O całkowaniu mechanicznem.
|
|
- Zofia Szulc
- 6 lat temu
- Przeglądów:
Transkrypt
1 O całkowaniu mechanicznem. Przekład Noty Sur Pintegration mécanique" z Comptes rendus" Akademii paryskiej t. XCIV, 20 marca 1882 roku, str
2
3 Teorya integratora, którą rozwinąłem w moich Notach poprzedzających, może być zastosowana bez żadnej zmiany do wszystkich modyfikacyj, które dziś przedstawia. Pierwszy przyrząd, zbudowany przezenmie w roku 1879 *) składał się z walca, toczącego się po tarczy. Mam zaszczyt przedstawić Akademii ten aparat pierwotny, zbudowany w laboratoryum fizycznem Szkoły Politechnicznej we Lwowie- Gdy obracamy walec, posuwanie jego mierzy nam sumę wiel. kości ydx, a gdy popychamy go, liczba obrotów daje nam tę sumę. Dla udowodnienia zasady moich integratorów zbudowałem aparat, który pozwalam sobie przedstawić. Składa się on (fig. 1, b) z walca CC, osadzonego na wózku II. Walec może obracać się naokoło osi X i poruszać się jednocześnie na szynach R, R. Tarcza A, obracająca się około swej osi poziomej, a której płaszczyzna może obracać się około osi pionowej L, opiera się z pewną siłą na powierzchni walca. Gdy pochylamy tarczę pod pewnym kątem i obracamy walec, wózek posunie się po szynach na przestrzeń, odpowiadającą sumie wielkości ydx. Odwrotnie, gdy przesuwamy wózek po szynach, liczba obrotów jest proporcyonalna do tej sumy. Mając dane y=j(x), gdy chcemy otrzymać f ydx, wyprowadzamy rzędne y do narzędzia, zmieniając nachylenie tarczy A, odcięte zaś x nadają walcowi odpowiedni ruch obrotowy lub ruch w kierunku długości.!) Przedstawiony Akademii Nauk w Krakowie d. 20 marca 1880 roku. (Patrz wydanie niniejsze str ).
4 Od chwili ogłoszenia, moja zasada całkowania mechanicznego otrzymała liczne zastosowania, C. Vernon-Boys, prof. szkoły królewskiej górniczej w Londynie, poszedł tą samą drogą i zbudował narzędzie bardzo dowcipne, w których zastosowano z korzyścią moją zasadę kinematyczną tarczy i walca; pomiędzy innemi narzędzie bardzo praktyczne i barhttp://rcin.org.pl 4 O CAŁKOWANIU MECHANICZNEJ!. [176] Jeżeli pomyślimy, że promień tarczy A rośnie do nieskończoności, otrzymamy, urządzenie przedstawione na fig`. 2. Jest to walec pomiędzy dwiema prostoliniowemi krawędziami. Jeżeli taką samą zmianę nadamy promieniowi walca CC, otrzymamy urządzenie, przedstawione na fig. 3. Każde z tych urządzeń daje wyniki zarówno dokładne; w zasadzie nie różnią się one niczem od urządzenia na fig. 1. Wskazałem w Notach poprzedzających, że zasada integratora może być z korzyścią stosowana do narzędzi fizykalnych, gdzie chodzi o dodawanie kolejne elementów ydx, jak Fig-, i. np. dynamografy, indykatory i td. Trzeba wtedy, aby zja-,wiska mierzone dawały same automatycznie nachylenie tarczy i działały na ruch walca.
