Konstruowanie urządzeń elektronicznych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Konstruowanie urządzeń elektronicznych"

Transkrypt

1 Konstruowanie urządzeń elektronicznych Cel i zakres procesu konstruowania Opracowanie optymalnej (z technicznego i ekonomicznego punktu widzenia) koncepcji rozwiązania problemu oraz wykonanie dokumentacji umożliwiającej wytworzenie projektowanego urządzenia. 1

2 Konstruowanie urządzeń elektronicznych Konstruowanie jako praca twórcza korzysta z różnych dziedzin wiedzy, takich jak: matematyka, fizyka, chemia, psychologia, socjologia, fizjologia, ekonomia, estetyka, techniki wytwórcze, materiałoznawstwo i inne. Nauki humanistyczno-społeczne dostarczają konstruktorowi informacji o tym, jak najlepiej dopasować wytwory myśli ludzkiej i techniki do potrzeb człowieka, głównie pod względem ergonomicznym i estetycznym. Nauki przyrodnicze wyjaśniające prawa i zależności panujące w zjawiskach przyrody, pozwalają je wykorzystać do tworzenia coraz to doskonalszych konstrukcji. Techniki wytwórcze umożliwiają w optymalny sposób wykonanie konstrukcji, powstałych w procesie konstruowania, w postaci gotowych wyrobów mogących zaspokoić określone potrzeby i decydują o tym, jak i gdzie produkować. 2

3 Konstruowanie jako system przetwarzania informacji ZADANIE ANALIZA SYNTEZA OCENA DECYZJA OPTYMALIZACJA ZMIEŃ ZADANIE Według zwolenników takiego poglądu konstruowanie polega na przetwarzaniu informacji, podobnie jak w komputerze. Na wejście (oko i ucho konstruktora) dostarcza się informacji, następnie w umyśle konstruktora jest przeprowadzany szereg operacji analitycznych, syntetycznych i oceniających, dotąd, aż uzyska się dobre rozwiązanie. Analiza i synteza są nieodłączną częścią każdej pracy twórczej i badawczej, czyli również i konstruowania. W procesie konstruowania na ogół synteza, czyli szukanie rozwiązania, następuje po uprzednim zbadaniu problemu lub jego części składowych w procesie analizy. NASTĘPNY ETAP 3

4 Konstruowanie jako system przetwarzania informacji Analiza (gr. analysis - rozbiór) - w swojej istocie jest zdobywaniem informacji o pewnej całości przez jej podział i rozkładanie na pojedyncze elementy, a następnie badanie własności tych elementów i zależności występujących między nimi. Synteza (gr. synthesis - zestawienie) - połączenie różnych części (elementów) w nową całość; może to znaczyć, że części starej konstrukcji łączy się w nową lub może znaczyć coś bardziej twórczego, jak np. nowy sposób łączenia nowych i starych części. Ocena i decyzja - ocena konstrukcji, która została stworzona podczas zabiegu syntezy, polega na zbadaniu (często tylko myślowym) czy proponowane rozwiązanie spełnia wymagania i czy jest zgodne z kryteriami przyjętymi dla danego wyrobu. 4

5 Metody poszukiwania nowych rozwiązań Metoda ewolucyjne, Metoda rewolucyjna, Metody intuicyjne: - Burza mózgów, - Metoda delficka, - Metoda 635, - Synektyka, Metoda dedukcyjna, Metody spekulatywne: - Metoda morfologiczna, - Analiza wartości (AW), 5

6 Metody poszukiwania nowych rozwiązań Metody ewolucyjne konstruowania - (zwane metodami prób i błędów) - polegają na tym, że konstrukcja na przestrzeni dłuższego czasu przechodzi naturalną ewolucje (wprowadzanie zmian i ulepszeń). Zalety: - małe ryzyko popełnienia zasadniczych błędów (każda zmiana to nieznaczne ulepszenie poprzedniego modelu), Wady: - droga ewolucji jest długa i kosztowna. 6

7 Metody poszukiwania nowych rozwiązań Metody rewolucyjne poszukiwania rozwiązań - burzenie stereotypów myślowych, przyzwyczajeń i rutyny, - wykorzystywanie myślenia podświadomego, - oddzielanie w czasie procesu tworzenia pomysłów od ich oceny (zmniejszenie lęku przed krytyką), - rozbudzanie wyobraźni, fantazji, pomysłowości, - nie przywiązywanie wagi do względów formalnych i nieistotnych szczegółów, Zalety: - wykorzystanie najnowszych technologii, - wyrób spełnia oczekiwania klienta w zakresie najnowszych trendów wzorniczych, - możliwość wyprzedzenia konkurencji, Wady: - wysokie koszty wprowadzenia nowego wyrobu (dokumentacja i park maszynowy), - duże ryzyko popełnienia zasadniczych błędów, 7

8 Metody poszukiwania nowych rozwiązań BURZA MÓZGÓW (BM) - jedna z najstarszych i najbardziej uniwersalnych metod. Jest metodą pracy grupowej. Ludzie powołani do zespołu BM mają różne zawody, specjalności, doświadczenie i temperamenty. Etapy realizacji metody. prace przygotowawcze - powołanie zespołu (6-12 osób, wybór przewodniczącego), jednoznaczne określenie problemu, przygotowanie środków sprawnego rejestrowania pomysłów. szukanie pomysłów zasady: - swobodna atmosfera, - ujmowanie podstaw problemu (bez wchodzenia w szczegóły), - nie krytykowanie zgłaszanych pomysłów, - zgłaszanie wszystkich (nawet z pozoru nierealnych) pomysłów - pojedynczo, w zwięzły sposób, - czas trwania do 45 minut, ocena i selekcja pomysłów: - przeglądanie, segregowanie i ocenianie pomysłów pod kątem ich przydatności i możliwości realizacji (kompetentni specjaliści z udziałem przewodniczącego sesji), 8 - wybrane pomysły - ponowna dyskusja z zespołem.

9 Metody poszukiwania nowych rozwiązań METODA DELFICKA starannie opracowany program oparty na anonimowych ankietach. Pytania przebiegają według następującego schematu: 1. Jakie widzisz możliwości rozwiązania przedstawionego problemu. 2. Przejrzyj załączoną listę rozwiązań i podaj dalsze własne propozycje. 3. Przejrzyj załączoną listę końcowych ocen obu rund. Podaj własne propozycje, które wydają ci się najlepsze ze względu na możliwości realizacji. Szukanie rozwiązań odbywa się na ogół korespondencyjnie. Metoda nadaje się do rozwiązywania problemów konstrukcyjnych długoterminowych. 9

10 Metody poszukiwania nowych rozwiązań METODA jest modyfikacją burzy mózgów (6 osób, 3 pomysły, 5 minut). Zasady: uczestnicy (6 osób) pisemnie zgłaszają trzy pomysły; po 5 minutach wymieniają się kartkami; każdy stara się zweryfikować otrzymany pomysł i uzupełnić go własnym; proces kończy się gdy wszyscy uczestnicy zapoznają się ze wszystkimi pomysłami. Zalety w porównaniu z BM: - każdy z pomysłów początkowych jest systematycznie uzupełniany i rozwijany, - twórcy mogą mieć udokumentowane potwierdzenie autorstwa swoich pomysłów - nie trzeba wyznaczać przewodniczącego. Wady w stosunku do BM: - gorsze twórcze współdziałanie między uczestnikami, spowodowane izolacją i brakiem czynnika stymulującego, - konieczność wyrażania myśli na piśmie może być utrudnieniem dla niektórych uczestników. 10

11 Metody poszukiwania nowych rozwiązań SYNEKTYKA - spokrewniona z BM - metoda pracy grupowej. Grupa do 7 osób (wskazane są osobowości kontrastowe), 2-4 osoby znające problem (technolog, konstruktor), wskazany udział biologa i 3 osób różnych zawodów. Kierownik grupy postępuje zgodnie z następującym schematem: 1. Rozpoznanie problemu - badanie problemu, jego własności, specyfiki, wpływu otoczenia, zależności i powiązań. 2. Oddalenie się od problemu - oderwanie się od problemu przez wykonywanie innych czynności (niezależne działanie świadomości i podświadomości). 3. Tworzenie połączeń - poprzez swobodne myślenie i przeprowadzenie podświadomych porównań oraz systematyczne stosowanie analogii udaje się oderwać od dotychczasowych rozwiązań i dojść do połączenia odległych treści z rozwiązywanym problemem. Tworzy to korzystny klimat dla powstania nowych pomysłów. 4. Rozwiązanie problemu - przez połączenie i modyfikacje znanych pomysłów. Propozycje techniczne osiągane drogą nieprawdopodobnych analogii. 11

12 Metody poszukiwania nowych rozwiązań SYNEKTYKA c.d. Analogie rozwiązywania problemu: - analogie bezpośrednie - porównanie poszukiwanego rozwiązania z funkcjonowaniem organizmów biologicznych, - analogie osobowe - utożsamianie się z rozwiązywanym obiektem, wykorzystanie własnego ciała dla osiągnięcia wymaganej funkcji, - analogie symboliczne - skojarzenia abstrakcyjne, cechy jednej rzeczy lub pojęcia identyfikuje się z cechami innych rzeczy lub pojęć, - analogie fantastyczne - oparte na nierealnych, fantastycznych założeniach, na wyobrażaniu sobie rzeczy, o których wiadomo, że nie istnieją w rzeczywistości. Przeciwnicy wykorzystywania metod intuicyjnych do rozwiązywania problemów konstrukcyjnych twierdzą - nie bez racji -że metody te są bardzo ryzykowne, nie można bowiem opierać twórczości konstruktorskiej na szczęśliwym przypadku. Natchnienie i olśnienie oraz dobre pomysły przychodzą nie zawsze wtedy, kiedy są najbardziej potrzebne. 12

