczonej krzywą rozkładu energetycznego (dzieląc ją na co najmniej 2 równych odcinków) i korzystając z wzoru (23) obliczyć średnią nergię promieniowania.
8 Dodatkowe dane do wyznaczenia energii promieniowania beta (wybierz odpowiednie)
9
10
Ćwiczenie nr 5. Pomiar górnej granicy widma energetycznego Promieniowania beta metodą absorpcji.
Ćwiczenie nr 5 Pomiar górnej granicy widma energetycznego Promieniowania beta metodą absorpcji. 1. 2. 3. 1. Ołowiany domek pomiarowy z licznikiem kielichowym G-M oraz wielopoziomowymi wspornikami. 2. Zasilacz
Ćwiczenie 9. Pomiar bezwględnej aktywności źródeł promieniotwórczych.
Ćwiczenie 9 Pomiar bezwględnej aktywności źródeł promieniotwórczych. Stanowisko 9 (preparaty beta promieniotwórcze) Stanowisko 9 (preparaty gamma promieniotwórcze) 1. Student winien wykazać się znajomością:
Wyznaczanie stosunku e/m elektronu
Ćwiczenie 27 Wyznaczanie stosunku e/m elektronu 27.1. Zasada ćwiczenia Elektrony przyspieszane w polu elektrycznym wpadają w pole magnetyczne, skierowane prostopadle do kierunku ich ruchu. Wyznacza się
Ćwiczenie nr 2. Pomiar energii promieniowania gamma metodą absorpcji
Ćwiczenie nr (wersja_05) Pomiar energii gamma metodą absorpcji Student winien wykazać się znajomością następujących zagadnień:. Promieniowanie gamma i jego własności.. Absorpcja gamma. 3. Oddziaływanie
Doświadczenie nr 6 Pomiar energii promieniowania gamma metodą absorpcji elektronów komptonowskich.
Doświadczenie nr 6 Pomiar energii promieniowania gamma metodą absorpcji elektronów komptonowskich.. 1. 3. 4. 1. Pojemnik z licznikami cylindrycznymi pracującymi w koincydencji oraz z uchwytem na warstwy
Doświadczenie nr 7. Określenie średniego czasu życia mionu.
Doświadczenie nr 7 Określenie średniego czasu życia mionu. Teleskop licznikowy Układ elektroniczny 1. Student winien wykazać się znajomością następujących zagadnień: 1. Promieniowanie kosmiczne wpływ ziemskiego
PRACOWNIA JĄDROWA ĆWICZENIE 4. Badanie rozkładu gęstości strumienia kwantów γ oraz mocy dawki w funkcji odległości od źródła punktowego
Katedra Fizyki Jądrowej i Bezpieczeństwa Radiacyjnego PRACOWNIA JĄDROWA ĆWICZENIE 4 Badanie rozkładu gęstości strumienia kwantów γ oraz mocy dawki w funkcji odległości od źródła punktowego Łódź 017 I.
Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym
Ćwiczenie 11A Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym 11A.1. Zasada ćwiczenia W ćwiczeniu mierzy się przy pomocy wagi siłę elektrodynamiczną, działającą na odcinek przewodnika
Theory Polish (Poland)
Q3-1 Wielki Zderzacz Hadronów (10 points) Przeczytaj Ogólne instrukcje znajdujące się w osobnej kopercie zanim zaczniesz rozwiązywać to zadanie. W tym zadaniu będą rozpatrywane zagadnienia fizyczne zachodzące
ĆWICZENIE NR 1. Część I (wydanie poprawione_2017) Charakterystyka licznika Geigera Műllera
ĆWICZENIE NR 1 Część I (wydanie poprawione_2017) Charakterystyka licznika Geigera Műllera 1 I. Cel doświadczenia Wykonanie charakterystyki licznika Geigera-Müllera: I t N min 1 Obszar plateau U V Przykładowy
Badanie własności hallotronu, wyznaczenie stałej Halla (E2)
Badanie własności hallotronu, wyznaczenie stałej Halla (E2) 1. Wymagane zagadnienia - ruch ładunku w polu magnetycznym, siła Lorentza, pole elektryczne - omówić zjawisko Halla, wyprowadzić wzór na napięcie
Wyznaczanie współczynnika rozpraszania zwrotnego. promieniowania β.