5 [177] O CAŁKOWANIU MECH ANICZNEM. O Fig. 2. Fig. 8. dzo czułe do mierzenia wydatku energii elektrycznej pomiędzy dwoma punktami obrotu. Nachylenie tarczy uskutecznia się za pomocą pewnego aparatu tak, że w każej chwili styczna kąta jest równa iloczynowi El (E jest różnicą potencyałów, 1 natężeniem). W tym celu używa on dwóch solenoidów, jednego o cienkiej nici, ustawionego w obw T odzie prądu głównego, przebiegającego po solenoidzie o nici grubszej. Siłę przyciągania tych dwóch solenoidów równoważy pewien ciężar. Walec porusza się przy pomocy chronometru. Ta kom- bliższym przyrządy oparte na mojej zasadzie, między innemi, binacya pozwala otrzymać całkę E1 dt, czyli energię wydatkowaną w czasie ł. Nadto Boys zbudował integrator; częścią jego zasadniczą jest wózek, którego pierwsze kółko jest tak ustawione, jak koło kierownicze w bicyklu. Będę miał zaszczyt przedstawić Akademii w czasie naj- machinę służącą do rozwiązywania równań liczebnych. Machina ta składa się z szeregu tarcz i walców, umieszczonych w ten sposób, że ruch każdego walca oddziaływa na nachylenie następnej tarczy. W nocie z d. 7 marca 1881 wskazałem, w jaki sposób dochodzi się do rozwiązywania tego zadania. 12
6
O INTEGRATORZE. Przekład Noty: Sur un intégrateur" z Comptes rendus t; Akademii paryskiej, t. XCII, d. 7 marca 1881 r., str
O INTEGRATORZE. Przekład Noty: Sur un intégrateur" z Comptes rendus t; Akademii paryskiej, t. XCII, d. 7 marca 1881 r., str. 515 519. Mam zaszczyt przedstawić Akademii opis integratora którego teoryę
O NOWYM MODELU INTEGRAFU
O NOWYM MODELU INTEGRAFU systemu D. Napoli i Abdanka-Abakanowicza. Przekład Noty z Comptes rendus" Akademii paryskiej, C. I, z d. 14 września 1885, str. 592 595. Przyrząd, który mam zaszczyt przedstawić
MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 3 KINEMATYKA Temat RUCH PŁASKI BRYŁY MATERIALNEJ Prowadzący: dr Krzysztof Polko Pojęcie Ruchu Płaskiego Rys.1 Ruchem płaskim ciała sztywnego nazywamy taki ruch, w którym wszystkie
(12) OPIS PATENTOWY (19) PL (11) (13) B1
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 159619 (13) B1 (21) Numer zgłoszenia: 276863 (51) IntCl5: B66D 3/06 Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia: 30.12.1988 (54)Urządzenie
Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)
Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek
INTEGRATORY. w..ognisku", książce zbiorowej wydanej dla uczczenia 20-letniej pracy T. T. Jeża, Warszawa, 1882; str ).
INTEGRATORY. w..ognisku", książce zbiorowej wydanej dla uczczenia 20-letniej pracy T. T. Jeża, Warszawa, 1882; str. 345 352). http://rcin.org.pl http://rcin.org.pl Za pomocą przyrządów, zbudowanych na
Bryła sztywna Zadanie domowe
Bryła sztywna Zadanie domowe 1. Podczas ruszania samochodu, w pewnej chwili prędkość środka przedniego koła wynosiła. Sprawdź, czy pomiędzy kołem a podłożem występował poślizg, jeżeli średnica tego koła
Elementy rachunku różniczkowego i całkowego
Elementy rachunku różniczkowego i całkowego W paragrafie tym podane zostaną elementarne wiadomości na temat rachunku różniczkowego i całkowego oraz przykłady jego zastosowania w fizyce. Małymi literami
Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.
Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny
Pierwsze dwa podpunkty tego zadania dotyczyły równowagi sił, dla naszych rozważań na temat dynamiki ruchu obrotowego interesujące będzie zadanie 3.3.
Dynamika ruchu obrotowego Zauważyłem, że zadania dotyczące ruchu obrotowego bardzo często sprawiają maturzystom wiele kłopotów. A przecież wystarczy zrozumieć i stosować zasady dynamiki Newtona. Przeanalizujmy
Theory Polish (Poland) Przed rozpoczęciem rozwiązywania przeczytaj ogólne instrukcje znajdujące się w osobnej kopercie.
Q1-1 Dwa zagadnienia mechaniczne (10 points) Przed rozpoczęciem rozwiązywania przeczytaj ogólne instrukcje znajdujące się w osobnej kopercie. Część A. Ukryty metalowy dysk (3.5 points) Rozważmy drewniany
KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM
KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM POTĘGI I PIERWIASTKI - pojęcie potęgi o wykładniku naturalnym; - wzór na mnożenie i dzielenie potęg o tych samych podstawach; - wzór na potęgowanie
RZECZPOSPOLITAPOLSKA(12) OPIS PATENTOWY (19) PL (11) (13) B2
RZECZPOSPOLITAPOLSKA(12) OPIS PATENTOWY (19) PL (11) 161647 (13) B2 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 285386 22) Data zgłoszenia: 24.05.1990 51) IntCl5: B23Q 7/02 Tarcza
Wyznaczanie momentów bezwładności brył sztywnych metodą zawieszenia trójnitkowego
POLTECHNKA ŚLĄSKA WYDZAŁ CHEMCZNY KATEDRA FZYKOCHEM TECHNOLOG POLMERÓW LABORATORUM Z FZYK Wyznaczanie momentów bezwładności brył sztywnych metodą zawieszenia trójnitkowego WYZNACZANE MOMENTÓW BEZWŁADNOŚC
PYTANIA TEORETYCZNE Z MATEMATYKI
Zbiory liczbowe: 1. Wymień znane Ci zbiory liczbowe. 2. Co to są liczby rzeczywiste? 3. Co to są liczby naturalne? 4. Co to są liczby całkowite? 5. Co to są liczby wymierne? 6. Co to są liczby niewymierne?
Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH
METODA ROZDZIELENIA ZMIENNYCH (2) (3) (10) (11) Modelowanie i symulacje obiektów w polu elektromagnetycznym 1 Rozwiązania równań (10-11) mają ogólną postać: (12) (13) Modelowanie i symulacje obiektów w
POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY KATEDRA KONSTRUKCJI I EKSPLOATACJI MASZYN
POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY KATEDRA KONSTRUKCJI I EKSPLOATACJI MASZYN KOREKCJA ZAZĘBIENIA ĆWICZENIE LABORATORYJNE NR 5 Z PODSTAW KONSTRUKCJI MASZYN OPRACOWAŁ: dr inż. Jan KŁOPOCKI Gdańsk 2000
Fizyka 1- Mechanika. Wykład 4 26.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów
Fizyka 1- Mechanika Wykład 4 6.X.017 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ III zasada dynamiki Zasada akcji i reakcji Każdemu działaniu
WYMAGANIA EDUKACYJNE Rok szkolny 2018/2019
WYMAGANIA EDUKACYJNE Rok szkolny 2018/2019 Przedmiot Klasa Nauczyciele uczący Poziom matematyka 4e Łukasz Jurczak rozszerzony 2. Elementy analizy matematycznej ocena dopuszczająca ocena dostateczna ocena
Wymagania edukacyjne klasa trzecia.
TEMAT Wymagania edukacyjne klasa trzecia. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE Lekcja organizacyjna System dziesiątkowy System rzymski Liczby wymierne i niewymierne
postaci przezroczystego walca zabarwionego i osadzonego (12) OPIS PATEN TO W Y (19) P L (11) (13) B3 PL B3
RZECZPO SPO LITA POLSKA Urząd Patentow y R zeczy p o sp o litej P o lsk iej (12) OPIS PATEN TO W Y (19) P L (11) 157831 (13) B3 Numer zgłoszenia: 270269 (21) D ata zgłoszenia: 22.01.1988 (61) Patent dodatkowy
v 6 i 7 j. Wyznacz wektora momentu pędu czaski względem początku układu współrzędnych.
Dynamika bryły sztywnej.. Moment siły. Moment pędu. Moment bezwładności. 171. Na cząstkę o masie kg znajdującą się w punkcie określonym wektorem r 5i 7j działa siła F 3i 4j. Wyznacz wektora momentu tej
Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny
Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny Podstawa programowa z 23 grudnia 2008r. do nauczania matematyki w zasadniczych szkołach zawodowych Podręcznik: wyd.
Podstawy skrzyni biegów
Układ napędowy - podzespoły Podstawy skrzyni biegów opracowanie mgr inż. Ireneusz Kulczyk aktualizacja 02.2011 07.2011 2015 Zespół Szkół Samochodowych w Bydgoszczy Wykład Linia ciągła skrzynka z biegiem
WYMAGANIA EGZAMINACYJNE DLA KLASY III GIMNAZJUM
WYMAGANIA EGZAMINACYJNE DLA KLASY III GIMNAZJUM TEMAT WYMAGANIA SZCZEGÓŁOWE 1. LICZBY I WYRAŻENIA ALGEBRAICZNE 2. System dziesiątkowy 1. Liczby wymierne dodatnie. Uczeń: 1) zaokrągla rozwinięcia dziesiętne
PRACA Pracą mechaniczną nazywamy iloczyn wartości siły i wartości przemieszczenia, które nastąpiło zgodnie ze zwrotem działającej siły.