13 Metody poszukiwania nowych rozwiązań Metody dedukcyjne oparte są na rozumowym ujmowaniu rzeczywistości i wnioskowaniu za pomocą racji logicznych. Rozwiązywanie problemów przez świadome zebranie faktów i odpowiednie ich przygotowanie. Postępowanie dedukcyjne nie wyklucza działań intuicyjnych (ale powinny być one wykorzystywane raczej do rozwiązywania problemów cząstkowych, a nie od razu do rozwiązań całościowych). 13

14 Metody poszukiwania nowych rozwiązań Metody spekulatywne są metodami złożonymi, w których pomysłu poszukuje się przy pomocy metodycznie ułożonych działań (spekulacji). Do podstawowych metod tej grupy są zaliczane metoda morfologiczna i analiza wartości. Metoda morfologiczna - do nowych rozwiązań dochodzi się przez utworzenie systematyki rozwiązań dotychczas istniejących, nazywanej ich morfologią. Istotą metody jest podział problemu na niezależne od siebie problemy, ustalenie ich rozwiązań oraz zestawienie w jednej tablicy problemów, które mają być rozwiązane i znanych już rozwiązań takich problemów, ewentualnie pomysłów rozwiązań. 14

15 Metody poszukiwania nowych rozwiązań Metody spekulatywne cd.: Analiza wartości (AW) - zorganizowane działanie, którego celem jest ujawnienie zbędnych kosztów; krytyczna analiza i ocena funkcji, jakie ma spełniać badany wyrób lub jego część. Wynikiem AW jest określenie zbioru funkcji koniecznych, drugorzędowych i zbędnych. AW przeprowadza zespół złożony ze specjalistów różnych dziedzin. ETAPY: 1. Sprecyzowanie zadania - przy wyborze przedmiotu do analizy należy wybierać wyroby, które: - przedstawiają sobą dużą wartość jednostkową, - są produkowane w wielkich seriach, - odgrywają istotną rolę w wyrobie wyższego rzędu, - są pracochłonne lub materiałochłonne, 15

16 Metody poszukiwania nowych rozwiązań Metody spekulatywne (AW) cd.: 2. Zebranie informacji, ich weryfikacja i selekcja: - informacje powinny być rzetelne, prawdziwe i pewne, - należy zbadać cechy decydujące o jakości i popycie na dany wyrób, - zebranie informacji kosztowych (robocizna i materiały). 3. Ustalenie i zdefiniowanie funkcji: - rozpoznanie problemu i ukierunkowanie poszukiwań, - wyodrębnienie funkcji podstawowych i drugorzędnych, - praca zespołowa (fachowcy, konstruktorzy, technolodzy, ekonomiści, specjaliści od kontroli jakości), 4. Poszukiwanie rozwiązań: - prowadzi się najczęściej poprzez porównanie i analizę, - rozwiązania muszą spełniać zadane funkcje po najniższych kosztach - podczas poszukiwań można się oprzeć na wcześniejszych metodach. 16

17 Metody poszukiwania nowych rozwiązań Metody spekulatywne (AW) cd.: 5. Wybór rozwiązania: - rejestracja pomysłów i wariantów, - wybór najkorzystniejszego, - ocenę dokonuje zespół, - aby nie sugerować się wzajemnie, ocenianie powinno być tajne. 6. Opracowanie wybranego wariantu: - opracowanie w formie tablic, wykresów, szkiców i rysunków technicznych. 17

18 Elementy opracowania konstrukcyjnego Sprecyzowanie wymagań technicznych i ekonomicznych, Obliczenia i opracowanie schematu elektrycznego, Analiza pól tolerancji elementów urządzenia, Obliczenia i wykonanie dokumentacji technicznej, Obliczenia przewidywalnej niezawodności, Opracowanie programów badań, Przeprowadzenie badań lub nadzór nad prowadzonymi badaniami, Weryfikacja dokumentacji po badaniach prototypu, Opracowanie konstrukcji nie ogranicza się do jednego tylko rozwiązania, lecz obejmuje kilka wariantów. Do realizacji wybierany jest ten, który w sposób optymalny spełnia podstawowe wymagania techniczne i ekonomiczne. 18

19 Etapy procesu konstruowania Podział procesu konstruowania na etapy ułatwia kontrole przebiegu prac oraz (co jest najważniejsze) umożliwia systematyczną ocenę wyników. ETAP I Wstępne wymagania techniczno-eksploatacyjne Wstępna analiza ekonomiczna Opracowanie wymagań, Opracowanie analizy ekonomicznej, CEL: - sprecyzowanie wymagań techniczno-eksploatacyjnych, - oszacowanie opłacalności przedsięwzięcia, 19

20 Etapy procesu konstruowania ETAP II Projekt wstępny Obliczenia i opracowanie schematu elektrycznego, Wybór i konstrukcja podzespołów, Obliczenie niezawodności, Badanie czystości patentowej, Opracowanie konstrukcji mechanicznej i okablowania, Wykonanie modelu i analiza wyników badań modelu, CEL: - opracowanie konstrukcji, - praktyczne sprawdzenie przyjętej koncepcji szczegółowych rozwiązań, 20

21 Etapy procesu konstruowania ETAP III Projekt techniczny Opracowanie dokumentacji konstrukcyjnej, Analiza wartości, Budowa prototypu, Badanie i analiza wyników badań prototypu, Rewizja I dokumentacji, CEL: - opracowanie dokumentacji konstrukcyjnej, - sprawdzenie jej poprawności, 21

22 Etapy procesu konstruowania ETAP IV Seria informacyjna Opracowanie dokumentacji technologicznej, Wykonanie oprzyrządowania, Rewizja II dokumentacji, CEL: - opracowanie dokumentacji technologicznej, - sprawdzenie jej prawidłowości, 22

23 Czynniki decydujące o wyborze rozwiązań konstrukcyjnych Przeznaczenie sprzętu i przewidywane warunki eksploatacji: Wymagana żywotność i niezawodność - decydują o wyborze materiałów, zabezpieczeń przed czynnikami narażeniowymi, koncepcji konstrukcji mechanicznej. Warunki klimatyczne - odporność na narażenia klimatyczne (stopień szczelności konstrukcji, wybór systemu chłodzenia, wybór zabezpieczeń). Czynniki narażeniowe mechaniczne - zabezpieczenia przeciwwstrząsowe. Charakter obsługi - stopień wyszkolenia (zabezpieczenie dostępu do wnętrza, ilość manipulatorów). Problem przyszłego serwisu (przewidywana organizacja napraw) Seryjność produkcji jej wielkość determinuje wybór metod wytwarzania. Od seryjności produkcji (jednostkowa, seryjna, masowa) jest uzależniony rodzaj obróbki detali, stopień oprzyrządowania, stopień mechanizacji, organizacja gniazd produkcyjnych i taśm montażowych, system kontroli wyrobów gotowych. 23

24 Czynniki decydujące o wyborze rozwiązań konstrukcyjnych Baza podzespołowa i materiałowa Podstawowe błędy: opieranie konstrukcji o trudno dostępne elementy i podzespoły lub takie których produkcja będzie zaniechana w niedługim czasie). Poziom techniczny producenta Posiadany przez zakład park maszynowy i aparaturę pomiarowo-kontrolną, Organizacja i poziom techniczny załogi, Możliwości techniczne narzędziowni. Konstrukcje tworzone bez uwzględnienia możliwości zakładu produkcyjnego są z reguły konstrukcjami nieudanymi w sensie produkcyjnym. Wiele takich konstrukcji nawet udanych technicznie nie może być wdrażanych do produkcji ze względu na trudności i zbyt wysokie koszty w procesie produkcyjnym 24

25 Kryteria oceny konstrukcji Przed ostateczną decyzją o podjęciu produkcji nowego wyrobu, a więc zazwyczaj po wykonaniu i przebadaniu prototypu, opracowana konstrukcja raz jeszcze podlega szczegółowej analizie i ocenie. Ocenę przeprowadza się zazwyczaj analizując kolejno następujące cechy konstrukcji: zespół parametrów technicznych (czy osiągnięto, czy będą łatwo osiągalne), zespół parametrów ekonomicznych (czy koszty własne niższe od założonych), funkcjonalność (z udziałem przyszłych użytkowników), ocena łatwości przeprowadzania napraw i remontów, technologiczność (produkcja najbardziej ekonomiczna - koszty materiałów, robocizny, oprzyrządowania), estetykę, Analiza zespołu uzyskanych parametrów technicznych powinna dać odpowiedź nie tylko na pytanie, czy osiągnięto w pełni założone parametry, lecz również, czy parametry te będą łatwo osiągalne w normalnym procesie produkcyjnym 25

26 Etapy cyklu projektowo produkcyjnego Zasady projektowania uwzględniające wymogi produkcji Design For Manufacture (DFM) 26

27 Etapy cyklu projektowo produkcyjnego Zasady projektowania uwzględniające wymogi produkcji Design For Manufacture (DFM) DFM w zastosowaniu do projektowania systemów, urządzeń i układów elektronicznych obejmuje następujące tematy: 1. Wzajemne powiązanie kolejnych etapów projektowania i wytwarzania. 2. Umiejętność wykorzystania narzędzi komputerowych: - Komputerowo wspomagane projektowanie Computer Aided Engineering (CAE), - Automatyzacja procesu projektowania systemów elektronicznych - Electronic Design Automation (EDA). 3. Organizacja pracy projektowej w zespołach. 27

