CogGGP kognitywnie inspirowany agent GGP podejście nr 1 wyniki eksperymentalne
|
|
- Dawid Czyż
- 6 lat temu
- Przeglądów:
Transkrypt
1 CogGGP kognitywnie inspirowany agent GGP podejście nr 1 wyniki eksperymentalne mgr inż. C. Dendek prof nzw. dr hab. J. Mańdziuk Politechnika Warszawska, Wydział Matematyki i Nauk Informacyjnych
2 Outline
3 język i forma reprezentacji reguł: klauzule LISPowe ekstrakcja kontekstów przetwarzania i relacji pomiędzy nimi (zachowujacych topologię) trudność odróżnienia reguł ogólnych od szczegółowych
4 Elementy składowe Elementy składowe poszczególne pola planszy konteksty przetwarzania (zawierajace elementy podlegajace przetwarzaniu) jednostki przetwarzajace (operujace na kontekstach przetwarzania)
5 Connect N Zarys reguł gry plansza (2(N 1)) ((2N) 1) kółko i krzyżyk z restrykcjami na miejsca umieszczania znaczników znaczniki umieszczane naprzemienne, grawitacyjne wygrana: połaczenie N elementów rozważany przypadek: klasyczne N = 4
6 Mapowanie zasad gry na elementy środowiska Konteksty pierwszego poziomu kontekst pierwszego poziomu jest jednostka asocjacyjna pokrycie planszy kontekstami 1 N zgodnymi z sekwencjami wygrywajacymi (4 mapy) podział kontekstów na otwarte/zamknięte: kontekst otwarty z perspektywy gracza gdy niepusty i może wygenerować wygrywajac a kombinację (uproszczenie: reguła ta powinna zostać wywnioskowana)
7 Mapowanie zasad gry na elementy środowiska Dane generowane przez konteksty pierwszego poziomu ilość elementów zajętych przez agenta (sprowadzona do przedziału [0, 1]) ilość elementów wolnych (sprowadzona do przedziału [0, 1]) otwartość/zamkniętość kontekstu ({0, 1})
8 Mapowanie zasad gry na elementy środowiska Przetwarzanie każde zajęte pole aktywizuje zwiazane z nim otwarte konteksty pierwszego poziomu (nie ma potrzeby analizować wszystkich) jednostka przetwarzania to 1 neuron sigmoidalny (docelowo: sieć ontogeniczna)
9 Mapowanie zasad gry na elementy środowiska Przetwarzanie generalizacje Idea: poszczególne podklasy przyłaczone do poszczególnych jednostek generalizacji Generowanie podklas kontekstów generalnie: cechy podobieństwa zwiazane z położeniem symetrie względem środkowej kolumny (uwaga: wartości należy odbijać) zwiazane z orientacja (pionowy, poziomy, LDRU, LURD)
10 Mapowanie zasad gry na elementy środowiska Podklasy kontekstów jednostki przetwarzania każda podklasa reprezentowana przez 1 jednostkę przetwarzania oczywiście dany kontekst należy do przynajmniej 1 podklasy współdzielenie jednostki przetwarzania oznacza współdzielenie jej współczynników w obecnej chwili dość brutalnie i niewłaściwie: uśrednianie po uczeniu
11 Mapowanie zasad gry na elementy środowiska Łaczenie jednostek przetwarzania pierwszego rzędu korelowanie przy pomocy kontekstu 5x5 przetwarzane sa wyjścia jednostek przetwarzania kontekstów zawartych w danym kontekście 5x5 ilość wejść (konteksty równoległe): (2 5) 3 2 = 60 ilość wejść (konteksty diagonalne): = 24 wyjścia: 5 kolumn bez podklas (pojedyncze współczynniki)
12 Mapa uwagi Mapa uwagi znormalizowane sumowanie wyjść kontekstów 5x5 (1. kolumna 3 konteksty, 4. kolumna 9 kontekstów) wyjścia: 5 kolumn
13 zbiór uczacy: 3000 przykładów zbiór testowy: 1000 przykładów brak wyraźnych efektów :( (brak istotnych różnic względem wyboru losowego) prace trwaja...
14 na poprawę zbieżności w obecnej chwili architektura dla tic-tac-toe należy uwzględnić informację grawitacyjna (np. min. ilość ruchów potrzebnych do wypełnienia danego pola) należy uwzględnić b. ważna symetrię graczy w uczeniu powinny brać udział jedynie konteksty pobudzone inteligentne podejście do kwestii symetrii w uczeniu
15 Dziękuję za uwagę Dziękuję za uwagę
CogGGP - kognitywnie inspirowany agent GGP - opis architektury
CogGGP - kognitywnie inspirowany agent GGP - opis architektury C. Dendek prof nzw. dr hab. J. Mańdziuk Politechnika Warszawska, Wydział Matematyki i Nauk Informacyjnych C. Dendek, prof nzw. dr hab. J.
Inspiracje kognitywne w procesie analizy pozycji szachowej
Inspiracje kognitywne w procesie analizy pozycji szachowej C. Dendek J. Mańdziuk Warsaw University of Technology, Faculty of Mathematics and Information Science Abstrakt Główny cel Poprawa efektywności
Tworzenie gier na urządzenia mobilne
Katedra Inżynierii Wiedzy Teoria podejmowania decyzji w grze Gry w postaci ekstensywnej Inaczej gry w postaci drzewiastej, gry w postaci rozwiniętej; formalny opis wszystkich możliwych przebiegów gry z
Podstawy inżynierii oprogramowania
Podstawy inżynierii oprogramowania Modelowanie. Podstawy notacji UML Aleksander Lamża ZKSB Instytut Informatyki Uniwersytet Śląski w Katowicach aleksander.lamza@us.edu.pl Zawartość Czym jest UML? Wybrane
POŁĄCZENIE ALGORYTMÓW SYMULACYJNYCH ORAZ DZIEDZINOWYCH METOD HEURYSTYCZNYCH W ZAGADNIENIACH DYNAMICZNEGO PODEJMOWANIA DECYZJI
POŁĄCZENIE ALGORYTMÓW SYMULACYJNYCH ORAZ DZIEDZINOWYCH METOD HEURYSTYCZNYCH W ZAGADNIENIACH DYNAMICZNEGO PODEJMOWANIA DECYZJI mgr inż. Karol Walędzik k.waledzik@mini.pw.edu.pl prof. dr hab. inż. Jacek
Koło zainteresowań Teleinformatyk XXI wieku. Projekt 3. Temat Aplikacja interfejsu Microsoft Kinect
Strona1 Koło zainteresowań Teleinformatyk XXI wieku Projekt 3 Temat Aplikacja interfejsu Microsoft Kinect Imię i Nazwisko: Piotr Gajewski Klasa: 2 TI Numer z dziennika: 8 Strona2 Spis treści 1. Opis aplikacji...
Matematyczne kolorowanki. Tomasz Szemberg. Wykład dla studentów IM UP Kraków, 18 maja 2016
Wykład dla studentów IM UP Kraków, 18 maja 2016 Gra wstępna Dany jest prostokąt podzielony na 8 pól. Gracze zamalowują pola na zmianę. Jeden na kolor czerwony, a drugi na kolor niebieski. Gra wstępna Dany
Funkcje. Wprowadzenie. Mirosław Ochodek
Funkcje Wprowadzenie Mirosław Ochodek Miroslaw.Ochodek@pwsz.pila.pl Miroslaw.Ochodek@cs.put.poznan.pl Funkcje (i procedury) Problem Zbyt długi ciąg instrukcji sprawia, że kod jest nieczytelny Często w
Wyznaczanie strategii w grach
Wyznaczanie strategii w grach Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Definicja gry Teoria gier i konstruowane na jej podstawie programy stanowią jeden z głównych
Metody Sztucznej Inteligencji II
17 marca 2013 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką, która jest w stanie odbierać i przekazywać sygnały elektryczne. Neuron działanie Jeżeli wartość sygnału
Algorytmy i schematy blokowe
Algorytmy i schematy blokowe Algorytm dokładny przepis podający sposób rozwiązania określonego zadania w skończonej liczbie kroków; zbiór poleceń odnoszących się do pewnych obiektów, ze wskazaniem porządku,
Wstęp do Techniki Cyfrowej... Teoria automatów
Wstęp do Techniki Cyfrowej... Teoria automatów Alfabety i litery Układ logiczny opisywany jest przez wektory, których wartości reprezentowane są przez ciągi kombinacji zerojedynkowych. Zwiększenie stopnia
Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.)
Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. godz. = 76 godz.) I. Funkcja i jej własności.4godz. II. Przekształcenia wykresów funkcji...9 godz. III. Funkcja
Podstawy Sztucznej Inteligencji (PSZT)
Podstawy Sztucznej Inteligencji (PSZT) Paweł Wawrzyński Uczenie maszynowe Sztuczne sieci neuronowe Plan na dziś Uczenie maszynowe Problem aproksymacji funkcji Sieci neuronowe PSZT, zima 2013, wykład 12
Zrównoleglona optymalizacja stochastyczna na dużych zbiorach danych
Zrównoleglona optymalizacja stochastyczna na dużych zbiorach danych mgr inż. C. Dendek prof. nzw. dr hab. J. Mańdziuk Politechnika Warszawska, Wydział Matematyki i Nauk Informacyjnych Outline 1 Uczenie
Rysunek 1: Przykłady graficznej prezentacji klas.
4 DIAGRAMY KLAS. 4 Diagramy klas. 4.1 Wprowadzenie. Diagram klas - w ujednoliconym języku modelowania jest to statyczny diagram strukturalny, przedstawiający strukturę systemu w modelach obiektowych przez
str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk
str 1 WYMAGANIA EDUKACYJNE (2017-2018) - matematyka - poziom podstawowy Dariusz Drabczyk Klasa 3e: wpisy oznaczone jako: (T) TRYGONOMETRIA, (PII) PLANIMETRIA II, (RP) RACHUNEK PRAWDOPODOBIEŃSTWA, (ST)
Wstęp do sieci neuronowych, wykład 6 Wsteczna propagacja błędu - cz. 3
Wstęp do sieci neuronowych, wykład 6 Wsteczna propagacja błędu - cz. 3 Andrzej Rutkowski, Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-11-05 Projekt
Wymagania programowe z matematyki na poszczególne oceny w klasie III A i III B LP. Kryteria oceny
Wymagania programowe z matematyki na poszczególne oceny w klasie III A i III B LP Przygotowane w oparciu o propozycję Wydawnictwa Nowa Era 2017/2018 Kryteria oceny Znajomość pojęć, definicji, własności
Propozycje tematów zadań
Propozycje tematów zadań 1. WARCABY Opracować program do gry w warcaby dla dwu graczy. Program ma umożliwiać przesuwanie kursora na zmianę po polach białych lub czarnych, wskazywanie początku końca ruchu.
METODY SZTUCZNEJ INTELIGENCJI 2 Opis projektu
Kamil Figura Krzysztof Kaliński Bartek Kutera METODY SZTUCZNEJ INTELIGENCJI 2 Opis projektu Porównanie metod uczenia z rodziny TD z algorytmem Layered Learning na przykładzie gry w warcaby i gry w anty-warcaby
SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska
SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska DRZEWO REGRESYJNE Sposób konstrukcji i przycinania
Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2012/2013 http://www.wilno.uwb.edu.
SYLLABUS na rok akademicki 01/013 Tryb studiów Studia stacjonarne Kierunek studiów Informatyka Poziom studiów Pierwszego stopnia Rok studiów/ semestr /3 Specjalność Bez specjalności Kod katedry/zakładu
Sieć przesyłająca żetony CP (counter propagation)
Sieci neuropodobne IX, specyficzne architektury 1 Sieć przesyłająca żetony CP (counter propagation) warstwa Kohonena: wektory wejściowe są unormowane jednostki mają unormowane wektory wag jednostki są
Wymagania edukacyjne z matematyki klasa IV technikum
Wymagania edukacyjne z matematyki klasa IV technikum Poziom rozszerzony Obowiązują wymagania z zakresu podstawowego oraz dodatkowo: FUNKCJE TRYGONOMETRYCZNE zaznacza kąt w układzie współrzędnych, wskazuje
B jest globalnym pokryciem zbioru {d} wtedy i tylko wtedy, gdy {d} zależy od B i nie istnieje B T takie, że {d} zależy od B ;
Algorytm LEM1 Oznaczenia i definicje: U - uniwersum, tj. zbiór obiektów; A - zbiór atrybutów warunkowych; d - atrybut decyzyjny; IND(B) = {(x, y) U U : a B a(x) = a(y)} - relacja nierozróżnialności, tj.
MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony
Agnieszka Kamińska, Dorota Ponczek MATeMAtyka 3 Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania
Teoria gier. Katarzyna Koman Maria Koman. Politechnika Gdaoska Wydział Fizyki Technicznej i Matematyki Stosowanej
Teoria gier Katarzyna Koman Maria Koman Politechnika Gdaoska Wydział Fizyki Technicznej i Matematyki Stosowanej GRA NIM HISTORIA Pochodzenie gry NIM nie jest do końca znane. Najprawdopodobniej powstała
Uczenie ze wzmocnieniem aplikacje
Uczenie ze wzmocnieniem aplikacje Na podstawie: AIMA ch21 oraz Reinforcement Learning (Sutton i Barto) Wojciech Jaśkowski Instytut Informatyki, Politechnika Poznańska 22 maja 2013 Problem decyzyjny Markova
Uczenie ze wzmocnieniem aplikacje
Uczenie ze wzmocnieniem aplikacje Na podstawie: AIMA ch21 oraz Reinforcement Learning (Sutton i Barto) Wojciech Jaśkowski Instytut Informatyki, Politechnika Poznańska 23 maja 2014 Problem decyzyjny Markova
MATeMAtyka 3. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Zakres podstawowy i rozszerzony
MATeMAtyka 3 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne
Uczenie sieci typu MLP
Uczenie sieci typu MLP Przypomnienie budowa sieci typu MLP Przypomnienie budowy neuronu Neuron ze skokową funkcją aktywacji jest zły!!! Powszechnie stosuje -> modele z sigmoidalną funkcją aktywacji - współczynnik
Marcin Luckner Politechnika Warszawska Wydział Matematyki i Nauk Informacyjnych
Marcin Luckner Politechnika Warszawska Wydział Matematyki i Nauk Informacyjnych mluckner@mini.pw.edu.pl http://www.mini.pw.edu.pl/~lucknerm Programy w Javie składają się z pakietów Pakiety zawierają definicje
Cel gry. Elementy gry. Celem gry jest zdobycie na końcu rozgrywki największej ilości złota poprzez budowanie osad i rozbudowę swojego królestwa
Cel gry Celem gry jest zdobycie na końcu rozgrywki największej ilości poprzez budowanie osad i rozbudowę swojego królestwa Autor Donald X. Vaccarino Dla 2-4 graczy od 8 lat 3 karty Budowniczych Królestwa
SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.
SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska INFORMACJE WSTĘPNE Hipotezy do uczenia się lub tworzenia
Sztuczne sieci neuronowe. Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 311
Sztuczne sieci neuronowe Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 311 PLAN: Wykład 5 - Metody doboru współczynnika uczenia - Problem inicjalizacji wag - Problem doboru architektury
Dwaj gracze na przemian kładą jednakowe monety na stole tak, aby na siebie nie nachodziły Przegrywa ten, kto nie może dołożyć monety
Mateusz Lewandowski Krótka filozofia Ciekawość gier Poziomy rozwiązania gier Synchroniczne wykonywanie ruchów w GGP Podejścia do końcówek gier Wykrywanie symetrii Związki z innymi dziedzinami KONSPEKT
Pisemny egzamin dyplomowy. na Uniwersytecie Wroc lawskim. na kierunku matematyka. zadania testowe. 22czerwca2009r. 60 HS-8-8
EGZAMIN DYPLOMOWY, cze ść I (testowa) 22.06.2009 INSTRUKCJE DOTYCZA CE WYPE LNIANIA TESTU 1. Nie wolno korzystać z kalkulatorów. 2. Sprawdzić, czy wersja testu podana na treści zadań jest zgodna z wersja
Gra planszowa stwarza jeszcze więcej możliwości!
Gra planszowa stwarza jeszcze więcej możliwości! Steffen Benndorf Reinhard Staupe Gracze: 2-4 osób Wiek: powyżej 8 lat Czas trwania: ok.20 minut Uwaga: W przypadku, gdy Państwo znają już wielokrotnie nagradzaną
MATeMAtyka 4 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych
MATeMAtyka 4 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI ROK SZKOLNY 2018/2019 POZIOM PODSTAWOWY I ROZSZERZONY KLASA 3 UWAGI: 1. Zakłada się,
SZACHY SOLO. Szachowa gra logiczna! Instrukcja, wskazówki i rozwiązania! 1 gracz
SZACHY SOLO Szachowa gra logiczna! Instrukcja, wskazówki i rozwiązania! 8-108 lat 1 gracz Trenuj swoje zwoje! SZACHY SOLO Szachy solo to łamigłówka dla jednego gracza. Zawiera zestaw zróżnicowanych zadań
Budowa modeli klasyfikacyjnych w oparciu o funkcję odległości w przestrzeni zdarzeń i uogólnienie pojęć probabilistycznych na przestrzenie metryczne
Budowa modeli klasyfikacyjnych w oparciu o funkcję odległości w przestrzeni zdarzeń i uogólnienie pojęć probabilistycznych na przestrzenie metryczne C. Dendek prof nzw. dr hab. J. Mańdziuk Politechnika
Wymagania edukacyjne z matematyki dla klasy III gimnazjum
Wymagania edukacyjne z matematyki dla klasy III gimnazjum Poziomy wymagań edukacyjnych: K konieczny dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je zatem opanować każdy
Sztuczne sieci neuronowe. Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 335
Sztuczne sieci neuronowe Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 335 Wykład 10 Mapa cech Kohonena i jej modyfikacje - uczenie sieci samoorganizujących się - kwantowanie wektorowe
MATEMATYKA - WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY
MATEMATYKA - WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KLASA III GIMNAZJUM Wymagania konieczne (K) dotyczą zagadnień elementarnych, podstawowych; powinien je opanować każdy uczeń. Wymagania podstawowe
Systemy uczące się wykład 2
Systemy uczące się wykład 2 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 19 X 2018 Podstawowe definicje Fakt; Przesłanka; Konkluzja; Reguła; Wnioskowanie. Typy wnioskowania
Sztuczna Inteligencja Projekt
Sztuczna Inteligencja Projekt Temat: Algorytm LEM2 Liczba osób realizujących projekt: 2 1. Zaimplementować algorytm LEM 2. 2. Zaimplementować klasyfikator Classif ier. 3. Za pomocą algorytmu LEM 2 wygenerować
Elementy kognitywistyki II: Sztuczna inteligencja. WYKŁAD X: Sztuczny neuron
Elementy kognitywistyki II: Sztuczna inteligencja WYKŁAD X: Sztuczny neuron Koneksjonizm: wprowadzenie 1943: Warren McCulloch, Walter Pitts: ogólna teoria przetwarzania informacji oparta na sieciach binarnych
Procesy integracji modeli danych do jednolitej struktury WBD. Tadeusz Chrobak, Krystian Kozioł, Artur Krawczyk, Michał Lupa
Procesy integracji modeli danych do jednolitej struktury WBD Tadeusz Chrobak, Krystian Kozioł, Artur Krawczyk, Michał Lupa Koncepcja Wielorozdzielczej Bazy Danych Kluczowe uwarunkowania systemu generalizacji:
Analiza skupień. Analiza Skupień W sztucznej inteligencji istotną rolę ogrywają algorytmy grupowania
Analiza skupień W sztucznej inteligencji istotną rolę ogrywają algorytmy grupowania Analiza Skupień Elementy składowe procesu grupowania obiekt Ekstrakcja cech Sprzężenie zwrotne Grupowanie klastry Reprezentacja
Zastosowania sieci neuronowych
Zastosowania sieci neuronowych aproksymacja LABORKA Piotr Ciskowski zadanie 1. aproksymacja funkcji odległość punktów źródło: Żurada i in. Sztuczne sieci neuronowe, przykład 4.4, str. 137 Naucz sieć taką
Wykrywanie twarzy ludzkich na kolorowych obrazach ze złożonym tłem
Wykrywanie ludzkich na kolorowych obrazach ze złożonym tłem Lech Baczyński www.baczynski.com Na podstawie artykułu panów: Yanjiang Wang, Baozong Yuan i in. Do czego przydatne jest wykrywanie (detekcja)?
Zasady gry i przygotowanie
Steffen Benndorf i Reinhard Staupe 935222 Czysta zabawa! Gracze: 2-6 osób Wiek: od 8 lat Czas trwania: ok. 15 minut Zasady gry i przygotowanie Każdy gracz otrzymuje inną kartkę (jest 6 różnych) i pisak.
Oracle PL/SQL. Paweł Rajba.
Paweł Rajba pawel@ii.uni.wroc.pl http://www.kursy24.eu/ Zawartość modułu 8 Wprowadzenie Definiowanie typu obiektowego Porównywanie obiektów Tabele z obiektami Operacje DML na obiektach Dziedziczenie -
REGULAMIN LOTERII PIENIĘŻNYCH TIC TAC TOE/ KÓŁKO I KRZYŻYK POSTANOWIENIA OGÓLNE
REGULAMIN LOTERII PIENIĘŻNYCH TIC TAC TOE/ KÓŁKO I KRZYŻYK POSTANOWIENIA OGÓLNE 1 Na podstawie niniejszego regulaminu Totalizator Sportowy Spółka z o.o. z siedzibą w Warszawie, ul. Targowa 25, wpisana
PRZEDMIOTOWE ZASADY OCENIANIA I WYMAGANIA EDUKACYJNE Z MATEMATYKI Klasa 3
PRZEDMIOTOWE ZASADY OCENIANIA I WYMAGANIA EDUKACYJNE Z MATEMATYKI Klasa 3 I. FUNKCJE grupuje elementy w zbiory ze względu na wspólne cechy wymienia elementy zbioru rozpoznaje funkcje wśród przyporządkowań
Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego
IBS PAN, Warszawa 9 kwietnia 2008 Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego mgr inż. Marcin Jaruszewicz promotor: dr hab. inż. Jacek Mańdziuk,
KOMBINATORYKA OBIEKTY KOMBINATORYCZNE MATEMATYKA DYSKRETNA (2014/2015)
MATEMATYKA DYSKRETNA (2014/2015) dr hab. inż. Małgorzata Sterna malgorzata.sterna@cs.put.poznan.pl www.cs.put.poznan.pl/msterna/ KOMBINATORYKA OBIEKTY KOMBINATORYCZNE TEORIA ZLICZANIA Teoria zliczania
Ćwiczenie ZINTEGROWANE SYSTEMY CYFROWE. Pakiet edukacyjny DefSim Personal. Analiza prądowa IDDQ
Ćwiczenie 2 ZINTEGROWANE SYSTEMY CYFROWE Pakiet edukacyjny DefSim Personal Analiza prądowa IDDQ K A T E D R A M I K R O E L E K T R O N I K I I T E C H N I K I N F O R M A T Y C Z N Y C H Politechnika
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych
Turing i jego maszyny
Turing Magdalena Lewandowska Politechnika Śląska, wydział MS, semestr VI 20 kwietnia 2016 1 Kim był Alan Turing? Biografia 2 3 Mrówka Langtona Bomba Turinga 4 Biografia Kim był Alan Turing? Biografia Alan
Spotkanie Fireside Gathering z funkcją Fireside Special ustawioną na bójkę Bitwa morska! Możecie zorganizować je tutaj:
Bitwa morska! Cel Zagrajcie w Hearthstone 3 na 3! Każdy uczestnik musi wygrać specjalną bójkę dla jednego gracza, żeby przejąć pole na planszy Bitwy morskiej. Wygra drużyna, która jako pierwsza zajmie
Projekt Sieci neuronowe
Projekt Sieci neuronowe Chmielecka Katarzyna Gr. 9 IiE 1. Problem i dane Sieć neuronowa miała za zadanie nauczyć się klasyfikować wnioski kredytowe. W projekcie wykorzystano dane pochodzące z 110 wniosków
Miary asymetrii STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 6 marca 2018
STATYSTYKA OPISOWA Dr Alina Gleska Instytut Matematyki WE PP 6 marca 2018 1 pozwalaja określić, czy jednostki zbiorowości maja tendencje do skupiania się przy niskich wartościach cechy (tzw. asymetria
EDUKACYJNA WARTOŚC DODANA
EDUKACYJNA WARTOŚC DODANA Termin ten oznacza metodę ale i wskaźnik liczbowy wyliczony tą metodą. Metody EWD to metody statystyczne pozwalające na podstawie wyników egzaminu gimnazjalnego (czyli wyników
Przedmiotowe zasady oceniania i wymagania edukacyjne
Agnieszka Kamińska, Dorota Ponczek Matematyka na czasie Gimnazjum, klasa 3 Przedmiotowe zasady oceniania i wymagania edukacyjne Przed przystąpieniem do omawiania zagadnień programowych i przed rozwiązywaniem
Pryncypia architektury korporacyjnej
Pryncypia architektury korporacyjnej Dr hab. Andrzej Sobczak, prof. SGH, Kierownik Zakładu Systemów Informacyjnych, Katedra Informatyki Gospodarczej SGH E-mail: sobczak@sgh.waw.pl Plan prezentacji Czym
MATeMAtyka 3 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych
MATeMAtyka 3 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy Klasa 3 Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające
Web frameworks do budowy aplikacji zgodnych z J2EE
Web frameworks do budowy aplikacji zgodnych z J2EE Jacek Panachida promotor: dr Dariusz Król Przypomnienie Celem pracy jest porównanie wybranych szkieletów programistycznych o otwartym kodzie źródłowym
Teoria gier. Jakub Cisło. Programowanie z pasją maja 2019
Teoria gier Jakub Cisło Programowanie z pasją http://programowaniezpasja.pl jakub@programowaniezpasja.pl 10 maja 2019 Jakub Cisło (Programowanie z pasją) Teoria gier 10 maja 2019 1 / 18 Plan wykładu 1
Matematyka. Wymagania edukacyjne na poszczególne oceny
Matematyka Wymagania edukacyjne na poszczególne oceny Klasa III - zakres rozszerzony Rachunek różniczkowy uzasadnia w prostych przypadkach, że funkcja nie ma granicy w punkcie, oblicza granice funkcji
Deep Learning na przykładzie Deep Belief Networks
Deep Learning na przykładzie Deep Belief Networks Jan Karwowski Zakład Sztucznej Inteligencji i Metod Obliczeniowych Wydział Matematyki i Nauk Informacyjnych PW 20 V 2014 Jan Karwowski (MiNI) Deep Learning
IBM Streams MATERIAŁY DYDAKTYCZNE I SZKOLENIOWE NA STUDIA PODYPLOMOWE ORAZ NA SZKOLENIA DYSTRYBUOWANE SĄ BEZPŁATNIE
IBM Streams str. 1 Kiedy przetwarzanie strumieniowe jest przydatne gracz na giełdzie kupuje akcje, które po kilku chwilach gwałtownie tanieją, kasyno, nieświadomie, jednocześnie gościu kilku graczy, którzy
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych
MATERIAŁ ĆWICZENIOWY Z MATEMATYKI
Materiał ćwiczeniowy zawiera informacje prawnie chronione do momentu rozpoczęcia diagnozy. Materiał ćwiczeniowy chroniony jest prawem autorskim. Materiału nie należy powielać ani udostępniać w żadnej innej
1 Moduł Neuronu Analogowego SM
1 Moduł Neuronu Analogowego SM Moduł Neuronu Analogowego SM daje użytkownikowi Systemu Vision możliwość obsługi fizycznych urządzeń Neuronów Analogowych podłączonych do Sterownika Magistrali. Dzięki temu
Inteligentne systemy przeciw atakom sieciowym
Inteligentne systemy przeciw atakom sieciowym wykład Sztuczne sieci neuronowe (SSN) Joanna Kołodziejczyk 2016 Joanna Kołodziejczyk Inteligentne systemy przeciw atakom sieciowym 2016 1 / 36 Biologiczne
Sieci neuronowe w Statistica
http://usnet.us.edu.pl/uslugi-sieciowe/oprogramowanie-w-usk-usnet/oprogramowaniestatystyczne/ Sieci neuronowe w Statistica Agnieszka Nowak - Brzezińska Podstawowym elementem składowym sztucznej sieci neuronowej
Gra logiczna dla 2 5 osób Czas rozgrywki około 45 minut Wiek od 7 lat
Qubix Gra logiczna dla 2 5 osób Czas rozgrywki około 45 minut Wiek od 7 lat Zawartość pudełka: 5 dwustronnych plansz graczy 75 klocków w pięciu kolorach 5 znaczników punktacji plansza punktacji instrukcja
Asocjacyjna reprezentacja danych i wnioskowanie
Asocjacyjna reprezentacja danych i wnioskowanie Wykorzystane technologie JetBrains PyCharm 504 Python 35 Struktura drzewa GRAPH PARAM PARAM ID1 ID2 ID_N params params params param_name_1: param_value_1
PROGRAM TERAPEUTYCZNY Z MATEMATYKI
PROGRAM TERAPEUTYCZNY Z MATEMATYKI Prowadząc z dziećmi zajęcia usprawniania technik szkolnych odczuwałam niedosyt pomocy i materiałów niezbędnych do prowadzenie tych zajęć. Szczególnie uciążliwe było to
PROGRAM TERAPEUTYCZNY Z MATEMATYKI
PROGRAM TERAPEUTYCZNY Z MATEMATYKI Prowadząc z dziećmi zajęcia usprawniania technik szkolnych odczuwałam niedosyt pomocy i materiałów niezbędnych do prowadzenie tych zajęć. Szczególnie uciążliwe było to
Przekształcenia widmowe Transformata Fouriera. Adam Wojciechowski
Przekształcenia widmowe Transformata Fouriera Adam Wojciechowski Przekształcenia widmowe Odmiana przekształceń kontekstowych, w których kontekstem jest w zasadzie cały obraz. Za pomocą transformaty Fouriera
gra Chińczyk dla 6 osób
CHIŃCZYK Chińczyk to popularna gra planszowa dla dwóch, trzech lub czterech osób, w której celem graczy jest przejście dookoła planszy czterema pionkami z pozycji początkowych na końcowe. Pierwszy gracz,
VII Mistrzostwa Dolnego Śląska w Sudoku - Eliminacje SP7/GIM/LIC str. 1. imię i nazwisko:... kl... szkoła:... 6 pkt. 3 pkt 4 pkt.
VII Mistrzostwa Dolnego Śląska w Sudoku - Eliminacje SP/GIM/LIC str. imię i nazwisko:... kl.... szkoła:... pkt pkt pkt pkt pkt pkt pkt NIEREGULARNE DIAGONALNE Dodatkowa reguła: na dwóch zaznaczonych przekątnych
Optymalizacja optymalizacji
7 maja 2008 Wstęp Optymalizacja lokalna Optymalizacja globalna Algorytmy genetyczne Badane czasteczki Wykorzystane oprogramowanie (Algorytm genetyczny) 2 Sieć neuronowa Pochodne met-enkefaliny Optymalizacja
Własności statystyczne regresji liniowej. Wykład 4
Własności statystyczne regresji liniowej Wykład 4 Plan Własności zmiennych losowych Normalna regresja liniowa Własności regresji liniowej Literatura B. Hansen (2017+) Econometrics, Rozdział 5 Własności
Wymagania edukacyjne z matematyki
Wymagania edukacyjne z matematyki Poziom podstawowy Klasa IIIb r.szk. 2014/2015 PLANIMETRIA(1) rozróżnia trójkąty: ostrokątne, prostokątne, rozwartokątne stosuje twierdzenie o sumie miar kątów w trójkącie
TRAVEL OFFICE MANAGEMENT SP. Z O.O. System TOM 24. Oferta na LCD. Opis modułu Oferty na LCD w nowej wersji systemu TOM 24 Data aktualizacji 2015-02-16
TRAVEL OFFICE MANAGEMENT SP. Z O.O. System TOM 24 Oferta na LCD Opis modułu Oferty na LCD w nowej wersji systemu TOM 24 Data aktualizacji 2015-02-16 I. Spis treści 1) Opis funkcjonalności... 3 2) Techniczne
ATOLL. Wykonali: Aleksandra Kuchta, Łukasz Wójcik, Sztuczna Inteligencja, Semestr trzeci, Kierunek Informatyka, Wydział Informatyki i Zarządzania,
Sztuczna Inteligencja, Semestr trzeci, Kierunek Informatyka, Wydział Informatyki i Zarządzania, Politechnika Poznańska ATOLL Wykonali: Aleksandra Kuchta, WFT, PP, nr 76690, rok IV Łukasz Wójcik, WIiZ,
Technologie baz danych
Technologie baz danych Wykład 4: Diagramy związków encji (ERD). SQL funkcje grupujące. Małgorzata Krętowska Wydział Informatyki Politechnika Białostocka Plan wykładu Diagramy związków encji elementy ERD
RILL - przyrostowy klasyfikator regułowy uczący się ze zmiennych środowisk
Wprowadzenie RILL - przyrostowy klasyfikator regułowy uczący się ze zmiennych środowisk Magdalena Deckert Politechnika Poznańska, Instytut Informatyki Seminarium ISWD, 21.05.2013 M. Deckert Przyrostowy
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI (zakres podstawowy) Rok szkolny 2017/2018 - klasa 2a, 2b, 2c 1. Funkcja
Percepcja, język, myślenie
Psychologia procesów poznawczych Percepcja, język, myślenie percepcja cz.1 Wstęp Fizjologia i neuropsychologia percepcji Psychofizyka dr Łukasz Michalczyk Percepcja to proces poprzez który nasz mózg (umysł)
WYMAGANIA EDUKACYJNE Z MATEMATYKI Szkoła Branżowa I Stopnia
WYMAGANIA EDUKACYJNE Z MATEMATYKI Szkoła Branżowa I Stopnia KLASA I 1. Liczby rzeczywiste i wyrażenia algebraiczne 1) Liczby naturalne, cechy podzielności stosuje cechy podzielności liczby przez 2, 3,
Materiał wykorzystany ze stron: SUDOKU
Materiał wykorzystany ze stron: www.sudoku.name/rules/pl; www.sudoku.betterweb.pl; www.krzyzowki.eu SUDOKU Zasady Sudoku - W Sudoku gra się na planszy o wymiarach 9x9 podzielonej na mniejsze "obszary"
Budowa pionowa drzewostanu w świetle przestrzennego rozkładu punktów lotniczego skanowania laserowego
Budowa pionowa drzewostanu w świetle przestrzennego rozkładu punktów lotniczego skanowania laserowego Marcin Myszkowski Marek Ksepko Biuro Urządzania Lasu i Geodezji Leśnej Oddział w Białymstoku PLAN PREZENTACJI
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY. (zakres podstawowy) klasa 2
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY (zakres podstawowy) klasa 2 1. Funkcja liniowa Tematyka zajęć: Proporcjonalność prosta Funkcja liniowa. Wykres funkcji liniowej Miejsce zerowe funkcji liniowej.