PRACA Pracą mechaniczną nazywamy iloczyn wartości siły i wartości przemieszczenia, które nastąpiło zgodnie ze zwrotem działającej siły. Pracę oznaczamy literą W Pracę obliczamy ze wzoru: W = F s W praca;
Układ kierowniczy. Potrzebę stosowania układu kierowniczego ze zwrotnicami przedstawia poniższy rysunek:
1 Układ kierowniczy Potrzebę stosowania układu kierowniczego ze zwrotnicami przedstawia poniższy rysunek: Definicja: Układ kierowniczy to zbiór mechanizmów umożliwiających kierowanie pojazdem, a więc utrzymanie
PRZYRZĄD DO BADANIA RUCHU JEDNOSTAJNEGO l JEDNOSTANIE ZMIENNEGO V 5-143
Przyrząd do badania ruchu jednostajnego i jednostajnie zmiennego V 5-43 PRZYRZĄD DO BADANIA RUCHU JEDNOSTAJNEGO l JEDNOSTANIE ZMIENNEGO V 5-43 Oprac. FzA, IF US, 2007 Rys. Przyrząd stanowi równia pochyła,
I. Potęgi. Logarytmy. Funkcja wykładnicza.
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY I. Potęgi. Logarytmy. Funkcja wykładnicza. dobrą, bardzo - oblicza potęgi o wykładnikach wymiernych; - zna
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 8 DZIAŁ 1. LICZBY I DZIAŁANIA
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 8 DZIAŁ 1. LICZBY I DZIAŁANIA zna znaki używane do zapisu liczb w systemie rzymskim; zna zasady zapisu liczb w systemie rzymskim; umie zapisać
PL B1. POLITECHNIKA LUBELSKA, Lublin, PL BUP 24/15. PIOTR WOLSZCZAK, Lublin, PL WUP 11/16. rzecz. pat.
PL 223974 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 223974 (13) B1 (21) Numer zgłoszenia: 408242 (51) Int.Cl. E05B 47/06 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:
1. Potęgi. Logarytmy. Funkcja wykładnicza
1. Potęgi. Logarytmy. Funkcja wykładnicza Tematyka zajęć: WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KL. 3 POZIOM PODSTAWOWY Potęga o wykładniku rzeczywistym powtórzenie Funkcja wykładnicza i jej własności
Kształcenie w zakresie rozszerzonym. Klasa IV
Kształcenie w zakresie rozszerzonym. Klasa IV Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 6 2016/2017, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x
WYMAGANIA EDUACYJNE Z MATEMATYI LASA III ZARES ROZSZERZONY (90 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania
Wymagania edukacyjne z matematyki - klasa III (poziom rozszerzony) wg programu nauczania Matematyka Prosto do matury
STEREOMETRIA Wymagania edukacyjne z matematyki - klasa III (poziom rozszerzony) wskazać płaszczyzny równoległe i prostopadłe do danej płaszczyzny wskazać proste równoległe i prostopadłe do danej płaszczyzny
PDM 3 zakres podstawowy i rozszerzony PSO
PDM 3 zakres podstawowy i rozszerzony PSO STEREOMETRIA wskazać płaszczyzny równoległe i prostopadłe do danej płaszczyzny wskazać proste równoległe i prostopadłe do danej płaszczyzny odróżnić proste równoległe
Dynamika ruchu obrotowego
Dynamika ruchu obrotowego 1. Mając dane r = îx + ĵy + ˆkz i = î x + ĵ y + ˆk z znaleźć moment siły τ = r. Pokazać, że jeżeli r i leżą w danej płaszczyźnie, to τ nie ma składowych w tej płaszczyźnie. 2.
Rys 3-1. Rysunek wałka
Obiekt 3: Wałek Rys 3-1. Rysunek wałka W tym dokumencie zostanie zaprezentowany schemat działania w celu przygotowania trójwymiarowego rysunku wałka. Poniżej prezentowane są sugestie dotyczące narysowania
WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE
WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE Przekształcenia algebraiczne Równania i układy równań Pojęcie funkcji. Własności funkcji. WYRAŻENIA
Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy)
Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy) klasa 3. PAZDRO Plan jest wykazem wiadomości i umiejętności, jakie powinien mieć uczeń ubiegający się o określone oceny na poszczególnych etapach edukacji
PL B1. POLITECHNIKA POZNAŃSKA, Poznań, PL BUP 14/14. BARTOSZ WIECZOREK, Poznań, PL MAREK ZABŁOCKI, Poznań, PL
PL 223141 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 223141 (13) B1 (21) Numer zgłoszenia: 402276 (51) Int.Cl. B62M 1/14 (2006.01) A61G 5/02 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej
KOŚć i przyspieszenie. O PRĘDKOŚCI. Aby ZROZumIEć to POjĘCIE,
2 Siła i ruch Prędkość i przyspieszenie Ruch JEDNOSTAJNY ZaNIm będziemy mogli zrozumieć ZASADY ruchu, musimy WIEDZIEć, czym są pręd- KOŚć i przyspieszenie. NajPIERw pomówmy O PRĘDKOŚCI. Aby ZROZumIEć to
Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka
Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka TEMAT 5. Przekątna kwadratu. Wysokość trójkąta równobocznego 6. Trójkąty o kątach 90º, 45º, 45º oraz 90º, 30º, 60º 1. Okrąg opisany na trójkącie
(13) B1 PL B1. (21) Numer zgłoszenia: (22) Data zgłoszenia: RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11)
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 176519 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 306921 (22) Data zgłoszenia: 20.01.1995 ( 51) intcl6: B26D 1/143 (54)Urządzenie
WYMAGANIA WSTĘPNE Z MATEMATYKI
WYMAGANIA WSTĘPNE Z MATEMATYKI Wydział Informatyki, Elektroniki i Telekomunikacji Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie I. ZBIORY I.1. Działania na zbiorach I.2. Relacje między
BADANIE DRGAŃ TŁUMIONYCH WAHADŁA FIZYCZNEGO
ĆWICZENIE 36 BADANIE DRGAŃ TŁUMIONYCH WAHADŁA FIZYCZNEGO Cel ćwiczenia: Wyznaczenie podstawowych parametrów drgań tłumionych: okresu (T), częstotliwości (f), częstotliwości kołowej (ω), współczynnika tłumienia
FUNKCJE ZESPOLONE Lista zadań 2005/2006
FUNKJE ZESPOLONE Lista zadań 25/26 Opracowanie: dr Jolanta Długosz Liczby zespolone. Obliczyć wartości podanych wyrażeń: (2 + ) ( ) 2 4 i (5 + i); b) (3 i)( 4 + 2i); c) 4 + i ; d) ( + i) 4 ; e) ( 2 + 3i)
Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć
Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie rozszerzonym. Klasa 4 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego
PL B1. Sposób walcowania poprzecznego dwoma walcami wyrobów typu kula metodą wgłębną. POLITECHNIKA LUBELSKA, Lublin, PL
PL 218597 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 218597 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 394836 (22) Data zgłoszenia: 11.05.2011 (51) Int.Cl.
PL B1. POLITECHNIKA LUBELSKA, Lublin, PL BUP 26/16. ZBIGNIEW PATER, Turka, PL JANUSZ TOMCZAK, Lublin, PL PAULINA PATER, Turka, PL
PL 226885 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 226885 (13) B1 (21) Numer zgłoszenia: 414306 (51) Int.Cl. B21B 23/00 (2006.01) B21C 37/15 (2006.01) Urząd Patentowy Rzeczypospolitej
WZORU UŻYTKOWEGO PL Y1. PRZEDSIĘBIORSTWO HAK SPÓŁKA Z OGRANICZONĄ ODPOWIEDZIALNOŚCIĄ, Wrocław, PL BUP 02/
RZECZPOSPOLITA POLSKA Urząd Patentowy Rzeczypospolitej Polskiej (12) OPIS OCHRONNY WZORU UŻYTKOWEGO (21) Numer zgłoszenia: 118347 (22) Data zgłoszenia: 13.07.2009 (19) PL (11) 65951 (13) Y1 (51) Int.Cl.
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Funkcje zespolone Complex functions Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyka Poziom kwalifikacji: I stopnia Liczba
MECHANIKA 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO. Wykład Nr 2. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO Prowadzący: dr Krzysztof Polko WSTĘP z r C C(x C,y C,z C ) r C -r B B(x B,y B,z B ) r C -r A r B r B -r A A(x A,y A,z A ) Ciało sztywne
WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc
WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc 1, Ciągi zna definicję ciągu (ciągu liczbowego); potrafi wyznaczyć dowolny wyraz ciągu liczbowego określonego wzorem ogólnym;
Rachunek całkowy - całka oznaczona
SPIS TREŚCI. 2. CAŁKA OZNACZONA: a. Związek między całką oznaczoną a nieoznaczoną. b. Definicja całki oznaczonej. c. Własności całek oznaczonych. d. Zastosowanie całek oznaczonych. e. Zamiana zmiennej
Tematy zadań do rozwiązania przy użyciu modułu symulacji dynamicznej programu Autodesk Inventor
Tematy zadań do rozwiązania przy użyciu modułu symulacji dynamicznej programu Autodesk Inventor (na podstawie J.Giergiel, L.Głuch, A.Łopata: Zbiór zadań z mechaniki.wydawnictwo AGH, Kraków 2011r.) Temat
Prawa ruchu: dynamika
Prawa ruchu: dynamika Fizyka I (B+C) Wykład X: Dynamika ruchu po okręgu siła dośrodkowa Prawa ruchu w układzie nieinercjalnym siły bezwładności Prawa ruchu w układzie obracajacym się siła odśrodkowa siła
(86) Data i numer zgłoszenia międzynarodowego: , PCT/FR95/00114
R Z E C Z PO SPO L IT A PO LSK A (12) OPIS PATENTOWY (19) PL (11) 176422 (13) B1 (21) Numer zgłoszenia: 315663 U rząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia: 01.02.1995 (86) Data i numer
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VIII
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VIII Uczeń na ocenę dopuszczającą: - zna znaki używane do zapisu liczb w systemie rzymskim, - umie zapisać i odczytać liczby naturalne dodatnie w systemie rzymskim
URZĄDZENIE DO DEMONSTRACJI POWSTAWANIA KRZYWYCH LISSAJOUS
URZĄDZENIE DO DEMONSTRACJI POWSTAWANIA KRZYWYCH LISSAJOUS Urządzenie służące do pokazu krzywych Lissajous powstających w wyniku składania mechanicznych drgań harmonicznych zostało przedstawione na rys.
Technologie informacyjne lab. 3
Technologie informacyjne lab. 3 Cel ćwiczenia: Poznanie podstaw środowiska MATLAB/Octave: obliczenia macierzowe, rozwiązywanie równań i układów równań, wykresy funkcji 1 i 2 zmiennych. Aktualnie Uczelnia
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 7 2012/2013, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment
(12) OPIS PATENTOWY (19) PL (11) (13) B1
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 163271 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 286299 (22) Data zgłoszenia: 01.08.1990 (51) IntCl5: F03D 3/02 (54)
MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu
MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu Prowadzący: dr Krzysztof Polko Dynamiczne równania ruchu Druga zasada dynamiki zapisana w postaci: Jest dynamicznym wektorowym równaniem ruchu. Dynamiczne
Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej
Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Wielkości dynamiczne w ruchu postępowym. a. Masa ciała jest: - wielkością skalarną, której wielkość jest niezmienna
(13) B1 (12) OPIS PATENTOWY (19) PL (11) PL B1 F16H 3/62
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 176935 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 309072 (22) Data zgłoszenia: 09.06.1995 (51) IntCl6: F16H 3/62 (54)
PL B1. Urządzenie do walcowania poprzecznego, trójwalcowego odkuwek z regulowanym rozstawem osi. POLITECHNIKA LUBELSKA, Lublin, PL
PL 218845 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 218845 (13) B1 (21) Numer zgłoszenia: 394506 (51) Int.Cl. B21B 13/08 (2006.01) B21B 37/58 (2006.01) Urząd Patentowy Rzeczypospolitej
Urządzenie do obciskania obrotowego wyrobów drążonych
Urządzenie do obciskania obrotowego wyrobów drążonych Przedmiotem wynalazku jest urządzenie do obciskania obrotowego wyrobów drążonych, zwłaszcza osi i wałków wielostopniowych, drążonych. Pod pojęciem
PL B BUP 13/ WUP 01/17
PL 224581 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 224581 (13) B1 (21) Numer zgłoszenia: 406525 (51) Int.Cl. B25J 11/00 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:
Wymagania edukacyjne niezbędne do otrzymania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki dla klasy VIII
Wymagania edukacyjne niezbędne do otrzymania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki dla klasy VIII Temat 1. System rzymski. 2. Własności liczb naturalnych. 3. Porównywanie
STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH
STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI 2 proste
Ć W I C Z E N I E N R E-15
NSTYTUT FZYK WYDZAŁ NŻYNER PRODUKCJ TECNOLOG MATERAŁÓW POLTECNKA CZĘSTOCOWSKA PRACOWNA ELEKTRYCZNOŚC MAGNETYZMU Ć W C Z E N E N R E-15 WYZNACZANE SKŁADOWEJ POZOMEJ NATĘŻENA POLA MAGNETYCZNEGO ZEM METODĄ
ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi
ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi Rozkład materiału nauczania został opracowany na podstawie programu
ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II
ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II POZIOM ROZSZERZONY Równania i nierówności z wartością bezwzględną. rozwiązuje równania i nierówności
(54) Sposób pomiaru cech geometrycznych obrzeża koła pojazdu szynowego i urządzenie do
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19)PL (11)167818 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 2 9 3 7 2 5 (22) Data zgłoszenia: 0 6.0 3.1 9 9 2 (51) Intcl6: B61K9/12
PL B1. BRZEŻAWSKI PATRYK, Bolestraszyce, PL BRZEŻAWSKI TADEUSZ, Bolestraszyce, PL BUP 24/12
PL 218038 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 218038 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 394843 (22) Data zgłoszenia: 12.05.2011 (51) Int.Cl.
Wyznaczanie współczynnika tarcia tocznego za pomocą wahadła nachylnego
POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: FIZYKA Kod przedmiotu: KS0137; KN0137; LS0137; LN0137 Ćwiczenie Nr 4 Wyznaczanie współczynnika tarcia
PRZYRZĄD DO WPROWADZENIA POJĘCIA MOMENTU OBROTU I PARY SIŁ
PRZYRZĄD DO WPROWADZENIA POJĘCIA MOMENTU OBROTU I PARY SIŁ (V 6 60) Za pomocą kompletu, w skład którego wchodzi dźwignia, 5 małych bloczków z uchwytami dostosowanymi do prętów statywowych, 6 linek z haczykami
Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne.
Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. pytania teoretyczne:. Co to znaczy, że wektory v, v 2 i v 3
PL B1. Hilti Aktiengesellschaft,Schaan,LI ,DE,
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 203134 (13) B1 (21) Numer zgłoszenia: 357843 (51) Int.Cl. B24B 23/02 (2006.01) B24B 45/00 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)
Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym
Ćwiczenie 11B Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym 11B.1. Zasada ćwiczenia Na zamkniętą pętlę przewodnika z prądem, umieszczoną w jednorodnym polu magnetycznym, działa skręcający
Zasady dynamiki Newtona. Autorzy: Zbigniew Kąkol Kamil Kutorasiński
Zasady dynamiki Newtona Autorzy: Zbigniew Kąkol Kamil Kutorasiński 2019 Zasady dynamiki Newtona Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Podstawowa teoria, która pozwala przewidywać ruch ciał, składa
ANALIZA MATEMATYCZNA 2
ANALIZA MATEMATYCZNA Lista zadań 3/4 Opracowanie: dr Marian Gewert, dr Zbigniew Skoczylas Lista pierwsza Zadanie. Korzystając z definicji zbadać zbieżność podanych całek niewłaściwych pierwszego rodzaju:
Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia.
Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia. Grupa 1. Kinematyka 1. W ciągu dwóch sekund od wystrzelenia z powierzchni ziemi pocisk przemieścił się o 40 m w poziomie i o 53
(t) w przedziale (0 s 16 s). b) Uzupełnij tabelę, wpisując w drugiej kolumnie rodzaj ruchu, jakim poruszała się mrówka w kolejnych przedziałach czasu.
1 1 x (m/s) 4 0 4 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 t (s) a) Narysuj wykres a x (t) w przedziale (0 s 16 s). b) Uzupełnij tabelę, wpisując w drugiej kolumnie rodzaj ruchu, jakim poruszała się mrówka
(13) B1 (12) OPIS PATENTOWY (19) PL (11) 183565 PL 183565 B1. (54) Mechanizm przekładni w maszynie do ćwiczeń z obciążeniem narządów ruchu
RZECZPOSPOLITA POLSKA Urząd Patentowy Rzeczypospolitej Polskiej (12) OPIS PATENTOWY (19) PL (11) 183565 (13) B1 (21) Numer zgłoszenia: 3 1 9 9 1 6 (22) Data zgłoszenia: 09.05.1997 (5 1) IntCl7: A63B 21/06
Wymagania edukacyjne klasa pierwsza.
Wymagania edukacyjne klasa pierwsza. TEMAT WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I DZIAŁANIA Liczby Rozwinięcia dziesiętne liczb wymiernych Zaokrąglanie liczb. Szacowanie wyników Dodawanie
Podstawy fizyki wykład 8
Podstawy fizyki wykład 8 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Ładunek elektryczny Grecy ok. 600 r p.n.e. odkryli, że bursztyn potarty o wełnę przyciąga inne (drobne) przedmioty. słowo
Operacja technologiczna to wszystkie czynności wykonywane na jednym lub kilku przedmiotach.
Temat 23 : Proces technologiczny i planowanie pracy. (str. 30-31) 1. Pojęcia: Proces technologiczny to proces wytwarzania towarów wg przepisów. Jest to zbiór czynności zmieniających właściwości fizyczne
Charakterystyka rozruchowa silnika repulsyjnego
Silnik repulsyjny Schemat połączeń silnika repulsyjnego Silnik tego typu budowany jest na małe moce i używany niekiedy tam, gdzie zachodzi potrzeba regulacji prędkości. Układ połączeń silnika repulsyjnego
ROZKŁAD MATERIAŁU DLA 3 KLASY GIMNAZJUM
ROZKŁAD MATERIAŁU DLA 3 KLASY GIMNAZJUM TEMAT LICZBA GODZIN LEKCYJNYCH 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1 2. System dziesiątkowy 2-4 3. System rzymski 5-6 WYMAGANIA SZCZEGÓŁOWE
OSTRZAŁKA DO PIŁ TARCZOWYCH
OSTRZAŁKA DO PIŁ TARCZOWYCH JMY8-70 INSTRUKCJA OBSŁUGI 1 Spis treści I. INFORMACJE WSTĘPNE... 2 II. DANE TECHNICZNE... 3 III. OBSŁUGA... 3 IV. ZASADY BEZPIECZEŃSTWA... 4 V. SCHEMAT... 4 I. INFORMACJE WSTĘPNE
PL B1. Sposób kątowego wyciskania liniowych wyrobów z materiału plastycznego, zwłaszcza metalu
PL 218911 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 218911 (13) B1 (21) Numer zgłoszenia: 394839 (51) Int.Cl. B21C 23/02 (2006.01) B21C 25/02 (2006.01) Urząd Patentowy Rzeczypospolitej
WZORU UŻYTKOWEGO PL Y1 B62K 5/04 ( ) Białoń Leszek, Nowy Sącz, PL BUP 22/07. Leszek Białoń, Nowy Sącz, PL
RZECZPOSPOLITA POLSKA Urząd Patentowy Rzeczypospolitej Polskiej (12) OPIS OCHRONNY WZORU UŻYTKOWEGO (21) Numer zgłoszenia: 116072 (22) Data zgłoszenia: 19.04.2006 (19) PL (11) 64106 (13) Y1 (51) Int.Cl.
10 K A T E D R A FIZYKI STOSOWANEJ
10 K A T E D R A FIZYKI STOSOWANEJ P R A C O W N I A F I Z Y K I Ćw. 10. Wyznaczanie momentu bezwładności brył nieregularnych Wprowadzenie Obserwowane w przyrodzie ruchy ciał można opisać * stosując podział
TABELA PRZELICZENIOWA
Pierwsze kroki stawiane w geometrii kulowej (sferycznej) w praktyce. str.1 GK Pierwsze kroki w geometrii (). Motto: Patrzymy na to samo, widzimy coś innego. T opracował: inż. Kazimierz arski Romana - imię
Politechnika Warszawska Wydział Mechatroniki Instytut Automatyki i Robotyki
Politechnika Warszawska Wydział Mechatroniki Instytut Automatyki i Robotyki Ćwiczenie laboratoryjne 2 Temat: Modelowanie powierzchni swobodnych 3D przy użyciu programu Autodesk Inventor Spis treści 1.
TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2
TEMAT 1. LICZBY I DZIAŁANIA 14 0 LICZBA GODZIN LEKCYJNYCH 1. Liczby 1-. Rozwinięcia dziesiętne liczb wymiernych 3. Zaokrąglanie liczb. Szacowanie wyników 4. Dodawanie i odejmowanie liczb dodatnich 1 1-
XIV WOJEWÓDZKI KONKURS MATEMATYCZNY
XIV WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO ETAP III - WOJEWÓDZKI Kod ucznia 24 marca 2017 roku godz. 13:00 Suma punktów Czas pracy: 90 minut Liczba punktów do