28 Podstawowe zasady DFM Podatność zaprojektowanego układu/urządzenia/systemu na efektywne wytworzenie w założonej skali produkcji jest głównym wymogiem stawianym wszystkim etapom dobrego projektu elektronicznego. Prawidłowe projektowanie uwzględnia na wszystkich swoich etapach znajomość technologii produkcji oraz ograniczenia wprowadzane przez proces wytwarzania u danego producenta w konkretnym czasie i warunkach. W projekcie należy stosować rachunek ekonomiczny dla zapewnienia opłacalności produkcji projektowanego wyrobu. 28

29 Proces powstawania produktu 29

30 Specyfikacja urządzenia 30

31 Podstawowy cel cyklu projektowo-produkcyjnego Celem projektantów i producentów jest uzyskanie powtarzalności wyprodukowanych układów, urządzeń lub systemów elektronicznych w technologiach wytwarzania gwarantujących wysoką jakość oraz opłacalność produkcji. 31

32 Podstawowe założenia podczas projektowania Już na etapie projektowania powinno przewidzieć się przystosowanie urządzenia: - do prostego montażu w większej całości, - do łatwego testowania w trakcie i po wytworzeniu, - do możliwości wykonywania napraw przez odpowiedni serwis, - do utylizacji po zakończeniu eksploatacji. 32

33 Podstawowe zasady prowadzenia projektu w zespole Standardy projektowania muszą być jasne, jednolite i znane wszystkim osobom realizującym projekt. Poszczególne etapy projektowania nie mogą być odseparowane od siebie. Należy zapewnić kontakt między konstruktorami reprezentującymi nawet różne specjalności np. elektronika i mechanika precyzyjna. Nie należy szukać rozwiązań problemu zbyt wąskiej specjalizacji zawodowej inżynierów i programistów. Dobry projektant powinien mieć podstawową znajomość innych dziedzin poza własną specjalnością. 33

34 Podstawowe zasady prowadzenia projektu w zespole Zastosowanie komputerowych narzędzi typu CAE (Computer Aided Engineering) oraz EDA (Electronic Design Automation) daje możliwość standaryzacji procesu projektowania w wieloosobowych zespołach konstruktorskich (często liczących setki pracowników) oraz łatwe przekazywanie cząstkowych wyników opracowanego projektu. Dotyczy to zarówno projektowania i wytwarzania sprzętu, jak i oprogramowania. 34

35 Podstawowe elementy procesu DFM 35

36 Sprawdzanie poprawności projektu Modelowanie, symulacja, komputerowa analiza oraz wykonanie prototypu urządzenia (jak najbardziej zbliżonego do seryjnego produktu) są koniecznymi elementami procesu projektowania, gdyż pozwalają eliminować błędy oraz wprowadzić korekty (sprzężenia zwrotne) już na etapie projektowania, oszczędzając koszty i skracając czas wdrożenia do produkcji urządzenia finalnego. Należy zakładać, że każdy projektant popełnia błędy. Nie da się ich wyeliminować całkowicie, ale trzeba zapewnić mechanizmy ich wykrywania. 36

37 Powstawanie nowego urządzenia 37

38 Cele pracy projektowej 1. Krótki czas od pomysłu do wprowadzenia produktu do produkcji i przekazania odbiorcy. Należy rozróżnić konkretne zamówienia klienta (określone wymagania, pewność zbytu i znana skala produkcji) od produktu konkurującego na wolnym rynku towarów (nie do końca znane zapotrzebowanie i konieczność konkurowania z innymi producentami). Sposób realizacji celu: pojedynczy proces projektowania, bez wielokrotnych rewizji i opracowanie krótkiego cyklu produkcji. 38

39 Cele pracy projektowej 2. Minimalizacja kosztów projektu i produkcji. Sposób realizacji celu: kompromis pomiędzy wysoką wydajnością procesu, niezawodnością i kosztem przy znajomości i uwzględnieniu specyficznych reguł technologicznych danego procesu produkcji. Wykorzystanie doświadczenia, gotowych rozwiązań, posiadanych narzędzi, linii technologicznych do wytworzenia nowego wyrobu. 39

40 Cele pracy projektowej 3. Poprawa jakości produktu w stosunku do stanu dotychczasowego. Sposób realizacji celu: Krytyczna analiza dotychczasowych rozwiązań, znajomość usterek, słabych punktów, zgłaszanych reklamacji, sugestii użytkowników. 40

41 Cele pracy projektowej 4. Umiejętność wprowadzania do projektu zmian wynikających z postępów technologii produkcji (przyswajanie postępu technicznego). Sposób realizacji celu: poszerzanie wiedzy projektanta o technologiach produkcji, szkolenia, kontakty bezpośrednie z inżynierami produkcji, samokształcenie, podwyższanie kwalifikacji. 41

42 Cele pracy projektowej 5. Integracja procesów projektowania i produkcji. Sposób realizacji celu: znajomość poprawnej metodyki projektowania DFM, otwartość na innowacje technologiczne, elastyczność w projektowaniu, dobry przepływ informacji w zespole. 42

43 Etapy cyklu projektowo produkcyjnego 1. Tworzenie założeń technicznych i finansowych projektu. Szczegóły: przeznaczenie, funkcjonalność, koszt, wymiary, rodzaj zasilania, wejścia/wyjścia urządzenia, zewnętrzne elementy regulacyjne, kontrolne, itp. Budżet i czas projektu. Uwaga: Urządzenia elektroniczne powinny spełniać wymagania przewidziane w normach PN (Polska Norma) i dyrektywach CE (deklaracja zgodności z normami Unii Europejskiej). Deklaracje zgodności są dobrowolne, jednak zwiększają zaufanie klienta do produktu. W szczególnych przypadkach (urządzenia telekomunikacyjne, biomedyczne itp.) można uzyskać atest z laboratorium badawczego potwierdzający zgodność działania urządzenia z odnośnymi normami. Atesty wystawiane są na życzenie wnioskodawcy a same badania odpłatne. 43

44 Etapy cyklu projektowo produkcyjnego 2. Analiza bezpieczeństwa użytkowania produktu. Szczegóły: Ochrona przeciwporażeniowa oraz analiza termiczna bezpieczeństwo funkcjonowania urządzenia w różnych warunkach środowiskowych Rozproszenie mocy cieplnej, sprawność, chłodzenie, możliwości i skutki awarii z powodu wzrostu temperatury, zagrożenie zdrowia i życia człowieka. Miniaturyzacja elementów elektronicznych oraz technika montażu powierzchniowego powiększyły problemy z odprowadzaniem ciepła z urządzeń elektronicznych (większa moc wytwarzanego ciepła na jednostkę powierzchni/objętości urządzenia). Ujemny wpływ podwyższonej temperatury na niezawodność i czas pracy urządzenia. Szczególną uwagę należy zachować przy projektowaniu urządzeń elektronicznych przewidzianych do pracy w środowiskach grożących wybuchem (np. kopalnie). 44

45 Etapy cyklu projektowo produkcyjnego 3. Opracowanie schematu blokowego i ideowego. Opracowanie roboczej wersji schematu, która będzie mogła być modyfikowana na dalszych etapach projektu. 45

46 Etapy cyklu projektowo produkcyjnego 4. Kompleksowa analiza problemów transmisji sygnałów w projektowanym urządzeniu. Poziomy sygnałów, odstęp elementów od zakłóceń i szumów, dopasowanie bloków pod względem obciążalności, problemy opóźnień czasowych (hazard), przesłuchy, kompatybilność elektromagnetyczna (EMC), itp. 46

47 Etapy cyklu projektowo produkcyjnego 5. Etap wyboru elementów elektronicznych i elektromechanicznych. Sposób ich mocowania i montażu, koszt, dostępność na rynku w perspektywie dłuższego czasu produkcji, dostępność zamienników, prognoza pojawienia się nowszych, lepszych lub tańszych elementów, itp. 47

48 Etapy cyklu projektowo produkcyjnego 6. Wybór metody montażu elementów elektronicznych i wykonywania połączeń elektrycznych. Rodzaje montażu: powierzchniowy SMT (Surface Mount Technology), przewlekany THT (Through-Hole Technology) lub mieszany. Sposób lutowania: na fali, rozpływowy, ręczny. Stopień automatyzacji procesu montażu, itp. Wybór techniki montażu zależy między innymi od skali produkcji (generalnie SMT opłaca się stosować przy masowej skali produkcji), posiadanego oprzyrządowania, dostępności i kosztów pracy pracowników zatrudnionych przy montażu. Obecnie można zlecić montaż SMT zewnętrznej wyspecjalizowanej firmie, która dysponuje odpowiednim wyposażeniem. Koszty takiej usługi nie są wysokie, za to gwarantują większą niezawodność połączeń niż montaż ręczny. 48

49 Etapy cyklu projektowo produkcyjnego 7. Określenie sposobów testowania parametrów urządzenia. Projektowanie punktów pomiarowych, procedur testowania, standardowej lub specjalistycznej aparatury do testowania. 49

50 Etapy cyklu projektowo produkcyjnego 8. Etap opracowania konstrukcji mechanicznej. Obudowa standardowa lub nowoprojektowana (opłacalność zaprojektowania i wykonania nowej obudowy zależy od skali produkcji), materiał płyty drukowanej, okablowanie, złącza, itp. 50

51 Etapy cyklu projektowo produkcyjnego 9. Projekt obwodów PCB (Printed Circuit Board). Wybór materiału, ilości warstw. Stabilność podłoża, analiza termiczna, gęstości prądów, ryzyko przebicia izolacji, opis graficzny płyt, itp. 51

52 Etapy cyklu projektowo produkcyjnego 10. Opracowanie końcowej dokumentacji. Opracowanie różnych pod względem szczegółowości dokumentacji technicznych: dla producenta, dla działu marketingowego firmy, dla bezpośredniego użytkownika, sprzedawcy i serwisu naprawiającego. 52

53 Etapy cyklu projektowo produkcyjnego 11. Produkcja. - etap testowania podzespołów, - etap montażu, - etap kontroli poprawności montażu, np. AOI (Automatic Optical Inspection). Wydajność procesów technologicznych, powtarzalność procesów, wpływ zakłóceń na jakość produkcji, koszt wytwarzania, opłacalność automatyzacji produkcji. 53

54 Etapy cyklu projektowo produkcyjnego 12. Etap testowania wyrobu (kontrola jakości). Krótki czas (= niski koszt) testowania z zachowaniem dużej skuteczności wyłapywania usterek. 54

55 Etapy cyklu projektowo produkcyjnego 13. Przygotowanie bezpiecznego, taniego i przyjaznego środowisku naturalnemu opakowania transportowego. 55

56 Etapy cyklu projektowo produkcyjnego 14. Bezpieczna archiwizacja dokumentacji technologicznej. Sprawdzenie możliwości i celowości (opłacalności) zastrzeżeń patentowych produktu. 56

57 Doświadczenie inżynierskie Doświadczenie projektanta oraz efektywne wykorzystanie oprogramowania EDA pozwalają opracować projekt i wdrożyć do produkcji w jednym przebiegu pracy (krok za krokiem). Doświadczony inżynier potrafi oszacować czas swojej pracy oraz koszt gotowego urządzenia już na wstępnych etapach opracowania. 57

58 Szacowanie kosztów Doświadczenie inżynierskie w szacowaniu kosztów opracowania dokumentacji i gotowego wyrobu finalnego może być wspomagane technikami komputerowego obliczania kosztów. Technika modelowania kosztów technicznych TCM (Technical Cost Modelling) pozwala na bezpośrednie porównywanie kosztów wytworzenia równoważnych funkcjonalnie urządzeń wytwarzanych różnymi technologiami. 58

59 Szacowanie kosztów Należy pamiętać, że koszty wytworzenia identycznego funkcjonalnie urządzenia elektronicznego mogą być różne i zależą od wielu czynników: - kompetencji zespołu projektowego (=czas pracy), - wyposażenia w nowoczesne narzędzia EDA i CAE, - posiadanego sprzętu do montażu, - kwalifikacji pracowników zatrudnionych przy produkcji, - sposobów kontroli jakości. 59

60 Normy techniczne i regulacje prawne 60

61 Normy techniczne i regulacje prawne Stosowanie w procesie projektowania i wytwarzania krajowych lub europejskich norm technicznych jest dobrowolne. Stosowanie się do norm może mieć pozytywny wpływ na jakość produkcji i wielkość sprzedaży. Należy jednak zauważyć, że stosowanie się do norm może w pewnych wypadkach ograniczać innowacyjność produktu. Nowoczesne, dobrze zorganizowane firmy mogą posiadać wewnętrzne normy o wyższych wymaganiach niż przewidują to normy zewnętrzne. 61

62 Celowość stosowania norm i standardów Normalizacja, standaryzacja to działalność polegająca na analizowaniu wyrobów, usług i procesów w celu zapewnienia: funkcjonalności i użyteczności, zgodności (kompatybilności) i zamienności, bezpieczeństwa użytkowania, ograniczenia (zbędnej) różnorodności. 62

63 Celowość stosowania norm i standardów Celem normalizacji jest zastosowanie w produkcji przemysłowej jednolitych wzorców, np. znormalizowanie niektórych wyrobów pod względem wymiarów i wykorzystywanych materiałów. Takie działania wpływają na obniżenie kosztów, umożliwiają masową produkcję, współpracę urządzeń różnych producentów i wymianę zużytych części oraz ułatwiają dokonywanie zamówień handlowych. 63

64 Etapy normalizacji Etapy normalizacji to: klasyfikacja, czyli grupowanie według podobieństwa cech charakterystycznych dla produktu, unifikacja, czyli ujednolicanie cech konstrukcyjnych i wymiarowych części maszyn w celu umożliwienia ich zamienności, typizacja, czyli ujednolicenie konstrukcji w celu uproszczenia produkcji (i obniżenia kosztów) oraz ułatwienia eksploatacji. Pierwsze działania normalizacyjne, dotyczyły jednostek miary i wagi. Działalnością normalizacyjną zajmują się agendy państwowe, grupy zainteresowania (na ogół tworzone z inicjatywy producentów), oraz niezależne organizacje międzynarodowe. 64

65 Polska Norma Polska Norma (oznaczana symbolem PN) - norma o zasięgu krajowym, przyjęta w drodze konsensu i zatwierdzona przez krajową jednostkę normalizacyjną Polski Komitet Normalizacyjny (PKN). Normy PN są powszechnie dostępne, ale nie bezpłatne, zaś ich dystrybucję kontroluje PKN. 65

66 Polska Norma Do 31 grudnia 1993 roku stosowanie PN było obowiązkowe i pełniły one rolę przepisów. Nieprzestrzeganie postanowień PN było naruszeniem prawa. Od 1 stycznia 1994 roku stosowanie PN jest dobrowolne, przy czym do 31 grudnia 2002 istniała możliwość, przez właściwych ministrów i w pewnych przypadkach nakładania obowiązku stosowania PN. Od 1 stycznia 2003 stosowanie PN jest już całkowicie dobrowolne, z wyjątkiem działań wykonywanych ze środków publicznych, podlegających ustawie o zamówieniach publicznych, która nakłada obowiązek ich uwzględnienia. 66

67 Polska Norma Polskie Normy są opracowywane przez Komitety Techniczne ciała złożone z ekspertów delegowanych przez instytucje zainteresowane normalizacją. PKN nie jest odpowiedzialny za treść norm i nie jest urzędem tworzącym przepisy techniczne, nadzoruje jedynie zgodność procesów opracowywania norm z przepisami wewnętrznymi PKN. Zatwierdzenie projektu przez PKN jest formalnym stwierdzeniem tej zgodności i nadaniem projektowi statusu normy krajowej. 67

68 Polska Norma Teksty Polskich Norm są na podstawie aktualnej ustawy o normalizacji chronione prawem autorskim, przy czym prawa majątkowe do nich przysługują PKN. PKN nie zezwala bez zgody na rozpowszechnianie tekstów Polskich Norm, co powoduje m.in. że nie są one bezpłatnie dostępne bibliotekach publicznych. Na terenie kraju istnieje kilkanaście Punktów Informacji Normalizacyjnej, działających zwykle przy bibliotekach uniwersyteckich i instytutach naukowych. Punkty te udostępniają teksty norm odpłatnie, wg cennika, przy czym bez opłaty jest możliwość zapoznania się z normą w czytelni. Teksty norm są też dostępne odpłatnie na kilku serwisach WWW, w tym na oficjalnej stronie PKN. 68

69 Charakterystyka konstrukcyjna urządzeń elektronicznych 69

70 Czynniki decydujące o wyborze rozwiązań konstrukcyjnych Kierunek poszukiwania rozwiązania konstrukcyjnego jest wyznaczony przede wszystkim przez przeznaczenie sprzętu i przewidywane warunki eksploatacji. Wielkość produkcji wyznacza metody wytwarzania i sposób kontroli gotowych urządzeń. Każde nowe rozwiązanie powinno stanowić postęp konstrukcyjny jak i technologiczny. Ze względu na dużą ilość czynników jakie trzeba brać pod uwagę konstruowanie jest zwartym lecz niełatwym procesem. 70

71 Charakterystyka konstrukcyjna urządzeń elektronicznych Podział ze względu na przeznaczenie: elektroniczny sprzęt powszechnego użytku, elektroniczne urządzenia profesjonalne, elektroniczne urządzenia specjalne, 71

72 Charakterystyka konstrukcyjna urządzeń elektronicznych Elektroniczny sprzęt powszechnego użytku: przeznaczony dla szerokiego kręgu odbiorców, konstrukcja musi uwzględniać produkcję wielkoseryjną, niefachowa obsługa użytkowników, dostosowanie do upodobań klientów. 72

73 Charakterystyka konstrukcyjna urządzeń elektronicznych Elektroniczne urządzenia profesjonalne: wąski krąg odbiorców, produkcja mało- lub średnio seryjna, obsługa zwykle fachowa, wymagany prosty dostęp do wszystkich elementów urządzenia w celu naprawy (determinuje rodzaj konstrukcji), konieczność zestawienia urządzeń w większe systemy, 73

74 Charakterystyka konstrukcyjna urządzeń elektronicznych Elektroniczne urządzenia specjalne: cechy analogiczne jak w urządzeniach profesjonalnych, przeznaczone do pracy w znacznie trudniejszych warunkach. 74

75 Warunki użytkowania Biorąc pod uwagę sposób i warunki użytkowania wyróżniamy urządzenia: przenośne, stacjonarne, przewoźne, morskie, samolotowe. 75

76 Warunki środowiskowe Urządzenia elektroniczne nie tylko powinny być zabezpieczone przed działaniem warunków środowiskowych, ale także same nie powinny wpływać na środowisko (hałas, zanieczyszczenia, drgania mechaniczne, sygnały elektromagnetyczne). Najgroźniejszymi czynnikami środowiskowymi wpływającymi na urządzenia elektroniczne są: temperatura (zmiany temperatury), wilgotność, wstrząsy, wibracje, udary. 76

77 Warunki środowiskowe Działanie warunków środowiskowych nie może być wyeliminowane. Możliwe jest jedynie zabezpieczenie wyrobu przed ich wpływem, lub zmniejszenie stwarzanego przez nie zagrożenia. Istnienie warunków środowiskowych jest znacznym utrudnieniem dla konstruktorów. Użytkowanie to wszystkie fazy istnienia urządzenia (działanie, przechowywanie, transport). Warunki środowiskowe podczas pracy mogą różnić się od tych podczas transportu. Np. podczas normalnej pracy telewizory nie podlegają wstrząsom, ale podczas transportu tak. 77

78 Główne narażenia środowiskowe klimatyczne wynikające z oddziaływania naturalnych czynników środowiskowych związanych z określonym makroklimatem. korozyjno-atmosferyczne o charakterze chemicznym (gazy, pyły, mgły), radiacyjne jonizacyjne lub grzejny wpływ promieniowania, biotyczne organizmy żywe (inne niż ludzie), mechaniczne siły statyczne i dynamiczne, antropogenne powodowane działalnością i obecnością ludzi w środowisku. 78

79 Temperatura otoczenia Elementy elektroniczne część energii zamieniają na ciepło, przez co ich temperatura różni się od temperatury otoczenia. Temperatura elementu (przy stałej mocy wydzielanej) zależy od: intensywności wymiany ciepła, obecności innych źródeł ciepła, rozmieszczenia elementów. Dla danych zakresów temperatur otoczenia właściwości mechaniczne i elektryczne wyrobu zmieniają się. Zmiany mogą mieć charakter: odwracalny, trwały, naturalnego starzenia się. 79

80 Temperatura otoczenia Praktyka wykazuje, że wpływ temperatur od +5 C do +35 C nie ma większego znaczenia technicznego. Temperatury wyższe od +40 C przyspieszają starzenie elementów, wprowadzają zniekształcenia elementów termoplastycznych, powodują wyciekanie mas zalewowych, wysychanie elektrolitów i pękanie malarskich powłok ochronnych. Niskie temperatury powodują pogorszenie właściwości mechanicznych (wytrzymałość, sprężystość). Wykraplanie i wymrażanie pary wodnej powoduje trwałe zmiany mechaniczne i elektryczne. Technicznie ważne są zmiany temperatur otoczenia większe niż 20K. Głównymi skutkami zmian temperatur są naprężenia. 80

81 Wilgotność powietrza W większości przypadków bardziej przydatną w ocenie technicznego znaczenia wilgotności powietrza jest jego wilgotność względna, wskazująca procentowy stosunek aktualnej zawartości pary wodnej w powietrzu o danej temperaturze i ciśnieniu do zawartości pary wodnej w stanie nasycenia. Duża wilgotność (ponad 85%) przy temp. wyższych niż 27 C jest krytycznym narażeniem. Woda osadzona na elementach zmniejsza rezystancję powierzchni materiałów izolacyjnych. Powoduje znaczne przyspieszenie korozji. Wnikanie wody kondensacyjnej w głąb materiałów powoduje ogólne pogorszenie parametrów urządzenia. Mała wilgotność (poniżej 35%) powoduje wysychanie materiałów oraz wzrost ich kruchości. 81

82 Ciśnienie atmosferyczne Znaczenie techniczne ma przede wszystkim obniżone ciśnienie powietrza. Dotyczy to zwykle wyrobów przeznaczonych do pracy w samolotach lub urządzeniach wysokogórskich. Obniżone ciśnienie jest przyczyną zmniejszenia elektrycznej wytrzymałości napięciowej powierzchni elementu oraz wzrostu temperatury urządzenia w wyniku zmniejszonej intensywności chłodzenia powietrzem o małej gęstości. Podwyższone ciśnienie występuje bardzo rzadko i jest uwzględniane tylko w specjalnych przypadkach. 82

83 Zanieczyszczenie atmosfery Najczęściej występujące zanieczyszczenia atmosfery to: gazy, pyły sól morska oraz piaski. Największe zagrożenie stwarzają tlenki siarki łatwo łączące się z wodą. Woda kondensacyjna na powierzchni elementów zostaje zakwaszona i dochodzi do intensywnych procesów korozyjnych. Osadzanie kropel wody lub mgły morskiej powoduje zagrożenia podobne do tlenków siarki. Pyły i piasek tworzą warstwy utrudniające oddawanie ciepła, akumulują wilgoć i umożliwiają rozwój grzybów i bakterii. wnikając pomiędzy powierzchnie trące utrudniają ruch i przyspieszają zużycie elementów. 83

84 Narażenia radiacyjne Źródłem narażeń radiacyjnych jest promieniowanie słoneczne i jonizujące. Łatwo zauważalnym skutkiem promieniowania słonecznego jest wzrost temperatury elementu poddanego promieniowaniu w zakresie podczerwieni. Promieniowanie w zakresie fioletu i nadfioletu powoduje przyspieszenie starzenia się elementów konstrukcyjnych (głównie z tworzyw sztucznych). Głównym źródłem promieniowania jonizującego jest promieniowanie kosmiczne, oraz urządzenia wykorzystujące izotopy promieniotwórcze, oraz reaktory atomowe. Stopień oddziaływania promieniowania jonizującego jest zależny od energii cząstek lub kwantów jego dawki. Najbardziej wrażliwe są elementy półprzewodnikowe. Pod wpływem tego promieniowania w materiale półprzewodnikowym następuje generacja dodatkowych nośników ładunków i pojawienie się przypadkowych sygnałów. 84

85 Narażenia biotyczne Podstawowym narażeniem biotycznym jest rozwój grzybów pleśniowych (akumulowanie wody i przyspieszenie korozji). Duże stężenie kwasów organicznych jest wydzielanych przez pleśń jest przyczyną uszkodzeń nie tylko powierzchni metalowych, ale nawet szklanych. Najczęściej stosowanym sposobem ochrony przed pleśniami jest stosowanie szczelnej obudowy oraz elementów nie zawierających pożywki dla pleśni. 85

86 Narażenia mechaniczne Obecnie brak jest ogólnie przyjętych przebiegów narażeń mechanicznych dla urządzeń elektronicznych. Jednak narażenia mechaniczne są na tyle groźne, że muszą być uwzględnione w badaniach technicznych wyrobów. Badania przewidują sprawdzenie na działanie następujących przyspieszeń: stałych (siły odśrodkowe, starty, lądowania), impulsowe (udary, upadki transportowe, wstrząsy w wyniku ruchu środków transportu), przemienne (wibracje od innych urządzeń). 86

87 Narażenia mechaniczne Bezpośrednim skutkiem działania przyspieszeń są naprężenia materiałów konstrukcyjnych. Naprężenia wywołują zjawiska zmęczeniowe w materiałach, a po przekroczeniu określonej wartości powodują odkształcenia elementów, przesunięcia elementów oraz pęknięcia. Skutki przyspieszeń zależą w dużej mierze od właściwości mechanicznych elementu, oraz okresu drgań swbodnych. 87

88 Narażenia antropogenne Działalność człowieka jest dodatkowym źródłem narażeń elementów. Największe znacznie mają narażenia montażowe, spowodowane czynnikami produkcyjnymi, kontrolnymi lub naprawami. Równie znaczące są narażenia spowodowane normalną obsługą elementów manipulacyjnych i strojeniowych. 88

89 Niektóre narażenia środowiskowe - normy 89

90 Niezawodność urządzeń elektronicznych Cechą każdego podzespołu lub elementu elektronicznego, wykorzystywanego w sposób zgodny z jego przeznaczeniem, jest możliwość samoistnego uszkodzenia. Uszkodzenia te są przyczynami utraty właściwości funkcjonalnych całego urządzenia. Uszkodzenia te mają charakter losowy, stąd analiza bezawaryjnej pracy (niezawodności) złożonych systemów posługuje się rachunkiem prawdopodobieństwa i metodami statystycznymi. Niezawodność jest prawdopodobieństwem pracy bez uszkodzenia wyrobu elektronicznego, użytkowanego w określonych warunkach i przez określony czas. Przy podawaniu liczby charakteryzującej niezawodność należy zatem podaćśrodowisko i czas pracy urządzenia, dla których określono niezawodność. 90

91 Niezawodność urządzeń elektronicznych Zgodnie z częstościową interpretacją prawdopodobieństwa niezawodność wyraża się wzorem: R( t) = lim N N liczba użytkowanych wyrobów, n( t) N n(t) liczba wyrobów, które uległy uszkodzeniu do czasu t, N Urządzenia elektroniczne składają się z dużej liczby elementów oraz różnych rodzajów podzespołów. Elementy elektroniczne zbudowane są z różnych materiałów i zawierają wiele połączeń. Przyczyny połączeń są różnorodne, a uszkodzenia rozkładają się w czasie prawie równomiernie. 91

92 Intensywność uszkodzeń Wartość intensywności uszkodzeń elementów i podzespołów jest określona przez ich producentów i podawana jest wraz z opisem środowiska, w którym była badana. Jednostką intensywności uszkodzeń jest względna liczba uszkodzeń na godzinę, przy czym zwykle podaje się jej wartość jako wielokrotność Typowe wartości intensywności uszkodzeń dla wybranych elementów rodzaj elementu połączenia lutowane kondensatory rezystory tranzystory krzemowe λ x h 0,01 0,1-2 0,02-0,05 0,08-0,8 92

93 Rzeczywiste charakterystyki niezawodności Modele matematyczne procesu pojawiania się uszkodzeń są słuszne jedynie w pewnej części okresu istnienia urządzenia. W początkowym okresie eksploatacji ujawniają się ukryte wady montażu, materiałów, elementów oraz zła jakość kontroli. W tym okresie (okres adaptacji) uszkodzenia występują znacznie częściej niż to wynika z danych dotyczących niezawodności podzespołów. W miarę upływu czasu intensywność uszkodzeń maleje i ustala się na stałym poziomie. Występują wtedy jedynie przypadkowe uszkodzenia. Wzrost intensywności uszkodzeń następuje po czasie t g i jest spowodowany procesami starzenia się elementów elektronicznych i zużycia części mechanicznych. 93

94 Rzeczywiste charakterystyki niezawodności 94

METODYKA PROJEKTOWANIA I TECHNIKA REALIZACJI. Wykład pierwszy Cele projektowania i kolejne etapy cyklu projektowoprodukcyjnego

METODYKA PROJEKTOWANIA I TECHNIKA REALIZACJI. Wykład pierwszy Cele projektowania i kolejne etapy cyklu projektowoprodukcyjnego METODYKA PROJEKTOWANIA I TECHNIKA REALIZACJI Wykład pierwszy Cele projektowania i kolejne etapy cyklu projektowoprodukcyjnego Zasady projektowania uwzględniające wymogi produkcji Design For Manufacture

Bardziej szczegółowo

METODYKA PROJEKTOWANIA I TECHNIKA REALIZACJI. Wykład drugi Normy techniczne polskie i europejskie Regulacje prawne

METODYKA PROJEKTOWANIA I TECHNIKA REALIZACJI. Wykład drugi Normy techniczne polskie i europejskie Regulacje prawne METODYKA PROJEKTOWANIA I TECHNIKA REALIZACJI Wykład drugi Normy techniczne polskie i europejskie Regulacje prawne Czy należy stosować się do norm technicznych? Stosowanie w procesie projektowania i wytwarzania

Bardziej szczegółowo

Ćwiczenia nr 6: PROJEKT ELEKTROMECHANICZNY I BADANIE CIEPLNE URZĄDZENIA ELEKTRONICZNEGO

Ćwiczenia nr 6: PROJEKT ELEKTROMECHANICZNY I BADANIE CIEPLNE URZĄDZENIA ELEKTRONICZNEGO INSTYTUT SYSTEMÓW ELEKTRONICZNYCH WEL WAT ZAKŁAD EKSPLOATACJI SYSTEMÓW ELEKTRONICZNYCH Ćwiczenia nr 6: PROJEKT ELEKTROMECHANICZNY I BADANIE CIEPLNE URZĄDZENIA ELEKTRONICZNEGO MODUŁ 1 PROJEKT ELEKTROMECHANICZNY

Bardziej szczegółowo

ZAKŁADANE EFEKTY KSZTAŁCENIA Kierunek: Inżynieria Materiałowa Studia I stopnia

ZAKŁADANE EFEKTY KSZTAŁCENIA Kierunek: Inżynieria Materiałowa Studia I stopnia ZAKŁADANE EFEKTY KSZTAŁCENIA Kierunek: Inżynieria Materiałowa Studia I stopnia Tabela odniesień efektów kierunkowych do efektów obszarowych Odniesienie do Symbol Kierunkowe efekty kształcenia efektów kształcenia

Bardziej szczegółowo

Odniesienie do obszarowych efektów kształcenia 1 2 3. Kierunkowe efekty kształcenia WIEDZA (W)

Odniesienie do obszarowych efektów kształcenia 1 2 3. Kierunkowe efekty kształcenia WIEDZA (W) EFEKTY KSZTAŁCENIA NA KIERUNKU "MECHATRONIKA" nazwa kierunku studiów: Mechatronika poziom kształcenia: studia pierwszego stopnia profil kształcenia: ogólnoakademicki symbol kierunkowych efektów kształcenia

Bardziej szczegółowo

Niezawodność elementów i systemów. Sem. 8 Komputerowe Systemy Elektroniczne, 2009/2010 1

Niezawodność elementów i systemów. Sem. 8 Komputerowe Systemy Elektroniczne, 2009/2010 1 Niezawodność elementów i systemów Sem. 8 Komputerowe Systemy Elektroniczne, 2009/2010 1 Niezawodność wyrobu (obiektu) to spełnienie wymaganych funkcji w określonych warunkach w ustalonym czasie Niezawodność

Bardziej szczegółowo

Podstawy diagnostyki środków transportu

Podstawy diagnostyki środków transportu Podstawy diagnostyki środków transportu Diagnostyka techniczna Termin "diagnostyka" pochodzi z języka greckiego, gdzie diagnosis rozróżnianie, osądzanie. Ukształtowana już w obrębie nauk eksploatacyjnych

Bardziej szczegółowo

Efekty kształcenia dla kierunku Mechanika i budowa maszyn

Efekty kształcenia dla kierunku Mechanika i budowa maszyn Załącznik nr 18 do Uchwały Nr 673 Senatu UWM w Olsztynie z dnia 6 marca 2015 roku w sprawie zmiany Uchwały Nr 187 Senatu UWM w Olsztynie z dnia 26 marca 2013 roku zmieniającej Uchwałę Nr 916 Senatu UWM

Bardziej szczegółowo

WYDZIAŁ TRANSPORTU I INFORMATYKI MECHANIKA I BUDOWA MASZYN I STOPIEŃ PRAKTYCZNY

WYDZIAŁ TRANSPORTU I INFORMATYKI MECHANIKA I BUDOWA MASZYN I STOPIEŃ PRAKTYCZNY WYDZIAŁ TRANSPORTU I INFORMATYKI Nazwa kierunku Poziom Profil Symbole efektów na kierunku K_W01 K _W 02 K _W03 K _W04 K _W05 K _W06 MECHANIKA I BUDOWA MASZYN I STOPIEŃ PRAKTYCZNY Efekty - opis słowny Po

Bardziej szczegółowo

JAKOŚCI W RÓŻNYCH FAZACH I ŻYCIA PRODUKTU

JAKOŚCI W RÓŻNYCH FAZACH I ŻYCIA PRODUKTU Wykład 6. SYSTEMY ZAPEWNIANIA JAKOŚCI W RÓŻNYCH FAZACH CYKLU WYTWARZANIA I ŻYCIA PRODUKTU 1 1. Ogólna charakterystyka systemów zapewniania jakości w organizacji: Zapewnienie jakości to systematyczne działania

Bardziej szczegółowo

Moduł Z9 Praktyka zawodowa

Moduł Z9 Praktyka zawodowa Moduł 311408.Z9 Praktyka zawodowa Jednostka modułowa 311408.Z9.01 Prace przy montażu, instalowaniu i uruchamianiu urządzeń elektronicznych* 1. Uszczegółowione efekty kształcenia Uczeń po zrealizowaniu

Bardziej szczegółowo

SCENARIUSZ LEKCJI. Streszczenie. Czas realizacji. Podstawa programowa

SCENARIUSZ LEKCJI. Streszczenie. Czas realizacji. Podstawa programowa Autorzy scenariusza: SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH

Bardziej szczegółowo

Efekty kształcenia. Tabela efektów kształcenia

Efekty kształcenia. Tabela efektów kształcenia Efekty kształcenia Tabela efektów kształcenia W opisie efektów kierunkowych uwzględniono wszystkie efekty kształcenia występujące w obszarze kształcenia w zakresie nauk technicznych. Objaśnienie oznaczeń:

Bardziej szczegółowo

ruchem kolejowym przydatną w rozwiązywaniu złożonych zadań.

ruchem kolejowym przydatną w rozwiązywaniu złożonych zadań. Efekty uczenia się (poprzednio: efekty ) dla studiów drugiego stopnia profil ogólnoakademicki na kierunku Budowa i Eksploatacja nfrastruktury Transportu Szynowego Wydział nżynierii Lądowej i Wydział Transportu

Bardziej szczegółowo

Księgarnia PWN: Kazimierz Szatkowski - Przygotowanie produkcji. Spis treści

Księgarnia PWN: Kazimierz Szatkowski - Przygotowanie produkcji. Spis treści Księgarnia PWN: Kazimierz Szatkowski - Przygotowanie produkcji Spis treści Wstęp... 11 część I. Techniczne przygotowanie produkcji, jego rola i miejsce w przygotowaniu produkcji ROZDZIAŁ 1. Rola i miejsce

Bardziej szczegółowo

ZAKŁADANE EFEKTY KSZTAŁCENIA Kierunek: Budownictwo Studia I stopnia

ZAKŁADANE EFEKTY KSZTAŁCENIA Kierunek: Budownictwo Studia I stopnia Symbol BD1A_W01 BD1A_W02 BD1A_W03 BD1A_W04 BD1A_W05 BD1A_W06 BD1A_W07 BD1A_W08 ZAKŁADANE EFEKTY KSZTAŁCENIA Kierunek: Budownictwo Studia I stopnia Tabela odniesień efektów kierunkowych do efektów obszarowych

Bardziej szczegółowo

Efekt kształcenia. Wiedza

Efekt kształcenia. Wiedza Efekty dla studiów drugiego stopnia profil ogólnoakademicki na kierunku Informatyka na specjalności Przetwarzanie i analiza danych, na Wydziale Matematyki i Nauk Informacyjnych, gdzie: * Odniesienie oznacza

Bardziej szczegółowo

Spis treści Przedmowa

Spis treści Przedmowa Spis treści Przedmowa 1. Wprowadzenie do problematyki konstruowania - Marek Dietrich (p. 1.1, 1.2), Włodzimierz Ozimowski (p. 1.3 -i-1.7), Jacek Stupnicki (p. l.8) 1.1. Proces konstruowania 1.2. Kryteria

Bardziej szczegółowo

KIERUNKOWE EFEKTY KSZTAŁCENIA

KIERUNKOWE EFEKTY KSZTAŁCENIA WYDZIAŁ INFORMATYKI I ZARZĄDZANIA Kierunek studiów: INFORMATYKA Stopień studiów: STUDIA II STOPNIA Obszar Wiedzy/Kształcenia: OBSZAR NAUK TECHNICZNYCH Obszar nauki: DZIEDZINA NAUK TECHNICZNYCH Dyscyplina

Bardziej szczegółowo

Etapy życia oprogramowania

Etapy życia oprogramowania Modele cyklu życia projektu informatycznego Organizacja i Zarządzanie Projektem Informatycznym Jarosław Francik marzec 23 w prezentacji wykorzystano również materiały przygotowane przez Michała Kolano

Bardziej szczegółowo

Metodyka projektowania komputerowych systemów sterowania

Metodyka projektowania komputerowych systemów sterowania Metodyka projektowania komputerowych systemów sterowania Andrzej URBANIAK Metodyka projektowania KSS (1) 1 Projektowanie KSS Analiza wymagań Opracowanie sprzętu Projektowanie systemu Opracowanie oprogramowania

Bardziej szczegółowo

EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW ENERGETYKA

EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW ENERGETYKA Załącznik do uchwały Nr 000-8/4/2012 Senatu PRad. z dnia 28.06.2012r. EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW ENERGETYKA Nazwa wydziału: Mechaniczny Obszar kształcenia w zakresie: Nauk technicznych Dziedzina

Bardziej szczegółowo

Efekty kształcenia dla kierunku studiów informatyka i agroinżynieria i ich odniesienie do efektów obszarowych

Efekty kształcenia dla kierunku studiów informatyka i agroinżynieria i ich odniesienie do efektów obszarowych Załącznik do uchwały nr 376/2012 Senatu UP Efekty kształcenia dla kierunku studiów informatyka i agroinżynieria i ich odniesienie do efektów obszarowych Wydział prowadzący kierunek: Wydział Rolnictwa i

Bardziej szczegółowo

Etapy życia oprogramowania. Modele cyklu życia projektu. Etapy życia oprogramowania. Etapy życia oprogramowania

Etapy życia oprogramowania. Modele cyklu życia projektu. Etapy życia oprogramowania. Etapy życia oprogramowania Etapy życia oprogramowania Modele cyklu życia projektu informatycznego Organizacja i Zarządzanie Projektem Informatycznym Jarosław Francik marzec 23 Określenie wymagań Testowanie Pielęgnacja Faza strategiczna

Bardziej szczegółowo

TRWAŁOŚĆ ŻYWNOŚCI JAKO DETERMINANTA W PROJEKTOWANIU OPAKOWAŃ. Dr inż. Agnieszka Cholewa-Wójcik

TRWAŁOŚĆ ŻYWNOŚCI JAKO DETERMINANTA W PROJEKTOWANIU OPAKOWAŃ. Dr inż. Agnieszka Cholewa-Wójcik TRWAŁOŚĆ ŻYWNOŚCI JAKO DETERMINANTA W PROJEKTOWANIU OPAKOWAŃ Dr inż. Agnieszka Cholewa-Wójcik Poznań, 26.09.2017 Wprowadzenie Dynamiczny rozwój rynku produktów żywnościowych wpływa na wzrost zainteresowania

Bardziej szczegółowo

Wspomaganie projektowania maszyn i urządzeń przeznaczonych do pracy w strefach zagrożonych wybuchem

Wspomaganie projektowania maszyn i urządzeń przeznaczonych do pracy w strefach zagrożonych wybuchem CENTRUM MECHANIZACJI GÓRNICTWA WKP_1/1.4.4/1/2006/13/13/636/2007/U: Narzędzia metodyczne wspierające ocenę ryzyka w procesie projektowania maszyn Wspomaganie projektowania maszyn i urządzeń przeznaczonych

Bardziej szczegółowo

Technik mechanik 311504

Technik mechanik 311504 Technik mechanik 311504 Absolwent szkoły kształcącej w zawodzie technik mechanik powinien być przygotowany do wykonywania następujących zadań zawodowych: 1) wytwarzania części maszyn i urządzeń; 2) dokonywania

Bardziej szczegółowo

Katalog rozwiązań informatycznych dla firm produkcyjnych

Katalog rozwiązań informatycznych dla firm produkcyjnych Katalog rozwiązań informatycznych dla firm produkcyjnych www.streamsoft.pl Obserwować, poszukiwać, zmieniać produkcję w celu uzyskania największej efektywności. Jednym słowem być jak Taiichi Ohno, dyrektor

Bardziej szczegółowo

Tabela efektów kształcenia. Kształcenie zawodowe teoretyczne

Tabela efektów kształcenia. Kształcenie zawodowe teoretyczne Tabela efektów kształcenia Nazwa przedmiotu / pracowni Podstawy konstrukcji maszyn Tabela przyporządkowania poszczególnym przedmiotom efektów kształcenia dla zawodu : technik pojazdów samochodowych ; symbol:

Bardziej szczegółowo

Spis treści. Przedmowa 11

Spis treści. Przedmowa 11 Podstawy konstrukcji maszyn. T. 1 / autorzy: Marek Dietrich, Stanisław Kocańda, Bohdan Korytkowski, Włodzimierz Ozimowski, Jacek Stupnicki, Tadeusz Szopa ; pod redakcją Marka Dietricha. wyd. 3, 2 dodr.

Bardziej szczegółowo

Transformacja wiedzy w budowie i eksploatacji maszyn

Transformacja wiedzy w budowie i eksploatacji maszyn Uniwersytet Technologiczno Przyrodniczy im. Jana i Jędrzeja Śniadeckich w Bydgoszczy Wydział Mechaniczny Transformacja wiedzy w budowie i eksploatacji maszyn Bogdan ŻÓŁTOWSKI W pracy przedstawiono proces

Bardziej szczegółowo

DZIENNIK STAŻU. Imię i nazwisko Stażysty. Przyjmujący na Staż. Imię i nazwisko Opiekuna Stażu

DZIENNIK STAŻU. Imię i nazwisko Stażysty. Przyjmujący na Staż. Imię i nazwisko Opiekuna Stażu Załącznik nr 4 do Regulaminu Projektu DZIENNIK STAŻU Przyjmujący na Staż Imię i nazwisko Opiekuna Stażu. Termin odbywania Stażu (dd/mm/rr dd/mm/rr) Podpis Opiekuna Stażysty Podpis Kierownika Projektu DZIENNIK

Bardziej szczegółowo

DZIENNIK STAŻU. Imię i nazwisko Stażysty. Przyjmujący na Staż. Imię i nazwisko Opiekuna Stażu

DZIENNIK STAŻU. Imię i nazwisko Stażysty. Przyjmujący na Staż. Imię i nazwisko Opiekuna Stażu Załącznik nr 4 do Regulaminu Projektu DZIENNIK STAŻU Imię i nazwisko Stażysty Przyjmujący na Staż Imię i nazwisko Opiekuna Stażu. Termin odbywania Stażu (dd/mm/rr dd/mm/rr) Podpis Opiekuna Stażysty Podpis

Bardziej szczegółowo

Uniwersytet Rolniczy w Krakowie Wydział Inżynierii Produkcji i Energetyki

Uniwersytet Rolniczy w Krakowie Wydział Inżynierii Produkcji i Energetyki Uniwersytet Rolniczy w Krakowie Wydział Inżynierii Produkcji i Energetyki Efekty dla programu : Kierunek: Odnawialne źródła energii i gospodarka odpadami Specjalności: Stopień : studia II stopnia Profil

Bardziej szczegółowo

X SPOTKANIE EKSPERCKIE. System ocen pracowniczych metodą 360 stopni

X SPOTKANIE EKSPERCKIE. System ocen pracowniczych metodą 360 stopni X SPOTKANIE EKSPERCKIE System ocen pracowniczych metodą 360 stopni Warszawa, 16.09.2011 Ocena wieloźródłowa od koncepcji do rezultatów badania dr Anna Bugalska Najlepsze praktyki Instytutu Rozwoju Biznesu

Bardziej szczegółowo

Sposób wykorzystywania świadectw wzorcowania do ustalania okresów między wzorcowaniami

Sposób wykorzystywania świadectw wzorcowania do ustalania okresów między wzorcowaniami EuroLab 2010 Warszawa 3.03.2010 r. Sposób wykorzystywania świadectw wzorcowania do ustalania okresów między wzorcowaniami Ryszard Malesa Polskie Centrum Akredytacji Kierownik Działu Akredytacji Laboratoriów

Bardziej szczegółowo

Opracowywanie harmonogramów na budowie.

Opracowywanie harmonogramów na budowie. Piotr Jermołowicz Inżynieria Środowiska Opracowywanie harmonogramów na budowie. Przebieg przedsięwzięć budowlanych zależy przede wszystkim od przyjętych rozwiązań technologiczno-organizacyjnych oraz sprawności

Bardziej szczegółowo

KIERUNKOWE EFEKTY KSZTAŁCENIA

KIERUNKOWE EFEKTY KSZTAŁCENIA KIERUNKOWE EFEKTY KSZTAŁCENIA WYDZIAŁ INFORMATYKI I ZARZĄDZANIA Kierunek studiów: INFORMATYKA Stopień studiów: STUDIA II STOPNIA Obszar Wiedzy/Kształcenia: OBSZAR NAUK TECHNICZNYCH Obszar nauki: DZIEDZINA

Bardziej szczegółowo

Uchwała Senatu Uniwersytetu Kazimierza Wielkiego. Nr 147/2012/2013. z dnia 8 lipca 2013 r.

Uchwała Senatu Uniwersytetu Kazimierza Wielkiego. Nr 147/2012/2013. z dnia 8 lipca 2013 r. Uchwała Senatu Uniwersytetu Kazimierza Wielkiego Nr 147/2012/2013 z dnia 8 lipca 2013 r. w sprawie utworzenia kierunku studiów na Wydziale Matematyki, Fizyki i Techniki i określenia efektów dla kierunku

Bardziej szczegółowo

PODSTAWY FUNKCJONOWANIA PRZEDSIĘBIORSTW

PODSTAWY FUNKCJONOWANIA PRZEDSIĘBIORSTW PODSTAWY FUNKCJONOWANIA PRZEDSIĘBIORSTW Część 4. mgr Michał AMBROZIAK Wydział Zarządzania Uniwersytet Warszawski Warszawa, 2007 Prawa autorskie zastrzeżone. Niniejszego opracowania nie wolno kopiować ani

Bardziej szczegółowo

Kierunkowe efekty kształcenia wraz z odniesieniem do efektów obszarowych. Energetyka studia I stopnia

Kierunkowe efekty kształcenia wraz z odniesieniem do efektów obszarowych. Energetyka studia I stopnia Załącznik 3 do uchwały nr /d/05/2012 Wydział Mechaniczny PK Kierunkowe efekty kształcenia wraz z odniesieniem do efektów Kierunek: Energetyka studia I stopnia Lista efektów z odniesieniem do efektów Kierunek:

Bardziej szczegółowo

Fideltronik świadczy pełny zakres usług związanych z kontraktowym projektowaniem i produkcją pakietów i urządzeń elektrycznych i elektronicznych

Fideltronik świadczy pełny zakres usług związanych z kontraktowym projektowaniem i produkcją pakietów i urządzeń elektrycznych i elektronicznych PREZENTACJA FIRMY Fideltronik świadczy pełny zakres usług związanych z kontraktowym projektowaniem i produkcją pakietów i urządzeń elektrycznych i elektronicznych ZASOBY: - Zakład produkcyjny w Suchej

Bardziej szczegółowo

Uniwersytet Rolniczy w Krakowie Wydział Inżynierii Produkcji i Energetyki

Uniwersytet Rolniczy w Krakowie Wydział Inżynierii Produkcji i Energetyki Uniwersytet Rolniczy w Krakowie Wydział Inżynierii Produkcji i Energetyki Efekty dla programu : Kierunek: Zarządzanie i inżynieria produkcji Specjalności: Inżynieria produkcji surowcowej, Infrastruktura

Bardziej szczegółowo

DZIENNIK PRAKTYK STUDENCKICH

DZIENNIK PRAKTYK STUDENCKICH DZIENNIK PRAKTYK STUDENCKICH PRAKTYKA PRZEMYSŁOWA semestr II Imię i nazwisko studenta... kierunek studiów: AUTOMATYKA I ROBOTYKA nabór 2017-2021 miejsce realizowania praktyki... opiekun praktyki z ramienia

Bardziej szczegółowo

Kierunkowe efekty kształcenia wraz z odniesieniem do efektów obszarowych. Ochrona środowiska studia I stopnia

Kierunkowe efekty kształcenia wraz z odniesieniem do efektów obszarowych. Ochrona środowiska studia I stopnia Załącznik 5 do uchwały nr 34/d/05/2012 Wydział Inżynierii Środowiska PK Kierunkowe efekty kształcenia wraz z odniesieniem do efektów Kierunek: Ochrona środowiska studia I stopnia Lista efektów z odniesieniem

Bardziej szczegółowo

Walidacja metod analitycznych Raport z walidacji

Walidacja metod analitycznych Raport z walidacji Walidacja metod analitycznych Raport z walidacji Małgorzata Jakubowska Katedra Chemii Analitycznej WIMiC AGH Walidacja metod analitycznych (według ISO) to proces ustalania parametrów charakteryzujących

Bardziej szczegółowo

Zarządzanie i inżynieria jakości / Adam Hamrol. Warszawa, Spis treści

Zarządzanie i inżynieria jakości / Adam Hamrol. Warszawa, Spis treści Zarządzanie i inżynieria jakości / Adam Hamrol. Warszawa, 2017 Spis treści Wprowadzenie 11 1. O inżynierii jakości i zarządzaniu jakością 11 2. Zakres i układ książki 14 3. Komentarz terminologiczny 17

Bardziej szczegółowo

PLANOWANE EFEKTY KSZTAŁCENIA DLA KIERUNKU Inżynieria Biomedyczna

PLANOWANE EFEKTY KSZTAŁCENIA DLA KIERUNKU Inżynieria Biomedyczna PLANOWANE EFEKTY KSZTAŁCENIA DLA KIERUNKU Jednostka prowadząca kierunek studiów Nazwa kierunku studiów Specjalności Obszar kształcenia Profil kształcenia Poziom kształcenia Forma kształcenia Tytuł zawodowy

Bardziej szczegółowo

PRZEDMIOTOWE ZASADY OCENIANIA

PRZEDMIOTOWE ZASADY OCENIANIA PRZEDMIOTOWE ZASADY OCENIANIA dostosowane do specyfiki przedmiotu opracowane na podstawie: - Rozporządzenia MEN z 10 czerwca 2015 r. Dz.U.2015.poz.843 w sprawie szczegółowych warunków i sposobu oceniania,

Bardziej szczegółowo

Maciej Oleksy Zenon Matuszyk

Maciej Oleksy Zenon Matuszyk Maciej Oleksy Zenon Matuszyk Jest to proces związany z wytwarzaniem oprogramowania. Jest on jednym z procesów kontroli jakości oprogramowania. Weryfikacja oprogramowania - testowanie zgodności systemu

Bardziej szczegółowo

Umiejscowienie kierunku w obszarze kształcenia

Umiejscowienie kierunku w obszarze kształcenia Efekty kształcenia dla kierunku studiów Inżynieria bezpieczeństwa 1 studia pierwszego stopnia A profil ogólnoakademicki specjalność Inżynieria Ochrony i Zarządzanie Kryzysowe (IOZK) Umiejscowienie kierunku

Bardziej szczegółowo

Wstęp do zarządzania projektami

Wstęp do zarządzania projektami Wstęp do zarządzania projektami Definicja projektu Projekt to tymczasowe przedsięwzięcie podejmowane w celu wytworzenia unikalnego wyrobu, dostarczenia unikalnej usługi lub uzyskania unikalnego rezultatu.

Bardziej szczegółowo

Podstawowe zasady projektowania w technice

Podstawowe zasady projektowania w technice Podstawowe zasady projektowania w technice Projektowanie w technice jest działalnością twórczą z określonym udziałem prac rutynowych i moŝe dotyczyć głównie nowych i modernizowanych: produktów (wyrobów

Bardziej szczegółowo

Model Matematyczny Call Center

Model Matematyczny Call Center OFERTA SZKOLENIOWA Model Matematyczny Call Center TELEAKADEMIA to profesjonalne centrum szkoleniowe mające swoją siedzibę w Pomorskim Parku Naukowo-Technologicznym w Gdyni. TELEAKADEMIA realizuje szkolenia

Bardziej szczegółowo

Techniki CAx. dr inż. Michał Michna. Politechnika Gdańska

Techniki CAx. dr inż. Michał Michna. Politechnika Gdańska Techniki CAx dr inż. Michał Michna 1 Komputerowe techniki wspomagania projektowania 2 Techniki Cax - projektowanie Projektowanie złożona działalność inżynierska, w której przenikają się doświadczenie inżynierskie,

Bardziej szczegółowo

POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY PROJEKT DYPLOMOWY INŻYNIERSKI

POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY PROJEKT DYPLOMOWY INŻYNIERSKI Forma studiów: stacjonarne Kierunek studiów: ZiIP Specjalność/Profil: Zarządzanie Jakością i Informatyczne Systemy Produkcji Katedra: Technologii Maszyn i Automatyzacji Produkcji Badania termowizyjne nagrzewania

Bardziej szczegółowo

Efekty kształcenia dla makrokierunku: INFORMATYKA STOSOWANA Z KOMPUTEROWĄ NAUKĄ O MATERIAŁACH Wydział: MECHANICZNY TECHNOLOGICZNY

Efekty kształcenia dla makrokierunku: INFORMATYKA STOSOWANA Z KOMPUTEROWĄ NAUKĄ O MATERIAŁACH Wydział: MECHANICZNY TECHNOLOGICZNY Efekty kształcenia dla makrokierunku: INFORMATYKA STOSOWANA Z KOMPUTEROWĄ NAUKĄ O MATERIAŁACH Wydział: MECHANICZNY TECHNOLOGICZNY nazwa kierunku studiów: Makrokierunek: Informatyka stosowana z komputerową

Bardziej szczegółowo

Efekty kształcenia dla kierunku inżynieria środowiska

Efekty kształcenia dla kierunku inżynieria środowiska Efekty kształcenia dla kierunku inżynieria Szkoła wyższa prowadząca kierunek studiów: Kierunek studiów: Poziom kształcenia: Profil kształcenia: Umiejscowienie kierunku w obszarze kształcenia w zakresie:

Bardziej szczegółowo

Załącznik nr 1a ZAKŁADANE EFEKTY KSZTAŁCENIA DLA KIERUNKU

Załącznik nr 1a ZAKŁADANE EFEKTY KSZTAŁCENIA DLA KIERUNKU Załącznik nr 1a ZAKŁADANE EFEKTY KSZTAŁCENIA DLA KIERUNKU I N Ż Y N I E R I A B I O M E D Y C Z N A Jednostka prowadząca kierunek studiów Nazwa kierunku studiów Specjalności Obszar kształcenia Profil kształcenia

Bardziej szczegółowo

1. Tabela odniesień efektów kierunkowych do efektów obszarowych z komentarzami. Efekty kształcenia dla kierunku studiów inżynieria środowiska.

1. Tabela odniesień efektów kierunkowych do efektów obszarowych z komentarzami. Efekty kształcenia dla kierunku studiów inżynieria środowiska. Załącznik nr 3 do uchwały nr 512 Senatu Uniwersytetu Zielonogórskiego z dnia 25 kwietnia 2012 r. w sprawie określenia efektów kształcenia dla kierunków studiów pierwszego i drugiego stopnia prowadzonych

Bardziej szczegółowo

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W KONINIE WYDZIAