Termodynamika. Matura 2005

Wielkość: px
Rozpocząć pokaz od strony:

Download "Termodynamika. Matura 2005"

Transkrypt

1 Matura 2005 Termodynamika Zadanie 30. Ogrzewanie (6 pkt) Podczas lekcji fizyki uczniowie sprawdzali, jak zachowują się podczas ogrzewania rozdrobnione substancje: parafina i polichlorek winylu. Na płycie grzejnej jednocześnie podgrzewali w zlewkach te same masy badanych substancji i mierzyli podczas ogrzewania ich temperaturę. Otrzymane wyniki uczniowie przedstawili na wykresie (2 pkt) Przeanalizuj powyżej zamieszczony wykres. Zapisz, jak zachowywały się substancje podczas ogrzewania? Jaki wniosek związany z budową badanych ciał mogli uczniowie zapisać po analizie wykresu? Uzasadnij swoją odpowiedź (2 pkt) Można by sądzić, że zgodnie z pierwszą zasadą termodynamiki ogrzewane ciała zwiększają swoją energię wewnętrzną, co objawia się wzrostem ich temperatury. Zapisz, czy niezmienność temperatury w przedziale od 210 do 360 sekund dla parafiny świadczy o stałej wartości energii wewnętrznej tej substancji mimo dostarczania ciepła? Wyjaśnij ten problem (2 pkt) Podczas wykonywania doświadczenia ciepło dostarczane było obu substancjom równomiernie i z taką samą szybkością. Nauczyciel podał wartość ciepła właściwego J zestalonej parafiny (c w = 2100 ) i polecił uczniom, aby na podstawie wyników o kg C doświadczenia obliczyli wartość ciepła właściwego polichlorku winylu w temperaturach bliskich pokojowej. 1

2 Maciek stwierdził, że obliczenie wartości ciepła właściwego polichlorku winylu jest niemożliwe, bo nie jest znane ciepło pobrane przez polichlorek. Jacek określił wartość ciepła J właściwego polichlorku winylu na równą W uzasadnieniu zapisał, o kg C że z wykresu można odczytać, iż stosunek ciepła właściwego parafiny do ciepła właściwego polichlorku winylu wynosi 2. Zapisz, który z uczniów miał rację? Uzasadnij odpowiedź. Matura 2008 Zadanie 2. Temperatura odczuwalna (12 pkt) Przebywanie w mroźne dni na otwartej przestrzeni może powodować szybką utratę ciepła z organizmu, szczególnie z nieosłoniętych części ciała. Jeżeli dodatkowo wieje wiatr, wychłodzenie następuje szybciej, tak jak gdyby panowała niższa niż w rzeczywistości temperatura, zwana dalej temperaturą odczuwalną. W poniższej tabeli przedstawiono wartości rzeczywistych oraz odczuwalnych temperatur dla różnych wartości prędkości wiatru. Prędkość wiatru w km/h Rzeczywista temperatura w o C Temperatura odczuwalna w o C Na podstawie: oraz Zadanie 2.1 (1 pkt) Odczytaj z tabeli i zapisz, jaką temperaturę będą odczuwać w bezwietrzny dzień uczestniczy kuligu jadącego z prędkością o wartości 20 km/h (co jest równoważne wiatrowi wiejącemu z prędkością o wartości 20 km/h), jeżeli rzeczywista temperatura powietrza wynosi 15 o C. Informacja do zadania 2.2 i 2.3 Za niebezpieczną temperaturę dla odkrytych części ludzkiego ciała uważa się temperaturę odczuwalną równą 60 o C i niższą. Zadanie 2.2 (2 pkt) Podaj, przy jakich wartościach prędkości wiatru rzeczywista temperatura powietrza równa 30 o C jest niebezpieczna dla odkrytych części ciała stojącego człowieka. Zadanie 2.3 (2 pkt) Analizując tabelę i wykonując oraz zapisując konieczne obliczenia, oszacuj minimalną wartość prędkości wiatru w temperaturze rzeczywistej równej 40 o C, przy której odczuwalna temperatura zaczyna być niebezpieczna dla stojącego człowieka. Zadanie 2.4 (5 pkt) Naszkicuj w jednym układzie współrzędnych wykresy zależności temperatury odczuwalnej od wartości prędkości wiatru dla temperatury rzeczywistej 15 o C oraz 40 o C. Oznacz oba wykresy. Zadanie 2.5 (2 pkt) Przy braku wiatru temperatura odczuwalna może być nieco wyższa niż rzeczywista, jeśli człowiek nie wykonuje żadnych ruchów. Wyjaśnij tę pozorną sprzeczność. Uwzględnij fakt, że ludzkie ciało emituje ciepło. 2

3 Matura 2009 Zadanie 2. Kalorymetr (12 pkt) Kalorymetr to przyrząd laboratoryjny do pomiaru ciepła wydzielanego lub pobieranego podczas procesów chemicznych i fizycznych. Składa się z dwóch odizolowanych od siebie aluminiowych naczyń w kształcie walca przykrytych pokrywami. 1 termometr, 2 mieszadło, 3 pokrywa, 4 naczynie wewnętrzne, 5 naczynie zewnętrzne, 6 izolujące podstawki Zadanie 2.1 (1 pkt) Wyjaśnij, dlaczego kalorymetr składa się z dwóch naczyń umieszczonych jedno wewnątrz drugiego. 6 Informacja do zadań 2.2, 2.3 i 2.4 W doświadczeniu wykorzystano tylko wewnętrzne naczynie kalorymetru zamknięte pokrywą i termometr. Do naczynia wlano 0,2 kg wody o temperaturze 50 o C i co 10 minut mierzono temperaturę wody. Wyniki pomiarów temperatury przedstawiono w tabeli. Temperatura otoczenia podczas pomiarów wynosiła 20 o C. czas, w minutach temperatura, w o C Zadanie 2.2 (4 pkt) Narysuj wykres zależności temperatury wody od czasu oraz naszkicuj linią przerywaną przewidywany dalszy przebieg krzywej do końca drugiej godziny, kiedy temperatura wody praktycznie przestała się zmieniać. Zadanie 2.3 (1 pkt) Napisz, czy szybkość przepływu ciepła z naczynia do otoczenia (ΔQ/Δt) w miarę upływu czasu rosła, malała, czy pozostawała stała. Zadanie 2.4 (2 pkt) Oblicz ciepło oddane przez wodę w czasie 10 minut od momentu rozpoczęcia pomiarów. W obliczeniach przyjmij, że ciepło właściwe wody jest równe 4200 J/kg K. Zadanie 2.5 (2 pkt) W kolejnym doświadczeniu, aby utrzymać stałą temperaturę wody równą 90 o C, umieszczono w wodzie grzałkę, którą zasilano napięciem 12 V. Oblicz opór, jaki powinna mieć grzałka, by pracując cały czas, utrzymywała stałą temperaturę wody w naczyniu. Przyjmij, że w tych warunkach szybkość przepływu ciepła z naczynia do otoczenia wynosi 80 J/s. Zadanie 2.6 (2 pkt) Szybkość przepływu ciepła przez warstwę materiału wyraża się wzorem: gdzie: k współczynnik przewodnictwa cieplnego materiału warstwy, ΔT różnica temperatur po obu stronach warstwy, S powierzchnia warstwy, d grubość warstwy. Q t ΔT = k S, d 3

4 Aluminiowe naczynie kalorymetru całkowicie wypełnione wodą i przykryte pokrywą ma grubość 1 mm i całkowitą powierzchnię 100 cm2. Temperatura wewnętrznej powierzchni naczynia wynosi 90oC. W tych warunkach ciepło przepływa na zewnątrz naczynia z szybkością 80 J/s. Oblicz, z dokładnością do 0,001oC, temperaturę zewnętrznej powierzchni naczynia kalorymetru. Przyjmij, że wartość współczynnika przewodnictwa cieplnego aluminium wynosi 235 W/m K. Matura 2010 Zadanie 1. Balon (10 pkt) Z powierzchni Ziemi wypuszczono balon stratosferyczny mający szczelną, nierozciągliwą powłokę wypełnioną wodorem. Związek ciśnienia atmosferycznego z odległością od powierzchni Ziemi można opisać w przybliżeniu wzorem: h 5 p = p0 2 gdzie: p0 ciśnienie atmosferyczne na powierzchni Ziemi, h wysokość nad powierzchnią Ziemi wyrażona w kilometrach. Zadanie 1.1 (2 pkt) Narysuj wektory sił działających na balon podczas wznoszenia ze stałą prędkością, oznacz i zapisz ich nazwy, uwzględniając siłę oporu. Zachowaj właściwe proporcje długości wektorów. Zadanie 1.2 (1 pkt) Ustal i zapisz nazwę przemiany, jakiej ulega wodór podczas wznoszenia się balonu. Zadanie 1.3 (2 pkt) Wykaż, wykonując odpowiednie przekształcenia, że dokładną wartość ciężaru balonu RZ2 na wysokości h nad powierzchnią Ziemi można obliczyć ze wzoru F = m g (RZ + h )2 gdzie: RZ promień Ziemi, g wartość przyspieszenia ziemskiego na powierzchni Ziemi. Zadanie 1.4 (1 pkt) Wyjaśnij, dlaczego wartość siły wyporu maleje podczas wznoszenia balonu. Przyjmij, że wartość przyspieszenia ziemskiego podczas wznoszenia balonu praktycznie nie ulega zmianie. Zadanie 1.5 (2 pkt) Na maksymalnej wysokości osiągniętej przez balon gęstość powietrza wynosi okoł 0,1 kg/m3, a jego temperatura 55 ºC. Oblicz ciśnienie powietrza na tej wysokoś W obliczeniach powietrze potraktuj jak gaz doskonały o masie molowej równej 29 g/mol. Zadanie 1.6 (2 pkt) Oblicz, na jakiej wysokości nad powierzchnią Ziemi znajduje się balon, jeżeli ciśnienie powietrza na tej wysokości jest 16 razy mniejsze od ciśnienia na powierzchni Ziemi. Zadanie 2. Czajnik elektryczny (10 pkt) Do czajnika elektrycznego, w którym grzałka ma moc 2000 W, wlano 0,6 kg wody o temperaturze 13 C. Czajnik włączono do prądu elektrycznego i woda ogrzewała się aż do zagotowania przez 2 minuty i 30 sekund. 4

5 Zadanie 2.1 (2 pkt) Oblicz pracę prądu elektrycznego podczas ogrzewania wody w czajniku do momentu jej zagotowania. Zadanie 2.2 (2 pkt) Oblicz sprawność ogrzewania wody w czajniku. W obliczeniach przyjmij, że ciepło właściwe J wody jest równe 4200 i nie zmienia się podczas ogrzewania wody. kg K Informacja do zadań 2.3, 2.4 i 2.5 W poniższej tabeli przedstawiono wyniki pomiarów wykonanych podczas doświadczenia z czajnikiem elektrycznym. Temperatura początkowa wody w czajniku przed podłączeniem go do prądu była za każdym razem zawsze taka sama i wynosiła 13 C. Masa wody, kg 0,25 0,50 0,75 1,00 1,25 1,50 Sprawność ogrzewania wody, % Zadanie 2.3 (1 pkt) Przeanalizuj dane w tabeli i zapisz wniosek dotyczący związku względnej straty energii z masą zagotowywanej wody. Zadanie 2.4 (3 pkt) Narysuj wykres zależności sprawności ogrzewania wody w czajniku od jej masy. Zadanie 2.5 (2 pkt) Wykaż, korzystając z danych w tabeli (lub zawartych na wykresie), że bezwzględne straty dostarczonej do czajnika energii rosną wraz z masą ogrzewanej wody. Matura 2011 Zadanie 1. Kopalnia (7 pkt) W zboczu góry rozpoczęto budowę kopalni wykonano poziomy tunel i pionowy szyb wentylacyjny (rys.). Zadanie 1.1 (2 pkt) Ustal i zaznacz strzałkami na rysunku, w którą stronę odbywa się ruch powietrza w tunelu i szybie w lecie, jeżeli na zewnątrz góry temperatura jest równa 25 C, a wewnątrz tunelu i szybu 10 C. Podaj krótkie uzasadnienie. szyb tunel Zadanie 1.2 (2 pkt) Pod ciśnieniem p i w temperaturze 25 ºC gęstość powietrza jest równa 1,20 kg/m 3. Traktując powietrze jako gaz doskonały, oblicz jego gęstość pod tym samym ciśnieniem p i w temperaturze 10 ºC. 5

6 Zadanie 1.3 (3 pkt) W tunelu zainstalowano szczelną zaporę przeciwpożarową i przepływ powietrza ustał. Wysokość szybu jest równa 200 m, a średnia gęstość powietrza w szybie wynosi 1,3 kg/m 3. Oblicz ciśnienie słupa powietrza w szybie (różnicę między ciśnieniem na poziomie tunelu a ciśnieniem przy górnym wylocie szybu). Oblicz ciśnienie słupa powietrza atmosferycznego o wysokości 200 m na zewnątrz góry. Średnia gęstość powietrza na zewnątrz wynosi 1,2 kg/m 3. Powierzchnia zapory wynosi 7 m 2. Oblicz wypadkową siłę parcia powietrza działającą na zaporę z obu stron. Matura 2012 (maj) Zadanie 5. Silnik cieplny (12 pkt) Istnieje wiele typów silników cieplnych. Silnik Stirlinga wyróżnia się tym, że wewnątrz silnika nie występuje spalanie paliwa, a czynnikiem roboczym (gazem podlegającym przemianom) jest powietrze. Zaletą silnika p, hpa Stirlinga jest niski poziom hałasu, niski poziom emisji szkodliwych składników i wysoka 1300 A sprawność cieplna. Silnik składa się z cylindra T podgrzewanego przez palnik i połączonego 1 = 450 K z nim zimnego cylindra chłodzonego 1000 D B powietrzem. Obok przedstawiono uproszczony cykl pracy tego silnika w układzie zmiennych p-v. W przemianach A B i C D temperatura C się nie zmienia V, cm 3 Zadanie 5.1 (2 pkt) Oblicz temperaturę powietrza w punkcie D cyklu. Zadanie 5.2 (2 pkt) Oblicz ciśnienie powietrza w punkcie B cyklu. Zadanie 5.3 (2 pkt) W palniku spalany jest spirytus. Oblicz moc cieplną palnika, który w ciągu godziny spala 30 cm 3 paliwa o gęstości 0,83 g/cm 3 i cieple spalania 25 kj/g. Wynik podaj w watach. Zadanie 5.4 (2 pkt) Uzupełnij poniższą tabelę, wpisując nazwy przemian B C i D A oraz rodzaj zmiany energii wewnętrznej gazu dla wszystkich przemian (rośnie lub maleje lub nie zmienia się). Przemiana Nazwa przemiany Energia wewnętrzna A B izotermiczna B C C D izotermiczna D A 6

7 Zadanie 5.5 (2 pkt) Naszkicuj cykl pracy silnika w układzie zmiennych p-t. Oznacz poszczególne etapy cyklu. Na wykresie nie nanoś wartości liczbowych. Zadanie 5.6 (2 pkt) a) Oblicz liczbę moli gazu, który podlegał opisanym przemianom. b) Przyjmując temperaturę w punkcie D równą 340 K oraz ciepło molowe powietrza przy stałej objętości C V = 21 J mol K Matura 2012 (czerwiec), oblicz ciepło dostarczone do silnika podczas przemiany D A. Zadanie 5. Doświadczenie z rurką (9 pkt) Wewnątrz cienkiej szklanej rurki zasklepionej z jednej strony znajduje się słupek rtęci, zamykający w dolnej części rurki pewną objętość powietrza (lewy rysunek). Zadanie 5.1 (1 pkt) Gdy próbowano umieścić w podobny sposób rtęć nad powietrzem w rurce szerokiej (prawy rysunek), nie udało się tego dokonać, gdyż rtęć spadła na dno rurki, a powietrze stamtąd uniosło się do góry. Podkreśl prawidłowe zakończenie poniższego zdania. Przyczyną tego, że rtęć może utrzymać się nad powietrzem w wąskiej rurce, jest: mniejsza gęstość rtęci w cienkiej rurce większa gęstość powietrza w cienkiej rurce oddziaływanie wzajemne atomów rtęci oddziaływanie grawitacyjne szkła z rtęcią mniejsza siła parcia powietrza na rtęć w cienkiej rurce tarcie rtęci o szkło h l 1 Informacja do zadań 5.2 i 5.5 Rurkę początkowo ustawioną otworem do góry (rys. 1) położono poziomo (rys. 2). Dane są zaznaczone na rysunkach wymiary: długość słupka rtęci h = 20 cm, długość słupa powietrza w pozycji pionowej l 1 = 60 cm i w pozycji poziomej l 2 = 76 cm. Ciśnienie atmosferyczne wynosi 1, Pa, a gęstość rtęci kg. m 3 l 2 Rys. 1 Rys. 2 7

8 Zadanie 5.2 (3 pkt) Wykaż, wykonując obliczenia, że powyższe dane są zgodne z twierdzeniem: Temperatura powietrza w rurce była jednakowa w pozycjach 1 i 2. Zadanie 5.3 (1 pkt) Pewien uczeń powiedział: To dziwne, że temperatura powietrza w rurce okazała się jednakowa w pionowej i poziomej pozycji rurki. Przecież wiadomo, że gazy oziębiają się przy szybkim rozprężeniu, a tę rurkę obrócono dość szybko. Wybierz i podkreśl prawidłowe wyjaśnienie tej pozornej sprzeczności. Zmiany ciśnienia i objętości były zbyt małe, aby wpłynęły na zmianę temperatury powietrza. Rtęć jest cieczą i z tego względu jest nieściśliwa. Twierdzenie o zmianie temperatury przy rozprężaniu odnosi się tylko do gazu doskonałego, a powietrze nie spełnia tego warunku. Ciepło przepłynęło między powietrzem a otoczeniem (szkłem i rtęcią). Zadanie 5.4 (2 pkt) Przy szybkim sprężeniu gazy się na ogół ogrzewają, a przy szybkim rozprężeniu oziębiają. Wyjaśnij przyczynę tej zmiany temperatury, powołując się na I zasadę termodynamiki. Zadanie 5.5 (2 pkt) W pozycji 1 na rysunku na poprzedniej stronie temperatura rurki i powietrza wynosiła 20 C. Następnie rurkę podgrzano bez jej obracania. Oblicz temperaturę końcową powietrza w rurce, jeśli długość słupa powietrza wzrosła do wartości równej l 2. Pomiń rozszerzalność cieplną szkła i rtęci. Matura 2013 Zadanie 3. Gaz doskonały (9 pkt) Gazy rzeczywiste w pewnym zakresie parametrów można traktować jak gaz doskonały (idealny). Temperatura gazu doskonałego T jest proporcjonalna do średniej energii kinetycznej ruchu postępowego jego cząsteczek. Dla gazu doskonałego spełnione jest równanie Clapeyrona. Zadanie 3.1 (1 pkt) Uzupełnij zdania, podkreślając poprawne stwierdzenia, tak aby opisywały gaz według modelu gazu doskonałego. 1. Rozmiary cząsteczek i zajmowaną przez nie objętość uwzględniamy / pomijamy. 2. Cząsteczki gazu oddziałują ze sobą tylko podczas zderzeń / także na odległość. 3. Zderzenia cząsteczek ze sobą i ściankami naczynia są sprężyste / niesprężyste. Zadanie 3.2 (1 pkt) Powietrze jest mieszaniną gazów, m.in. tlenu O 2 (masa molowa 32 g/mol), azotu N 2 (masa molowa 28 g/mol) i argonu Ar (masa molowa 40 g/mol). Określ zależność między średnimi prędkościami tych cząsteczek, wpisując w lukach znaki wybrane spośród =, > i <. Przez średnią prędkość rozumiemy tu średnią wartość wektora prędkości. v argonu v tlenu v azotu 8

9 Zadanie 3.3 (1 pkt) liczba cząsteczek w przedziałach v = 1 m/s T T prędkość, m/s Podane wyżej wykresy przedstawiają tzw. rozkład Maxwella. Na osi pionowej odłożono liczbę cząsteczek gazu, których wartości prędkości leżą w przedziale od v do v + v, dla szerokości przedziału v równej 1 m/s. Wykresy wykonano dla jednego miliona cząsteczek gazu o temperaturze T 1 i o temperaturze T 2. Podaj, która z temperatur T 1 i T 2 jest wyższa. Uzasadnij odpowiedź. Zadanie 3.4 (2 pkt) Jeden mol gazu doskonałego o temperaturze początkowej t 1 = 27 C i ciśnieniu początkowym p 1 = 1000 hpa ogrzano izobarycznie o 300 C, a następnie izochorycznie o kolejne 300 C. Oblicz końcowe ciśnienie gazu p 3. Informacja do zadań 3.5 i 3.6 Dla gazu rzeczywistego zamiast równania Clapeyrona stosuje się równanie van der Waalsa, 2 an które dla n moli gazu ma postać p + V 2 bn = nrt. Współczynniki a i b V uwzględniają odstępstwa od modelu gazu doskonałego dla gazów rzeczywistych i zależą od 4 N m rodzaju gazu, np. dla dwutlenku węgla wynoszą odpowiednio a 0,36 mol 2 i 3 5 m b 4,3 10. mol Zadanie 3.5 (2 pkt) Korzystając z równania van der Waalsa, oblicz ciśnienie 1 mola dwutlenku węgla o temperaturze 300 K, zamkniętego w zbiorniku o objętości 2 dm 3. Zadanie 3.6 (2 pkt) Przyjmijmy, że gaz stosuje się do modelu gazu doskonałego, gdy ciśnienie gazu obliczone z równania Clapeyrona nie różni się od ciśnienia rzeczywistego o więcej niż 10%. Dla 1 mola pewnego gazu rzeczywistego o temperaturze 300 K zamkniętego w zbiorniku o objętości 2 dm 3 ciśnienie jest równe 1,15 MPa. Wykonaj niezbędne obliczenia i ustal, czy ten gaz może być traktowany jak gaz doskonały. 9

10 Zadanie 4. Przepływ ciepła (11 pkt) Zadanie 4.1 (2 pkt) Wpisz właściwe nazwy procesów cieplnych oznaczonych na rysunku numerami Informacja do zadań Ilość ciepła przepływająca w czasie Δt przez ścianę o grubości d i powierzchni S, gdy różnica temperatur między powierzchniami ściany jest równa ΔT, można opisać wzorem S (*) Q k t T d gdzie k jest współczynnikiem cieplnego przewodnictwa właściwego, zależnym od materiału ściany. Zakładamy, że temperatura każdego punktu ściany pozostaje stała w czasie. Zadanie 4.2 (2 pkt) Wyraź jednostkę współczynnika k występującego we wzorze (*) w jednostkach podstawowych układu SI. Zadanie 4.3 (1 pkt) Wyjaśnij, odwołując się do mikroskopowych własności substancji, dlaczego materiały o porowatej budowie (np.: styropian, gąbka lub puch) są złymi przewodnikami ciepła. Zadanie 4.4 (3 pkt) Ściana ma powierzchnię 3 m 5 m i grubość 30 cm, a wykonana jest z cegły ceramicznej, dla której współczynnik cieplnego przewodnictwa właściwego jest równy 0,77 W/(m K). Oblicz moc cieplną (w watach) wyrażającą szybkość przepływu ciepła przez tę ścianę, gdy wewnątrz budynku temperatura jest równa +20 C, a na zewnątrz jest równa 10 C. Zadanie 4.5 (3 pkt) Ściana składa się z dwóch warstw o grubościach d 1 i d 2 wykonanych z materiałów o współczynnikach cieplnego przewodnictwa właściwego równych odpowiednio k 1 i k 2, a różnica temperatur między zewnętrznymi powierzchniami wynosi ΔT = T 1 T 3. Wykaż, że prawdziwa jest zależność Q d 1 d 2 d k d k ΔQ = S Δt ΔT T 1 T 2 T 3 10

GAZ DOSKONAŁY. Brak oddziaływań między cząsteczkami z wyjątkiem zderzeń idealnie sprężystych.

GAZ DOSKONAŁY. Brak oddziaływań między cząsteczkami z wyjątkiem zderzeń idealnie sprężystych. TERMODYNAMIKA GAZ DOSKONAŁY Gaz doskonały to abstrakcyjny, matematyczny model gazu, chociaż wiele gazów (azot, tlen) w warunkach normalnych zachowuje się w przybliżeniu jak gaz doskonały. Model ten zakłada:

Bardziej szczegółowo

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia wyrównawcze z fizyki -Zestaw 4 -eoria ermodynamika Równanie stanu gazu doskonałego Izoprzemiany gazowe Energia wewnętrzna gazu doskonałego Praca i ciepło w przemianach gazowych Silniki cieplne

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 FIZYKA I ASTRONOMIA POZIOM ROZSZERZONY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie 1.1 Narysowanie toru ruchu ciała w rzucie ukośnym. Narysowanie wektora siły działającej na ciało w

Bardziej szczegółowo

Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym).

Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym). Spis treści 1 Stan gazowy 2 Gaz doskonały 21 Definicja mikroskopowa 22 Definicja makroskopowa (termodynamiczna) 3 Prawa gazowe 31 Prawo Boyle a-mariotte a 32 Prawo Gay-Lussaca 33 Prawo Charlesa 34 Prawo

Bardziej szczegółowo

TERMODYNAMIKA Zajęcia wyrównawcze, Częstochowa, 2009/2010 Ewa Mandowska

TERMODYNAMIKA Zajęcia wyrównawcze, Częstochowa, 2009/2010 Ewa Mandowska 1. Bilans cieplny 2. Przejścia fazowe 3. Równanie stanu gazu doskonałego 4. I zasada termodynamiki 5. Przemiany gazu doskonałego 6. Silnik cieplny 7. II zasada termodynamiki TERMODYNAMIKA Zajęcia wyrównawcze,

Bardziej szczegółowo

WYKŁAD 2 TERMODYNAMIKA. Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami

WYKŁAD 2 TERMODYNAMIKA. Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami WYKŁAD 2 TERMODYNAMIKA Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami Zasada zerowa Kiedy obiekt gorący znajduje się w kontakcie cieplnym z obiektem zimnym następuje

Bardziej szczegółowo

Konkurs fizyczny szkoła podstawowa. 2018/2019. Etap rejonowy

Konkurs fizyczny szkoła podstawowa. 2018/2019. Etap rejonowy UWAGA: W zadaniach o numerach od 1 do 8 spośród podanych propozycji odpowiedzi wybierz i zaznacz tą, która stanowi prawidłowe zakończenie ostatniego zdania w zadaniu. Zadanie 1. (0 1pkt.) odczas testów

Bardziej szczegółowo

Temperatura jest wspólną własnością dwóch ciał, które pozostają ze sobą w równowadze termicznej.

Temperatura jest wspólną własnością dwóch ciał, które pozostają ze sobą w równowadze termicznej. 1 Ciepło jest sposobem przekazywania energii z jednego ciała do drugiego. Ciepło przepływa pod wpływem różnicy temperatur. Jeżeli ciepło nie przepływa mówimy o stanie równowagi termicznej. Zerowa zasada

Bardziej szczegółowo

b) Wybierz wszystkie zdania prawdziwe, które odnoszą się do przemiany 2.

b) Wybierz wszystkie zdania prawdziwe, które odnoszą się do przemiany 2. Fizyka Z fizyką w przyszłość Sprawdzian 8B Sprawdzian 8B. Gaz doskonały przeprowadzono ze stanu P do stanu K dwoma sposobami: i, tak jak pokazano na rysunku. Poniżej napisano kilka zdań o tych przemianach.

Bardziej szczegółowo

= = Budowa materii. Stany skupienia materii. Ilość materii (substancji) n - ilość moli, N liczba molekuł (atomów, cząstek), N A

= = Budowa materii. Stany skupienia materii. Ilość materii (substancji) n - ilość moli, N liczba molekuł (atomów, cząstek), N A Budowa materii Stany skupienia materii Ciało stałe Ciecz Ciała lotne (gazy i pary) Ilość materii (substancji) n N = = N A m M N A = 6,023 10 mol 23 1 n - ilość moli, N liczba molekuł (atomów, cząstek),

Bardziej szczegółowo

25P3 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - III POZIOM PODSTAWOWY

25P3 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - III POZIOM PODSTAWOWY 25P3 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - III Hydrostatyka Gazy Termodynamika Elektrostatyka Prąd elektryczny stały POZIOM PODSTAWOWY Rozwiązanie zadań należy zapisać w wyznaczonych

Bardziej szczegółowo

Kołowrót -11pkt. 1. Zadanie 22. Wahadło balistyczne (10 pkt)

Kołowrót -11pkt. 1. Zadanie 22. Wahadło balistyczne (10 pkt) Kołowrót -11pkt. Kołowrót w kształcie walca, którego masa wynosi 10 kg, zamocowany jest nad studnią (rys.). Na kołowrocie nawinięta jest nieważka i nierozciągliwa linka, której górny koniec przymocowany

Bardziej szczegółowo

Wykład FIZYKA I. 14. Termodynamika fenomenologiczna cz.ii. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 14. Termodynamika fenomenologiczna cz.ii.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 14. Termodynamika fenomenologiczna cz.ii Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html GAZY DOSKONAŁE Przez

Bardziej szczegółowo

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 19 TERMODYNAMIKA CZĘŚĆ 2. I ZASADA TERMODYNAMIKI

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 19 TERMODYNAMIKA CZĘŚĆ 2. I ZASADA TERMODYNAMIKI autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 19 TERMODYNAMIKA CZĘŚĆ 2. I ZASADA TERMODYNAMIKI Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania Zadanie 1 1 punkt

Bardziej szczegółowo

b) Wybierz wszystkie zdania prawdziwe, które odnoszą się do przemiany 2.

b) Wybierz wszystkie zdania prawdziwe, które odnoszą się do przemiany 2. Sprawdzian 8A. Gaz doskonały przeprowadzono ze stanu P do stanu K dwoma sposobami: i, tak jak pokazano na rysunku. Poniżej napisano kilka zdań o tych przemianach. a) Wybierz spośród nich wszystkie zdania

Bardziej szczegółowo

TERMODYNAMIKA. przykłady zastosowań. I.Mańkowski I LO w Lęborku

TERMODYNAMIKA. przykłady zastosowań. I.Mańkowski I LO w Lęborku TERMODYNAMIKA przykłady zastosowań I.Mańkowski I LO w Lęborku 2016 UKŁAD TERMODYNAMICZNY Dla przykładu układ termodynamiczny stanowią zamknięty cylinder z ruchomym tłokiem, w którym znajduje się gaz tak

Bardziej szczegółowo

KRYTERIA OCEN Z FIZYKI DLA KLASY I GIMNAZJUM

KRYTERIA OCEN Z FIZYKI DLA KLASY I GIMNAZJUM KRYTERIA OCEN Z FIZYKI DLA KLASY I GIMNAZJUM WŁASNOŚCI MATERII - Uczeń nie opanował wiedzy i umiejętności niezbędnych w dalszej nauce. - Wie, że substancja występuje w trzech stanach skupienia. - Wie,

Bardziej szczegółowo

Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12

Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12 Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12 atomu węgla 12 C. Mol - jest taką ilością danej substancji,

Bardziej szczegółowo

FIZYKA KLASA 7 Rozkład materiału dla klasy 7 szkoły podstawowej (2 godz. w cyklu nauczania)

FIZYKA KLASA 7 Rozkład materiału dla klasy 7 szkoły podstawowej (2 godz. w cyklu nauczania) FIZYKA KLASA 7 Rozkład materiału dla klasy 7 szkoły podstawowej (2 godz. w cyklu nauczania) Temat Proponowana liczba godzin POMIARY I RUCH 12 Wymagania szczegółowe, przekrojowe i doświadczalne z podstawy

Bardziej szczegółowo

W pierwszym doświadczeniu nastąpiło wrzenie wody spowodowanie obniżeniem ciśnienia.

W pierwszym doświadczeniu nastąpiło wrzenie wody spowodowanie obniżeniem ciśnienia. Termodynamika - powtórka 1. Cząsteczki wodoru H 2 wewnątrz butli mają masę około 3,32 10 27 kg i poruszają się ze średnią prędkością 1220. Oblicz temperaturę wodoru w butli. 2. 1,6 mola gazu doskonałego

Bardziej szczegółowo

Zasady oceniania karta pracy

Zasady oceniania karta pracy Zadanie 1.1. 5) stosuje zasadę zachowania energii oraz zasadę zachowania pędu do opisu zderzeń sprężystych i niesprężystych. Zderzenie, podczas którego wózki łączą się ze sobą, jest zderzeniem niesprężystym.

Bardziej szczegółowo

Wykład 6: Przekazywanie energii elementy termodynamiki

Wykład 6: Przekazywanie energii elementy termodynamiki Wykład 6: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Temperatura Fenomenologicznie wielkość informująca o tym jak

Bardziej szczegółowo

We wszystkich zadaniach przyjmij wartość przyspieszenia ziemskiego g = 10 2

We wszystkich zadaniach przyjmij wartość przyspieszenia ziemskiego g = 10 2 m We wszystkich zadaniach przyjmij wartość przyspieszenia ziemskiego g = 10 2. s Zadanie 1. (1 punkt) Pasażer samochodu zmierzył za pomocą stopera w telefonie komórkowym, że mija słupki kilometrowe co

Bardziej szczegółowo

Zadania domowe z termodynamiki I dla wszystkich kierunków A R C H I W A L N E

Zadania domowe z termodynamiki I dla wszystkich kierunków A R C H I W A L N E Zadania domowe z termodynamiki I dla wszystkich kierunków A R C H I W A L N E ROK AKADEMICKI 2015/2016 Zad. nr 4 za 3% [2015.10.29 16:00] Ciepło właściwe przy stałym ciśnieniu gazu zależy liniowo od temperatury.

Bardziej szczegółowo

Wykład 6: Przekazywanie energii elementy termodynamiki

Wykład 6: Przekazywanie energii elementy termodynamiki Wykład 6: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Temperatura Fenomenologicznie wielkość informująca o tym jak

Bardziej szczegółowo

16 GAZY CZ. I PRZEMIANY.RÓWNANIE CLAPEYRONA

16 GAZY CZ. I PRZEMIANY.RÓWNANIE CLAPEYRONA Włodzimierz Wolczyński 16 GAZY CZ. PRZEMANY.RÓWNANE CLAPEYRONA Podstawowy wzór teorii kinetyczno-molekularnej gazów N ilość cząsteczek gazu 2 3 ś. Równanie stanu gazu doskonałego ż ciśnienie, objętość,

Bardziej szczegółowo

25R3 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - III POZIOM ROZSZERZONY

25R3 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - III POZIOM ROZSZERZONY 25R3 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - III POZIOM ROZSZERZONY Hydrostatyka Gazy Termodynamika Elektrostatyka Prąd elektryczny stały Rozwiązanie zadań należy zapisać w wyznaczonych

Bardziej szczegółowo

WOJEWÓDZKI KONKURS Z FIZYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2016/2017, ETAP REJONOWY

WOJEWÓDZKI KONKURS Z FIZYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2016/2017, ETAP REJONOWY WOJEWÓDZKI KONKURS Z FIZYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2016/2017, ETAP REJONOWY WOJEWÓDZKI KONKURS Z FIZYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2016/2017 IMIĘ I NAZWISKO UCZNIA wpisuje komisja konkursowa

Bardziej szczegółowo

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 18 TERMODYNAMIKA 1. GAZY

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 18 TERMODYNAMIKA 1. GAZY autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 18 TERMODYNAMIKA 1. GAZY Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania Zadanie 1 1 punkt TEST JEDNOKROTNEGO WYBORU

Bardziej szczegółowo

Zestaw zadań na I etap konkursu fizycznego. Zad. 1 Kamień spadał swobodnie z wysokości h=20m. Średnia prędkość kamienia wynosiła :

Zestaw zadań na I etap konkursu fizycznego. Zad. 1 Kamień spadał swobodnie z wysokości h=20m. Średnia prędkość kamienia wynosiła : Zestaw zadań na I etap konkursu fizycznego Zad. 1 Kamień spadał swobodnie z wysokości h=20m. Średnia prędkość kamienia wynosiła : A) 5m/s B) 10m/s C) 20m/s D) 40m/s. Zad.2 Samochód o masie 1 tony poruszał

Bardziej szczegółowo

mgr Anna Hulboj Treści nauczania

mgr Anna Hulboj Treści nauczania mgr Anna Hulboj Realizacja treści nauczania wraz z wymaganiami szczegółowymi podstawy programowej z fizyki dla klas 7 szkoły podstawowej do serii Spotkania z fizyką w roku szkolnym 2017/2018 (na podstawie

Bardziej szczegółowo

Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.

Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY

Bardziej szczegółowo

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał Statyka Cieczy i Gazów Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał 1. Podstawowe założenia teorii kinetyczno-molekularnej budowy ciał: Ciała zbudowane są z cząsteczek. Pomiędzy cząsteczkami

Bardziej szczegółowo

Wykład 4. Przypomnienie z poprzedniego wykładu

Wykład 4. Przypomnienie z poprzedniego wykładu Wykład 4 Przejścia fazowe materii Diagram fazowy Ciepło Procesy termodynamiczne Proces kwazistatyczny Procesy odwracalne i nieodwracalne Pokazy doświadczalne W. Dominik Wydział Fizyki UW Termodynamika

Bardziej szczegółowo

Podstawy termodynamiki

Podstawy termodynamiki Podstawy termodynamiki Temperatura i ciepło Praca jaką wykonuje gaz I zasada termodynamiki Przemiany gazowe izotermiczna izobaryczna izochoryczna adiabatyczna Co to jest temperatura? 40 39 38 Temperatura

Bardziej szczegółowo

ZADANIA Z FIZYKI NA II ETAP

ZADANIA Z FIZYKI NA II ETAP ZADANIA Z FIZYKI NA II ETAP 1. 2 pkt. Do cylindra nalano wody do poziomu kreski oznaczającej 10 cm 3 na skali. Po umieszczeniu w menzurce 10 jednakowych sześcianów ołowianych, woda podniosła się do poziomu

Bardziej szczegółowo

Przemiany gazowe. 4. Który z poniższych wykresów reprezentuje przemianę izobaryczną: 5. Który z poniższych wykresów obrazuje przemianę izochoryczną:

Przemiany gazowe. 4. Który z poniższych wykresów reprezentuje przemianę izobaryczną: 5. Który z poniższych wykresów obrazuje przemianę izochoryczną: Przemiany gazowe 1. Czy możliwa jest przemiana gazowa, w której temperatura i objętość pozostają stałe, a ciśnienie rośnie: a. nie b. jest możliwa dla par c. jest możliwa dla gazów doskonałych 2. W dwóch

Bardziej szczegółowo

1. Za³o enia teorii kinetyczno-cz¹steczkowej budowy cia³

1. Za³o enia teorii kinetyczno-cz¹steczkowej budowy cia³ 1. Za³o enia teorii kinetyczno-cz¹steczkowej budowy cia³ Imię i nazwisko, klasa A 1. Wymień trzy założenia teorii kinetyczno-cząsteczkowej budowy ciał. 2. Porównaj siły międzycząsteczkowe w trzech stanach

Bardziej szczegółowo

Wykład 7: Przekazywanie energii elementy termodynamiki

Wykład 7: Przekazywanie energii elementy termodynamiki Wykład 7: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ emperatura Fenomenologicznie wielkość informująca o tym jak ciepłe/zimne

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z FIZYKI

WYMAGANIA EDUKACYJNE Z FIZYKI WYMAGANIA EDUKACYJNE Z FIZYKI KLASA I Budowa materii Wymagania na stopień dopuszczający obejmują treści niezbędne dla dalszego kształcenia oraz użyteczne w pozaszkolnej działalności ucznia. Uczeń: rozróżnia

Bardziej szczegółowo

Kuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z FIZYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2015/2016 ETAP OKRĘGOWY

Kuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z FIZYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2015/2016 ETAP OKRĘGOWY Kuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z FIZYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2015/2016 KOD UCZNIA ETAP OKRĘGOWY Instrukcja dla ucznia 1. Arkusz zawiera 7 zadań. 2. Przed rozpoczęciem

Bardziej szczegółowo

ZADANIA DLA CHĘTNYCH NA 6 (SERIA I) KLASA II

ZADANIA DLA CHĘTNYCH NA 6 (SERIA I) KLASA II ZADANIA DLA CHĘTNYCH NA 6 (SERIA I) KLASA II Oblicz wartość prędkości średniej samochodu, który z miejscowości A do B połowę drogi jechał z prędkością v 1 a drugą połowę z prędkością v 2. Pociąg o długości

Bardziej szczegółowo

KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów. Schemat punktowania zadań

KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów. Schemat punktowania zadań KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów 7 stycznia 06 r. zawody II stopnia (rejonowe) Schemat punktowania zadań Maksymalna liczba punktów 60 Uwaga!. Za poprawne rozwiązanie zadania metodą,

Bardziej szczegółowo

Fizyka 14. Janusz Andrzejewski

Fizyka 14. Janusz Andrzejewski Fizyka 14 Janusz Andrzejewski Egzaminy Egzaminy odbywają się w salach 3 oraz 314 budynek A1 w godzinach od 13.15 do 15.00 I termin 4 luty 013 poniedziałek II termin 1 luty 013 wtorek Na wykład zapisanych

Bardziej szczegółowo

Termodynamika, ciepło

Termodynamika, ciepło Termodynamika, ciepło C. Właściwy Punkt Potrójny, 26 lutego 217 r. Rozwiązanie każdego zadania zapisz na oddzielnej, podpisanej kartce z wyraźnie zaznaczonym numerem zadania. 1 Zadanie Ogrzewanie wody

Bardziej szczegółowo

Ciśnienie definiujemy jako stosunek siły parcia działającej na jednostkę powierzchni do wielkości tej powierzchni.

Ciśnienie definiujemy jako stosunek siły parcia działającej na jednostkę powierzchni do wielkości tej powierzchni. Ciśnienie i gęstość płynów Autorzy: Zbigniew Kąkol, Bartek Wiendlocha Powszechnie przyjęty jest podział materii na ciała stałe i płyny. Pod pojęciem substancji, która może płynąć rozumiemy zarówno ciecze

Bardziej szczegółowo

Spotkania z fizyka 2. Rozkład materiału nauczania (propozycja)

Spotkania z fizyka 2. Rozkład materiału nauczania (propozycja) Spotkania z fizyka 2. Rozkład materiału nauczania (propozycja) Temat lekcji Siła wypadkowa siła wypadkowa, składanie sił o tym samym kierunku, R składanie sił o różnych kierunkach, siły równoważące się.

Bardziej szczegółowo

Zad. 5 Sześcian o boku 1m i ciężarze 1kN wywiera na podłoże ciśnienie o wartości: A) 1hPa B) 1kPa C) 10000Pa D) 1000N.

Zad. 5 Sześcian o boku 1m i ciężarze 1kN wywiera na podłoże ciśnienie o wartości: A) 1hPa B) 1kPa C) 10000Pa D) 1000N. Część I zadania zamknięte każde za 1 pkt Zad. 1 Po wpuszczeniu ryby do prostopadłościennego akwarium o powierzchni dna 0,2cm 2 poziom wody podniósł się o 1cm. Masa ryby wynosiła: A) 2g B) 20g C) 200g D)

Bardziej szczegółowo

Termodynamika. Energia wewnętrzna ciał

Termodynamika. Energia wewnętrzna ciał ermodynamika Energia wewnętrzna ciał Cząsteczki ciał stałych, cieczy i gazów znajdują się w nieustannym ruchu oddziałując ze sobą. Sumę energii kinetycznej oraz potencjalnej oddziałujących cząsteczek nazywamy

Bardziej szczegółowo

Konkurs fizyczny - gimnazjum. 2018/2019. Etap rejonowy

Konkurs fizyczny - gimnazjum. 2018/2019. Etap rejonowy UWAGA: W zadaniach o numerach od 1 do 7 spośród podanych propozycji odpowiedzi wybierz i zaznacz tą, która stanowi prawidłowe zakończenie ostatniego zdania w zadaniu. Zadanie 1. (0 1pkt.) Podczas testów

Bardziej szczegółowo

Ćwiczenie 425. Wyznaczanie ciepła właściwego ciał stałych. Woda. Ciało stałe Masa kalorymetru z ciałem stałym m 2 Masa ciała stałego m 0

Ćwiczenie 425. Wyznaczanie ciepła właściwego ciał stałych. Woda. Ciało stałe Masa kalorymetru z ciałem stałym m 2 Masa ciała stałego m 0 2014 Katedra Fizyki Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg... Godzina... Ćwiczenie 425 Wyznaczanie ciepła właściwego ciał stałych Masa suchego kalorymetru m k = kg Opór grzałki

Bardziej szczegółowo

Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc.

Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc. Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc. ZESTAW ZADAŃ NA ZAJĘCIA ROZGRZEWKA 1. Przypuśćmy, że wszyscy ludzie na świecie zgromadzili się w jednym miejscu na Ziemi i na daną komendę jednocześnie

Bardziej szczegółowo

Układ termodynamiczny Parametry układu termodynamicznego Proces termodynamiczny Układ izolowany Układ zamknięty Stan równowagi termodynamicznej

Układ termodynamiczny Parametry układu termodynamicznego Proces termodynamiczny Układ izolowany Układ zamknięty Stan równowagi termodynamicznej termodynamika - podstawowe pojęcia Układ termodynamiczny - wyodrębniona część otaczającego nas świata. Parametry układu termodynamicznego - wielkości fizyczne, za pomocą których opisujemy stan układu termodynamicznego,

Bardziej szczegółowo

We wszystkich zadaniach przyjmij wartość przyspieszenia ziemskiego g = 10 2

We wszystkich zadaniach przyjmij wartość przyspieszenia ziemskiego g = 10 2 1 m We wszystkich zadaniach przyjmij wartość przyspieszenia ziemskiego g = 10 2. s Zadanie 1 (1 punkt) Spadochroniarz opada ruchem jednostajnym. Jego masa wraz z wyposażeniem wynosi 85 kg Oceń prawdziwość

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE FIZYKA ROK SZKOLNY 2017/ ) wyodrębnia z tekstów, tabel, diagramów lub wykresów, rysunków schematycznych

WYMAGANIA EDUKACYJNE FIZYKA ROK SZKOLNY 2017/ ) wyodrębnia z tekstów, tabel, diagramów lub wykresów, rysunków schematycznych WYMAGANIA EDUKACYJNE FIZYKA ROK SZKOLNY 2017/2018 I. Wymagania przekrojowe. Uczeń: 1) wyodrębnia z tekstów, tabel, diagramów lub wykresów, rysunków schematycznych lub blokowych informacje kluczowe dla

Bardziej szczegółowo

1. Wprowadzenie: dt q = - λ dx. q = lim F

1. Wprowadzenie: dt q = - λ dx. q = lim F PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W PILE INSTYTUT POLITECHNICZNY Zakład Budowy i Eksploatacji Maszyn PRACOWNIA TERMODYNAMIKI TECHNICZNEJ INSTRUKCJA Temat ćwiczenia: WYZNACZANIE WSPÓŁCZYNNIKA PRZEWODNOŚCI

Bardziej szczegółowo

25 POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM ROZSZERZONY. (od początku do prądu elektrycznego)

25 POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM ROZSZERZONY. (od początku do prądu elektrycznego) Włodzimierz Wolczyński 25 POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM ROZSZERZONY (od początku do prądu elektrycznego) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod

Bardziej szczegółowo

ZADANIA Z FIZYKI - TERMODYNAMIKA

ZADANIA Z FIZYKI - TERMODYNAMIKA ZADANIA Z FIZYKI - TERMODYNAMIKA Zad 1.(RH par 22-8 zad 36) Cylinder jest zamknięty dobrze dopasowanym metalowym tłokiem o masie 2 kg i polu powierzchni 2.0 cm 2. Cylinder zawiera wodę i parę o temperaturze

Bardziej szczegółowo

Doświadczenie B O Y L E

Doświadczenie B O Y L E Wprowadzenie teoretyczne Doświadczenie Równanie Clapeyrona opisuje gaz doskonały. Z dobrym przybliżeniem opisuje także gazy rzeczywiste rozrzedzone. p V = n R T Z równania Clapeyrona wynika prawo Boyle'a-Mario

Bardziej szczegółowo

WOJEWÓDZKI KONKURS Z FIZYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2014/2015. Imię i nazwisko:

WOJEWÓDZKI KONKURS Z FIZYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2014/2015. Imię i nazwisko: (pieczątka szkoły) Imię i nazwisko:................................. Czas rozwiązywania zadań: 45 minut WOJEWÓDZKI KONKURS Z FIZYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2014/2015 ETAP I SZKOLNY Informacje:

Bardziej szczegółowo

Max liczba pkt. Rodzaj/forma zadania. Zasady przyznawania punktów zamknięte 1 1 p. każda poprawna odpowiedź. zamknięte 1 1 p.

Max liczba pkt. Rodzaj/forma zadania. Zasady przyznawania punktów zamknięte 1 1 p. każda poprawna odpowiedź. zamknięte 1 1 p. KARTOTEKA TESTU I SCHEMAT OCENIANIA - szkoła podstawowa Nr zadania Cele ogólne 1 I. Wykorzystanie pojęć i Cele szczegółowe II.5. Uczeń nazywa ruchem jednostajnym ruch, w którym droga przebyta w jednostkowych

Bardziej szczegółowo

SPRAWDZIAN NR Oceń prawdziwość każdego zdania. Zaznacz P, jeśli zdanie jest prawdziwe, lub F, jeśli jest

SPRAWDZIAN NR Oceń prawdziwość każdego zdania. Zaznacz P, jeśli zdanie jest prawdziwe, lub F, jeśli jest SRAWDZIAN NR 1 JOANNA BOROWSKA IMIĘ I NAZWISKO: KLASA: GRUA A 1. Oceń prawdziwość każdego zdania. Zaznacz, jeśli zdanie jest prawdziwe, lub, jeśli jest rawo ascala dotyczy A. możliwości zwiększenia ilości

Bardziej szczegółowo

Wojewódzki Konkurs Fizyczny dla uczniów Gimnazjum w roku szkolnym 2012/2013 ETAP WOJEWÓDZKI - 13 marca 2013 r.

Wojewódzki Konkurs Fizyczny dla uczniów Gimnazjum w roku szkolnym 2012/2013 ETAP WOJEWÓDZKI - 13 marca 2013 r. NUMER KODOWY UCZNIA Punktacja za zadania Zad. Zad. Zad. Zad. Zad. Zad. Zad. Razem 1 2 3 4 5 6 7 4 p 7 p 3 p 4 p 5 p 4 p 13 p 40 p.. Podpis nauczyciela oceniającego zadanie 80% z 40 pkt. =32 pkt. Drogi

Bardziej szczegółowo

ZESTAW ZADAŃ KONKURSOWYCH Z FIZYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2013/2014 ETAP OKRĘGOWY

ZESTAW ZADAŃ KONKURSOWYCH Z FIZYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2013/2014 ETAP OKRĘGOWY Kuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z FIZYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2013/2014 ETAP OKRĘGOWY KOD UCZNIA Instrukcja dla ucznia 1. Arkusz liczy 12 stron (z brudnopisem) i zawiera

Bardziej szczegółowo

Rodzaje zadań w nauczaniu fizyki

Rodzaje zadań w nauczaniu fizyki Jan Tomczak Rodzaje zadań w nauczaniu fizyki Typologia zadań pisemnych wg. prof. B. Niemierki obejmuje 2 rodzaje, 6 form oraz 15 typów zadań. Rodzaj: Forma: Typ: Otwarte Rozszerzonej odpowiedzi - czynności

Bardziej szczegółowo

Przemiany energii w zjawiskach cieplnych. 1/18

Przemiany energii w zjawiskach cieplnych. 1/18 Przemiany energii w zjawiskach cieplnych. 1/18 Średnia energia kinetyczna cząsteczek Średnia energia kinetyczna cząsteczek to suma energii kinetycznych wszystkich cząsteczek w danej chwili podzielona przez

Bardziej szczegółowo

Jednostki podstawowe. Tuż po Wielkim Wybuchu temperatura K Teraz ok. 3K. Długość metr m

Jednostki podstawowe. Tuż po Wielkim Wybuchu temperatura K Teraz ok. 3K. Długość metr m TERMODYNAMIKA Jednostki podstawowe Wielkość Nazwa Symbol Długość metr m Masa kilogramkg Czas sekunda s Natężenieprąduelektrycznego amper A Temperaturatermodynamicznakelwin K Ilość materii mol mol Światłość

Bardziej szczegółowo

WOJEWÓDZKI KONKURS Z FIZYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2017/2018 ETAP III FINAŁ

WOJEWÓDZKI KONKURS Z FIZYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2017/2018 ETAP III FINAŁ WOJEWÓDZKI KONKURS Z FIZYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2017/2018 ETAP III FINAŁ Czas rozwiązywania zadań 90 minut IMIĘ I NAZWISKO UCZNIA (wpisuje komisja konkursowa po rozkodowaniu pracy!) KOD UCZNIA:

Bardziej szczegółowo

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z FIZYKI KLASA II

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z FIZYKI KLASA II SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z FIZYKI KLASA II Energia mechaniczna Wymagania na stopień dopuszczający obejmują treści niezbędne dla dalszego kształcenia oraz użyteczne w pozaszkolnej działalności ucznia.

Bardziej szczegółowo

Konkurs fizyczny. Etap szkolny KOD UCZNIA KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJÓW I ETAP SZKOLNY. 07 października 2013

Konkurs fizyczny. Etap szkolny KOD UCZNIA KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJÓW I ETAP SZKOLNY. 07 października 2013 KOD UCZNIA KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJÓW I ETAP SZKOLNY 07 października 2013 Ważne informacje: 1. Masz 60 minut na rozwiązanie wszystkich zadań. 2. Zapisuj szczegółowe obliczenia i komentarze

Bardziej szczegółowo

ZADANIA DLA CHĘTNYCH na 6 (seria II) KLASA III

ZADANIA DLA CHĘTNYCH na 6 (seria II) KLASA III ZADANIA DLA CHĘTNYCH na 6 (seria I) KLASA III Ciało rusza miejsca z przyspieszeniem 1[m/s 2 ]. Oblicz drogę przebytą przez to ciało w 5 sekundzie ruchu. Oblicz drogę przebytą przez to ciało w ciągu 6 sekund.

Bardziej szczegółowo

XII WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów województwa kujawsko-pomorskiego 2014/2015 Etap rejonowy czas rozwiązania 90 minut

XII WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów województwa kujawsko-pomorskiego 2014/2015 Etap rejonowy czas rozwiązania 90 minut XII WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów województwa kujawsko-pomorskiego 2014/2015 Etap rejonowy czas rozwiązania 90 minut Na karcie odpowiedzi należy umieścić swój kod (numer).

Bardziej szczegółowo

Przemiany termodynamiczne

Przemiany termodynamiczne Przemiany termodynamiczne.:: Przemiana adiabatyczna ::. Przemiana adiabatyczna (Proces adiabatyczny) - proces termodynamiczny, podczas którego wyizolowany układ nie nawiązuje wymiany ciepła, lecz całość

Bardziej szczegółowo

Zadanie 1. Zadanie: Odpowiedź: ΔU = 2,8663 10 4 J

Zadanie 1. Zadanie: Odpowiedź: ΔU = 2,8663 10 4 J Tomasz Lubera Zadanie: Zadanie 1 Autoklaw zawiera 30 dm 3 azotu o temperaturze 15 o C pod ciśnieniem 1,48 atm. Podczas ogrzewania autoklawu ciśnienie wzrosło do 3800,64 mmhg. Oblicz zmianę energii wewnętrznej

Bardziej szczegółowo

Wykład 1. Anna Ptaszek. 5 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 1. Anna Ptaszek 1 / 36

Wykład 1. Anna Ptaszek. 5 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 1. Anna Ptaszek 1 / 36 Wykład 1 Katedra Inżynierii i Aparatury Przemysłu Spożywczego 5 października 2015 1 / 36 Podstawowe pojęcia Układ termodynamiczny To zbiór niezależnych elementów, które oddziałują ze sobą tworząc integralną

Bardziej szczegółowo

KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJÓW I ETAP SZKOLNY. 8 października 2014

KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJÓW I ETAP SZKOLNY. 8 października 2014 KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJÓW I ETAP SZKOLNY 8 października 2014 Ważne informacje: 1. Masz 60 minut na rozwiązanie wszystkich zadań. 2. Zapisuj szczegółowe obliczenia i komentarze do rozwiązań

Bardziej szczegółowo

Imię i nazwisko: ... WOJEWÓDZKI KONKURS Z FIZYKI Z ASTRONOMIĄ DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2012/2013 ETAP I SZKOLNY

Imię i nazwisko: ... WOJEWÓDZKI KONKURS Z FIZYKI Z ASTRONOMIĄ DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2012/2013 ETAP I SZKOLNY (pieczątka szkoły) Imię i nazwisko:.................................. Klasa.................................. Czas rozwiązywania zadań: 45 minut WOJEWÓDZKI KONKURS Z FIZYKI Z ASTRONOMIĄ DLA UCZNIÓW GIMNAZJUM

Bardziej szczegółowo

POWTÓRKA PRZED KONKURSEM CZĘŚĆ 3

POWTÓRKA PRZED KONKURSEM CZĘŚĆ 3 DO ZDOBYCIA 44 PUNKTY POWTÓRKA PRZED KONKURSEM CZĘŚĆ 3 Jest to powtórka przed etapem szkolnym, na którym określono wymagania: ETAP SZKOLNY 1) Ruch prostoliniowy i siły. 2) Energia. 3) Właściwości materii.

Bardziej szczegółowo

ZBIÓR ZADAŃ STRUKTURALNYCH

ZBIÓR ZADAŃ STRUKTURALNYCH ZBIÓR ZADAŃ STRUKTURALNYCH Zgodnie z zaleceniami metodyki nauki fizyki we współczesnej szkole zadania prezentowane uczniom mają odnosić się do rzeczywistości i być tak sformułowane, aby każdy nawet najsłabszy

Bardziej szczegółowo

KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów szkół podstawowych

KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów szkół podstawowych KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów szkół podstawowych 12 lutego 2019 r. etap rejonowy Witamy Cię na drugim etapie konkursu fizycznego i życzymy powodzenia. Rozwiązując zadania, przyjmij przybliżoną

Bardziej szczegółowo

WYBRANE ZAGADNIENIA Z TERMODYNAMIKI TECHNICZNEJ

WYBRANE ZAGADNIENIA Z TERMODYNAMIKI TECHNICZNEJ Podstawowe pojęcia w termodynamice technicznej 1/1 WYBRANE ZAGADNIENIA Z TERMODYNAMIKI TECHNICZNEJ 1. WIADOMOŚCI WSTĘPNE 1.1. Przedmiot i zakres termodynamiki technicznej Termodynamika jest działem fizyki,

Bardziej szczegółowo

KONKURS FIZYCZNY dla uczniów gimnazjów województwa lubuskiego 6 lutego 2009 r. zawody II stopnia (rejonowe)

KONKURS FIZYCZNY dla uczniów gimnazjów województwa lubuskiego 6 lutego 2009 r. zawody II stopnia (rejonowe) Pieczęć KONKURS FIZYCZNY dla uczniów gimnazjów województwa lubuskiego 6 lutego 2009 r. zawody II stopnia (rejonowe) Witamy Cię na drugim etapie Konkursu Fizycznego. Przed przystąpieniem do rozwiązywania

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z FIZYKI Z ASTRONOMIĄ

PRÓBNY EGZAMIN MATURALNY Z FIZYKI Z ASTRONOMIĄ Wpisuje zdający przed rozpoczęciem pracy PESEL ZDAJĄCEGO Miejsce na nalepkę z kodem szkoły Instrukcja dla zdającego PRÓBNY EGZAMIN MATURALNY Z FIZYKI Z ASTRONOMIĄ Arkusz II (dla poziomu rozszerzonego)

Bardziej szczegółowo

Kinetyczna teoria gazów Termodynamika. dr Mikołaj Szopa Wykład

Kinetyczna teoria gazów Termodynamika. dr Mikołaj Szopa Wykład Kinetyczna teoria gazów Termodynamika dr Mikołaj Szopa Wykład 7.11.015 Kinetyczna teoria gazów Kinetyczna teoria gazów. Termodynamika Termodynamika klasyczna opisuje tylko wielkości makroskopowe takie

Bardziej szczegółowo

TERMODYNAMIKA. Przedstaw cykl przemian na wykresie poniższym w układach współrzędnych przedstawionych poniżej III

TERMODYNAMIKA. Przedstaw cykl przemian na wykresie poniższym w układach współrzędnych przedstawionych poniżej III Włodzimierz Wolczyński 44 POWÓRKA 6 ERMODYNAMKA Zadanie 1 Przedstaw cykl rzemian na wykresie oniższym w układach wsółrzędnych rzedstawionych oniżej Uzuełnij tabelkę wisując nazwę rzemian i symbole: >0,

Bardziej szczegółowo

Przykładowe zadania z działu: Pomiary, masa, ciężar, gęstość, ciśnienie, siła sprężystości

Przykładowe zadania z działu: Pomiary, masa, ciężar, gęstość, ciśnienie, siła sprężystości Przykładowe zadania z działu: Pomiary, masa, ciężar, gęstość, ciśnienie, siła sprężystości Zad.1 Za pomocą mierników elektronicznych, mierzących czas z dokładnością do 0,01(s), trójka uczniów mierzyła

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Teoria kinetyczna INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA

Podstawy Procesów i Konstrukcji Inżynierskich. Teoria kinetyczna INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA Podstawy Procesów i Konstrukcji Inżynierskich Teoria kinetyczna Kierunek Wyróżniony rzez PKA 1 Termodynamika klasyczna Pierwsza zasada termodynamiki to rosta zasada zachowania energii, czyli ogólna reguła

Bardziej szczegółowo

Stany skupienia materii

Stany skupienia materii Stany skupienia materii Ciała stałe Ciecze Płyny Gazy Plazma 1 Stany skupienia materii Ciała stałe - ustalony kształt i objętość - uporządkowanie dalekiego zasięgu - oddziaływania harmoniczne Ciecze -

Bardziej szczegółowo

ETAP I - szkolny. 24 listopada 2017 r. godz

ETAP I - szkolny. 24 listopada 2017 r. godz XVI WOJEWÓDZKI KONKURS Z FIZYKI DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW ORAZ KLAS DOTYCHCZASOWYCH GIMNAZJÓW PROWADZONYCH W SZKOŁACH INNEGO TYPU WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO W ROKU SZKOLNYM 2017/2018 ETAP

Bardziej szczegółowo

Zadanie 1. Zadanie: Odpowiedź: ΔU = 2, J

Zadanie 1. Zadanie: Odpowiedź: ΔU = 2, J Tomasz Lubera Zadanie: Zadanie 1 Autoklaw zawiera 30 dm 3 azotu o temperaturze 15 o C pod ciśnieniem 1,48 atm. Podczas ogrzewania autoklawu ciśnienie wzrosło do 3800,64 mmhg. Oblicz zmianę energii wewnętrznej

Bardziej szczegółowo

Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze.

Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze. Siły w przyrodzie Oddziaływania Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze. Występujące w przyrodzie rodzaje oddziaływań dzielimy na:

Bardziej szczegółowo

EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII

EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MFA-R1_1P-092 EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII MAJ ROK 2009 POZIOM ROZSZERZONY Instrukcja dla zdającego

Bardziej szczegółowo

dr Dariusz Wyrzykowski ćwiczenia rachunkowe semestr I

dr Dariusz Wyrzykowski ćwiczenia rachunkowe semestr I Podstawowe prawa i pojęcia chemiczne. Fizyczne prawa gazowe. Zad. 1. Ile cząsteczek wody znajduje się w 0,12 mola uwodnionego azotanu(v) ceru Ce(NO 3 ) 2 6H 2 O? Zad. 2. W wyniku reakcji 40,12 g rtęci

Bardziej szczegółowo

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015 EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015 FORMUŁA DO 2014 ( STARA MATURA ) FIZYKA POZIOM PODSTAWOWY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MFA-P1 MAJ 2015 Zadania zamknięte Zadanie 1. (0 1) Obszar standardów

Bardziej szczegółowo

36P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM PODSTAWOWY (od początku do optyki geometrycznej)

36P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM PODSTAWOWY (od początku do optyki geometrycznej) Włodzimierz Wolczyński 36P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM PODSTAWOWY (od początku do optyki geometrycznej) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod

Bardziej szczegółowo

m We wszystkich zadaniach przyjmij wartość przyspieszenia ziemskiego g = 10 2 Wskaż właściwe połączenie nazwy zjawiska fizycznego z jego opisem.

m We wszystkich zadaniach przyjmij wartość przyspieszenia ziemskiego g = 10 2 Wskaż właściwe połączenie nazwy zjawiska fizycznego z jego opisem. m We wszystkich zadaniach przyjmij wartość przyspieszenia ziemskiego g = 10 2. s Zadanie 1. (1 punkt) Wskaż właściwe połączenie nazwy zjawiska fizycznego z jego opisem. I Resublimacja 1 tworzenia się mgły

Bardziej szczegółowo

Energia, właściwości materii

Energia, właściwości materii Imię i nazwisko Pytanie 1/ Zaznacz prawidłową odpowiedź. Kasia stała na balkonie i trzymała w ręku lalkę o masie 600 g. Lalka znajdowała się na wysokości 5 m nad ziemią. W pewnej chwili dziewczynka upuściła

Bardziej szczegółowo

(t) w przedziale (0 s 16 s). b) Uzupełnij tabelę, wpisując w drugiej kolumnie rodzaj ruchu, jakim poruszała się mrówka w kolejnych przedziałach czasu.

(t) w przedziale (0 s 16 s). b) Uzupełnij tabelę, wpisując w drugiej kolumnie rodzaj ruchu, jakim poruszała się mrówka w kolejnych przedziałach czasu. 1 1 x (m/s) 4 0 4 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 t (s) a) Narysuj wykres a x (t) w przedziale (0 s 16 s). b) Uzupełnij tabelę, wpisując w drugiej kolumnie rodzaj ruchu, jakim poruszała się mrówka

Bardziej szczegółowo

(1) Równanie stanu gazu doskonałego. I zasada termodynamiki: ciepło, praca.

(1) Równanie stanu gazu doskonałego. I zasada termodynamiki: ciepło, praca. (1) Równanie stanu gazu doskonałego. I zasada termodynamiki: ciepło, praca. 1. Aby określić dokładną wartość stałej gazowej R, student ogrzał zbiornik o objętości 20,000 l wypełniony 0,25132 g gazowego

Bardziej szczegółowo

Utrwalenie wiadomości. Fizyka, klasa 1 Gimnazjum im. Jana Pawła II w Sułowie

Utrwalenie wiadomości. Fizyka, klasa 1 Gimnazjum im. Jana Pawła II w Sułowie Utrwalenie wiadomości Fizyka, klasa 1 Gimnazjum im. Jana Pawła II w Sułowie Za tydzień sprawdzian Ciało fizyczne a substancja Ciało Substancja gwóźdź żelazo szklanka szkło krzesło drewno Obok podanych

Bardziej szczegółowo