Wyznaczanie współczynnika rozpraszania otnego. Zagadnienia promieniowania β. 1. Promieniotwórczość β.. Oddziaływanie cząstek β z materią (w tym rozproszenie otne w wyniku zderzeń sprężystych). 3. Znajomość
ĆWICZENIE 3. BADANIE POCHŁANIANIA PROMIENIOWANIA α i β w ABSORBERACH
ĆWICZENIE 3 BADANIE POCHŁANIANIA PROMIENIOWANIA α i β w ABSORBERACH CEL ĆWICZENIA Celem ćwiczenia jest wyznaczenie: zbadanie pochłaniania promieniowania β w różnych materiałach i wyznaczenie zasięgu w
Ćwiczenie 3++ Spektrometria promieniowania gamma z licznikiem półprzewodnikowym Ge(Li) kalibracja energetyczna i wydajnościowa
Ćwiczenie 3++ Spektrometria promieniowania gamma z licznikiem półprzewodnikowym Ge(Li) kalibracja energetyczna i wydajnościowa Cel ćwiczenia Celem ćwiczenia jest zapoznanie się - z metodyką pomiaru aktywności
MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA. Zadania MODUŁ 11 FIZYKA ZAKRES ROZSZERZONY
MODUŁ MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA OPRACOWANE W RAMACH PROJEKTU: FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA. PROGRAM NAUCZANIA FIZYKI Z ELEMENTAMI TECHNOLOGII
Efekt Halla. Cel ćwiczenia. Wstęp. Celem ćwiczenia jest zbadanie efektu Halla. Siła Loretza
Efekt Halla Cel ćwiczenia Celem ćwiczenia jest zbadanie efektu Halla. Wstęp Siła Loretza Na ładunek elektryczny poruszający się w polu magnetycznym w kierunku prostopadłym do linii pola magnetycznego działa
Radon w powietrzu. Marcin Polkowski 10 marca Wstęp teoretyczny 1. 2 Przyrządy pomiarowe 2. 3 Prędkość pompowania 2
Radon w powietrzu Marcin Polkowski marcin@polkowski.eu 10 marca 2008 Streszczenie Celem ćwiczenia był pomiar stężenia 222 Rn i produktów jego rozpadu w powietrzu. Pośrednim celem ćwiczenia było również
ĆWICZENIE 2. BADANIE CHARAKTERYSTYK SOND PROMIENIOWANIA γ
ĆWICZENIE 2 BADANIE CHARAKTERYSTYK SOND PROMIENIOWANIA γ CEL ĆWICZENIA Celem ćwiczenia jest wyznaczenie następujących charakterystyk sond promieniowania γ: wydajności detektora w funkcji odległości detektora
MAGNETYZM. PRĄD PRZEMIENNY
Włodzimierz Wolczyński 47 POWTÓRKA 9 MAGNETYZM. PRĄD PRZEMIENNY Zadanie 1 W dwóch przewodnikach prostoliniowych nieskończenie długich umieszczonych w próżni, oddalonych od siebie o r = cm, płynie prąd.
C5: BADANIE POCHŁANIANIA PROMIENIOWANIA α i β W POWIETRZU oraz w ABSORBERACH
C5: BADANIE POCHŁANIANIA PROMIENIOWANIA α i β W POWIETRZU oraz w ABSORBERACH CEL ĆWICZENIA Celem ćwiczenia jest obserwacja pochłaniania cząstek alfa w powietrzu wyznaczenie zasięgu w aluminium promieniowania
Ćwiczenie 52 Spektroskopia β
Ćwiczenie 52 Spektroskopia β II PRACOWNIA FIZYCZNA UNIWERSYTET ŚLA SKI W KATOWICACH 1 Cel ćwiczenia Celem ćwiczenia jest wyznaczenie przy użyciu spektrometru magnetycznego widm energetycznych elektronów
C5: BADANIE POCHŁANIANIA PROMIENIOWANIA α i β W POWIETRZU oraz w ABSORBERACH
C5: BADANIE POCHŁANIANIA PROMIENIOWANIA α i β W POWIETRZU oraz w ABSORBERACH CEL ĆWICZENIA Celem ćwiczenia jest: zbadanie pochłaniania promieniowania β w różnych materiałach i wyznaczenie zasięgu promieniowania
Odp.: F e /F g = 1 2,
Segment B.IX Pole elektrostatyczne Przygotował: mgr Adam Urbanowicz Zad. 1 W atomie wodoru odległość między elektronem i protonem wynosi około r = 5,3 10 11 m. Obliczyć siłę przyciągania elektrostatycznego
Ćwiczenie nr 2 : Badanie licznika proporcjonalnego fotonów X
Ćwiczenie nr 2 : Badanie licznika proporcjonalnego fotonów X Oskar Gawlik, Jacek Grela 16 lutego 2009 1 Podstawy teoretyczne 1.1 Liczniki proporcjonalne Wydajność detekcji promieniowania elektromagnetycznego
Wyznaczanie przenikalności magnetycznej i krzywej histerezy
Ćwiczenie 13 Wyznaczanie przenikalności magnetycznej i krzywej histerezy 13.1. Zasada ćwiczenia W uzwojeniu, umieszczonym na żelaznym lub stalowym rdzeniu, wywołuje się przepływ prądu o stopniowo zmienianej
Ładunki elektryczne. q = ne. Zasada zachowania ładunku. Ładunek jest cechąciała i nie można go wydzielićz materii. Ładunki jednoimienne odpychają się
Ładunki elektryczne Ładunki jednoimienne odpychają się Ładunki różnoimienne przyciągają się q = ne n - liczba naturalna e = 1,60 10-19 C ładunek elementarny Ładunek jest cechąciała i nie można go wydzielićz
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 41: Busola stycznych
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 41: Busola stycznych Cel ćwiczenia: Wyznaczenie składowej poziomej ziemskiego pola magnetycznego. Literatura [1] Kąkol Z., Fizyka dla inżynierów, OEN Warszawa,
Ćwiczenie nr 43: HALOTRON
Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Data wykonania Data oddania Zwrot do popr. Rok Grupa Zespół Nr ćwiczenia Data oddania Data zaliczenia OCENA Ćwiczenie nr 43: HALOTRON Cel
LABORATORIUM PROMIENIOWANIE W MEDYCYNIE
LABORATORIUM PROMIENIOWANIE W MEDYCYNIE Ćw nr 3 NATEŻENIE PROMIENIOWANIA γ A ODLEGŁOŚĆ OD ŹRÓDŁA PROMIENIOWANIA Nazwisko i Imię: data: ocena (teoria) Grupa Zespół ocena końcowa 1 Cel ćwiczenia Natężenie
Badanie rozkładu pola magnetycznego przewodników z prądem
Ćwiczenie E7 Badanie rozkładu pola magnetycznego przewodników z prądem E7.1. Cel ćwiczenia Prąd elektryczny płynący przez przewodnik wytwarza wokół niego pole magnetyczne. Ćwiczenie polega na pomiarze
Wyznaczanie bezwzględnej aktywności źródła 60 Co. Tomasz Winiarski
Wyznaczanie bezwzględnej aktywności źródła 60 Co metoda koincydencyjna. Tomasz Winiarski 24 kwietnia 2001 WSTEP TEORETYCZNY Rozpad promieniotwórczy i czas połowicznego zaniku. Rozpad promieniotwórczy polega
Rozdział 22 Pole elektryczne
Rozdział 22 Pole elektryczne 1. NatęŜenie pola elektrycznego jest wprost proporcjonalne do A. momentu pędu ładunku próbnego B. energii kinetycznej ładunku próbnego C. energii potencjalnej ładunku próbnego
Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym
Ćwiczenie E6 Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym E6.1. Cel ćwiczenia Na zamkniętą pętlę przewodnika z prądem, umieszczoną w jednorodnym polu magnetycznym, działa skręcający moment
RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego?
RÓWNANIA MAXWELLA Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? Wykład 3 lato 2012 1 Doświadczenia Wykład 3 lato 2012 2 1
KOD UCZNIA KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJÓW III ETAP WOJEWÓDZKI. 09 lutego 2015
KOD UCZNIA KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJÓW III ETAP WOJEWÓDZKI 09 lutego 2015 Ważne informacje: 1. Masz 120 minut na rozwiązanie wszystkich zadań. 2. Zapisuj szczegółowe obliczenia i komentarze
Wykład FIZYKA II. 3. Magnetostatyka. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA II 3. Magnetostatyka Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ POLE MAGNETYCZNE Elektryczność zaobserwowana została
Pomiar indukcji pola magnetycznego w szczelinie elektromagnesu
Ćwiczenie E5 Pomiar indukcji pola magnetycznego w szczelinie elektromagnesu E5.1. Cel ćwiczenia Celem ćwiczenia jest pomiar siły elektrodynamicznej (przy pomocy wagi) działającej na odcinek przewodnika
Ramka z prądem w jednorodnym polu magnetycznym
Ramka z prądem w jednorodnym polu magnetycznym Siła wypadkowa = 0 Wypadkowy moment siły: τ = w F + w ( ) F ( ) = 2 w F w τ = 2wF sinθ = IBl 2 sinθ = θ=90 o IBl 2 θ to kąt między wektorem w i wektorem F
MOMENT MAGNETYCZNY W POLU MAGNETYCZNYM
Ćwiczenie nr 16 MOMENT MAGNETYCZNY W POLU MAGNETYCZNYM Aparatura Zasilacze regulowane, cewki Helmholtza, multimetry cyfrowe, dynamometr torsyjny oraz pętle próbne z przewodnika. X Y 1 2 Rys. 1 Układ pomiarowy
γ6 Liniowy Model Pozytonowego Tomografu Emisyjnego
γ6 Liniowy Model Pozytonowego Tomografu Emisyjnego Cel ćwiczenia Celem ćwiczenia jest zaprezentowanie zasady działania pozytonowego tomografu emisyjnego. W doświadczeniu użyjemy detektory scyntylacyjne
Badanie rozkładu pola elektrycznego
Ćwiczenie 8 Badanie rozkładu pola elektrycznego 8.1. Zasada ćwiczenia W wannie elektrolitycznej umieszcza się dwie metalowe elektrody, połączone ze źródłem zmiennego napięcia. Kształt przekrojów powierzchni
POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ
OZNACZANIE OKRESU PÓŁROZPADU DLA NUKLIDU 40 K WSTĘP Naturalny potas stanowi mieszaninę trzech nuklidów: 39 K (93.08%), 40 K (0.012%) oraz 41 K (6.91%). Nuklid 40 K jest izotopem promieniotwórczym, którego
3.5 Wyznaczanie stosunku e/m(e22)
Wyznaczanie stosunku e/m(e) 157 3.5 Wyznaczanie stosunku e/m(e) Celem ćwiczenia jest wyznaczenie stosunku ładunku e do masy m elektronu metodą badania odchylenia wiązki elektronów w poprzecznym polu magnetycznym.
26 MAGNETYZM. Włodzimierz Wolczyński. Indukcja magnetyczna a natężenie pola magnetycznego. Wirowe pole magnetyczne wokół przewodnika prostoliniowego
Włodzimierz Wolczyński 26 MAGETYZM Indukcja magnetyczna a natężenie pola magnetycznego B indukcja magnetyczna H natężenie pola magnetycznego μ przenikalność magnetyczna ośrodka dla paramagnetyków - 1 1,
wyznaczenie zasięgu efektywnego, energii maksymalnej oraz prędkości czastek β o zasięgu maksymalnym,
1 Część teoretyczna 1.1 Cel ćwiczenia Celem ćwiczenia jest zbadanie absorpcji promieniowania β w ciałach stałych poprzez: wyznaczenie krzywej absorpcji, wyznaczenie zasięgu efektywnego, energii maksymalnej
Wyznaczanie przenikalności magnetycznej i krzywej histerezy
Ćwiczenie E8 Wyznaczanie przenikalności magnetycznej i krzywej histerezy E8.1. Cel ćwiczenia Celem ćwiczenia jest pomiar zależności B(I) dla cewki z rdzeniem stalowym lub żelaznym, wykreślenie krzywej
IV.4.4 Ruch w polach elektrycznym i magnetycznym. Siła Lorentza. Spektrometry magnetyczne
r. akad. 005/ 006 IV.4.4 Ruch w polach elektrycznym i magnetycznym. Siła Lorentza. Spektrometry magnetyczne Jan Królikowski Fizyka IBC 1 r. akad. 005/ 006 Pole elektryczne i magnetyczne Pole elektryczne
Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI.
Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI. 1. Ładunki q 1 =3,2 10 17 i q 2 =1,6 10 18 znajdują się w próżni
Ć W I C Z E N I E N R J-1
INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA DETEKCJI PROMIENIOWANIA JĄDROWEGO Ć W I C Z E N I E N R J-1 BADANIE CHARAKTERYSTYKI LICZNIKA SCYNTYLACYJNEGO
Badanie transformatora
Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne
Zadanie 106 a, c WYZNACZANIE PRZEWODNICTWA WŁAŚCIWEGO I STAŁEJ HALLA DLA PÓŁPRZEWODNIKÓW. WYZNACZANIE RUCHLIWOŚCI I KONCENTRACJI NOŚNIKÓW.
Zadanie 106 a, c WYZNACZANIE PRZEWODNICTWA WŁAŚCIWEGO I STAŁEJ HALLA DLA PÓŁPRZEWODNIKÓW. WYZNACZANIE RUCHLIWOŚCI I KONCENTRACJI NOŚNIKÓW. 1. Elektromagnes 2. Zasilacz stabilizowany do elektromagnesu 3.
Badanie rozkładu pola elektrycznego
Ćwiczenie 8 Badanie rozkładu pola elektrycznego 8.1. Zasada ćwiczenia W wannie elektrolitycznej umieszcza się dwie metalowe elektrody, połączone ze źródłem zmiennego napięcia. Kształt przekrojów powierzchni
Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym
Ćwiczenie 11B Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym 11B.1. Zasada ćwiczenia Na zamkniętą pętlę przewodnika z prądem, umieszczoną w jednorodnym polu magnetycznym, działa skręcający
Ćwiczenie LP2. Jacek Grela, Łukasz Marciniak 25 października 2009
Ćwiczenie LP2 Jacek Grela, Łukasz Marciniak 25 października 2009 1 Wstęp teoretyczny 1.1 Energetyczna zdolność rozdzielcza Energetyczna zdolność rozdzielcza to wielkość opisująca dokładność detekcji energii
Wymiana ciepła. Ładunek jest skwantowany. q=n. e gdzie n = ±1, ±2, ±3 [1C = 6, e] e=1, C
Wymiana ciepła Ładunek jest skwantowany ładunek elementarny ładunek pojedynczego elektronu (e). Każdy ładunek q (dodatni lub ujemny) jest całkowitą wielokrotnością jego bezwzględnej wartości. q=n. e gdzie
Badanie absorpcji promieniowania γ
Badanie absorpcji promieniowania γ 29.1. Zasada ćwiczenia W ćwiczeniu badana jest zależność natężenia wiązki osłabienie wiązki promieniowania γ po przejściu przez warstwę materiału absorbującego w funkcji
LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA
LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA CZĘŚĆ TEORETYCZNA Za każde zadanie można otrzymać maksymalnie 0 punktów. Zadanie 1. przedmiot. Gdzie znajduje się obraz i jakie jest jego powiększenie? Dla jakich
Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, Otwock-Świerk
Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, 05-400 Otwock-Świerk ĆWICZENIE L A B O R A T O R I U M F I Z Y K I A T O M O W E J I J Ą D R O W E J Zastosowanie pojęć
Szkoła z przyszłością. Zastosowanie pojęć analizy statystycznej do opracowania pomiarów promieniowania jonizującego
Szkoła z przyszłością szkolenie współfinansowane przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Narodowe Centrum Badań Jądrowych, ul. Andrzeja Sołtana 7, 05-400 Otwock-Świerk ĆWICZENIE
Elektrostatyka. Potencjał pola elektrycznego Prawo Gaussa
Elektrostatyka Potencjał pola elektrycznego Prawo Gaussa 1 Potencjał pola elektrycznego Energia potencjalna zależy od (ładunek próbny) i Q (ładunek który wytwarza pole), ale wielkość definiowana jako:
WYZNACZANIE ZAWARTOŚCI POTASU
POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW obowiązuje w r. akad. 2017 / 2018 WYZNACZANIE ZAWARTOŚCI POTASU W STAŁEJ PRÓBCE SOLI Opiekun ćwiczenia: Miejsce ćwiczenia:
Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH
METODA ROZDZIELENIA ZMIENNYCH (2) (3) (10) (11) Modelowanie i symulacje obiektów w polu elektromagnetycznym 1 Rozwiązania równań (10-11) mają ogólną postać: (12) (13) Modelowanie i symulacje obiektów w
Wyznaczanie krzywej ładowania kondensatora
Ćwiczenie E10 Wyznaczanie krzywej ładowania kondensatora E10.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie przebiegu procesu ładowania kondensatora oraz wyznaczenie stałej czasowej szeregowego układu.
Laboratorium z Krystalografii specjalizacja: Fizykochemia związków nieorganicznych
Uniwersytet Śląski - Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 133, 40-006 Katowice tel. 0323591197, e-mail: izajen@wp.pl opracowanie: dr Izabela Jendrzejewska Laboratorium z Krystalografii
pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania fizyka, wzory fizyka, matura fizyka
7. Pole magnetyczne zadania z arkusza I 7.8 7.1 7.9 7.2 7.3 7.10 7.11 7.4 7.12 7.5 7.13 7.6 7.7 7. Pole magnetyczne - 1 - 7.14 7.25 7.15 7.26 7.16 7.17 7.18 7.19 7.20 7.21 7.27 Kwadratową ramkę (rys.)
BADANIE INTERFERENCJI MIKROFAL PRZY UŻYCIU INTERFEROMETRU MICHELSONA
ZDNIE 11 BDNIE INTERFERENCJI MIKROFL PRZY UŻYCIU INTERFEROMETRU MICHELSON 1. UKŁD DOŚWIDCZLNY nadajnik mikrofal odbiornik mikrofal 2 reflektory płytka półprzepuszczalna prowadnice do ustawienia reflektorów
Laboratorium z Krystalografii. 2 godz.
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Zbadanie zależności intensywności linii Ka i Kb promieniowania charakterystycznego X emitowanego przez anodę
Pomiar energii wiązania deuteronu. Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu
J1 Pomiar energii wiązania deuteronu Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu Przygotowanie: 1) Model deuteronu. Własności deuteronu jako źródło informacji o siłach jądrowych [4] ) Oddziaływanie
Ćw. 27. Wyznaczenie elementów L C metoda rezonansu
7 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A F I Z Y K I Ćw. 7. Wyznaczenie elementów L C metoda rezonansu Wprowadzenie Obwód złożony z połączonych: kondensatora C cewki L i opornika R
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 53: Soczewki
Nazwisko i imię: Zespół: Data: Ćwiczenie nr : Soczewki Cel ćwiczenia: Wyznaczenie ogniskowych soczewki skupiającej i układu soczewek (skupiającej i rozpraszającej) oraz ogniskowej soczewki rozpraszającej
Magnetyzm cz.i. Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera
Magnetyzm cz.i Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera 1 Magnesy Zjawiska magnetyczne (naturalne magnesy) były obserwowane i badane już w starożytnej Grecji 500 lat
LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.
LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.. Wprowadzenie Soczewką nazywamy ciało przezroczyste ograniczone
Efekt fotoelektryczny
Ćwiczenie 82 Efekt fotoelektryczny Cel ćwiczenia Celem ćwiczenia jest obserwacja efektu fotoelektrycznego: wybijania elektronów z metalu przez światło o różnej częstości (barwie). Pomiar energii kinetycznej
Ćwiczenie nr 82: Efekt fotoelektryczny
Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Rok Grupa Zespół Nr ćwiczenia Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 82: Efekt fotoelektryczny
5. (2 pkt) Uczeń miał za zadanie skonstruował zwojnicę do wytwarzania pola magnetycznego o wartości indukcji
Magnetyzm Dane ogólne do zadań: ładunek elektronu: masa elektronu: masa protonu: masa neutronu: 1,6 19 9,11 C 31 1,67 1,675 kg 7 7 kg kg Własności magnetyczne substancji 1. (1 pkt). ( pkt) 3. ( pkt) Jaka
Ćwiczenie ELE. Jacek Grela, Łukasz Marciniak 3 grudnia Rys.1 Schemat wzmacniacza ładunkowego.
Ćwiczenie ELE Jacek Grela, Łukasz Marciniak 3 grudnia 2009 1 Wstęp teoretyczny 1.1 Wzmacniacz ładunkoczuły Rys.1 Schemat wzmacniacza ładunkowego. C T - adaptor ładunkowy, i - źródło prądu reprezentujące
Wojewódzki Konkurs Fizyczny dla uczniów Gimnazjum w roku szkolnym 2012/2013 ETAP WOJEWÓDZKI - 13 marca 2013 r.
NUMER KODOWY UCZNIA Punktacja za zadania Zad. Zad. Zad. Zad. Zad. Zad. Zad. Razem 1 2 3 4 5 6 7 4 p 7 p 3 p 4 p 5 p 4 p 13 p 40 p.. Podpis nauczyciela oceniającego zadanie 80% z 40 pkt. =32 pkt. Drogi
Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl
Ładunki elektryczne i siły ich wzajemnego oddziaływania Pole elektryczne Copyright by pleciuga@ o2.pl Ładunek punktowy Ładunek punktowy (q) jest to wyidealizowany model, który zastępuje rzeczywiste naelektryzowane
Laboratorium z Krystalografii. 2 godz.
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Zbadanie zależności intensywności linii Kα i Kβ promieniowania charakterystycznego X emitowanego przez anodę
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 96: Dozymetria promieniowania gamma
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 96: Dozymetria promieniowania gamma Cel ćwiczenia: Zapoznanie się z podstawami dozymetrii promieniowania jonizującego. Porównanie własności absorpcyjnych promieniowania
Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics)
Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics) Koniec XIX / początek XX wieku Lata 90-te XIX w.: odkrycie elektronu (J. J. Thomson, promienie katodowe), promieniowania Roentgena
Badanie transformatora
Ćwiczenie E9 Badanie transformatora E9.1. Cel ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. W ćwiczeniu przykładając zmienne napięcie do uzwojenia pierwotnego
Licznik Geigera - Mülera
Detektory gazowe promieniowania jonizującego. Licznik Geigera - Mülera Instrukcję przygotował: dr, inż. Zbigniew Górski Poznań, grudzień, 2004. s.1/7 ` Politechnika Poznańska, Instytut Chemii i Elektrochemii
Badanie transformatora
Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne
Ćwiczenie nr 31: Modelowanie pola elektrycznego
Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko.. Temat: Rok Grupa Zespół Nr ćwiczenia Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr : Modelowanie pola
Wyznaczanie profilu wiązki promieniowania używanego do cechowania tomografu PET
18 Wyznaczanie profilu wiązki promieniowania używanego do cechowania tomografu PET Ines Moskal Studentka, Instytut Fizyki UJ Na Uniwersytecie Jagiellońskim prowadzone są badania dotyczące usprawnienia
POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY OZNACZANIE AKTYWNOŚCI, OKRESU PÓŁTRWANIA I MAKSYMALNEJ ENERGII PROMIENIOWANIA
POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW OZNACZANIE AKTYWNOŚCI, OKRESU PÓŁTRWANIA I MAKSYMALNEJ ENERGII PROMIENIOWANIA Opiekun ćwiczenia: Jerzy Żak Miejsce ćwiczenia:
Elektrostatyczna energia potencjalna U
Elektrostatyczna energia potencjalna U Żeby zbliżyć do siebie dwa ładunki jednoimienne trzeba wykonać pracę przeciwko siłom pola nadając ładunkowi energię potencjalną. Podobnie trzeba wykonać pracę przeciwko
Piotr Targowski i Bernard Ziętek WYZNACZANIE MACIERZY [ABCD] UKŁADU OPTYCZNEGO
Instytut Fizyki Uniwersytet Mikołaja Kopernika Piotr Targowski i Bernard Ziętek Pracownia Optoelektroniki Specjalność: Fizyka Medyczna WYZNAZANIE MAIERZY [ABD] UKŁADU OPTYZNEGO Zadanie II Zakład Optoelektroniki
BADANIE AMPEROMIERZA
BADANIE AMPEROMIERZA 1. Cel ćwiczenia Celem ćwiczenia jest poznanie metod pomiaru prądu, nabycie umiejętności łączenia prostych obwodów elektrycznych, oraz poznanie warunków i zasad sprawdzania amperomierzy
Wyznaczanie składowej poziomej natężenia pola magnetycznego Ziemi za pomocą busoli stycznych
Ćwiczenie E12 Wyznaczanie składowej poziomej natężenia pola magnetycznego Ziemi za pomocą busoli stycznych E12.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie wartości składowej poziomej natężenia pola
Podstawy fizyki sezon 2 5. Pole magnetyczne II
Podstawy fizyki sezon 2 5. Pole magnetyczne II Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Indukcja magnetyczna
Uniwersytet Warszawski Wydział Fizyki. Badanie efektu Faraday a w kryształach CdTe i CdMnTe
Uniwersytet Warszawski Wydział Fizyki Marcin Polkowski 251328 Badanie efektu Faraday a w kryształach CdTe i CdMnTe Pracownia Fizyczna dla Zaawansowanych ćwiczenie F8 w zakresie Fizyki Ciała Stałego Streszczenie
13 K A T E D R A F I ZYKI S T O S O W AN E J
3 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 3. Wyznaczenie elementów L C metoda rezonansu Wprowadzenie Obwód złożony
CZUJNIKI POJEMNOŚCIOWE
ĆWICZENIE NR CZUJNIKI POJEMNOŚCIOWE A POMIAR PRZEMIESZCZEŃ ODŁAMÓW KOSTNYCH METODĄ POJEMNOŚCIOWĄ I Zestaw przyrządów: Układ do pomiaru przemieszczeń kości zbudowany ze stabilizatora oraz czujnika pojemnościowego
1 Źródła i detektory. I. Badanie charakterystyki spektralnej nietermicznych źródeł promieniowania elektromagnetycznego
1 I. Badanie charakterystyki spektralnej nietermicznych źródeł promieniowania elektromagnetycznego Cel ćwiczenia: Wyznaczenie charakterystyki spektralnej nietermicznego źródła promieniowania (dioda LD
LASERY I ICH ZASTOSOWANIE
LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz
1 K A T E D R A F I ZYKI S T O S O W AN E J
1 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 1. Łączenie i pomiar oporu Wprowadzenie Prąd elektryczny Jeżeli w przewodniku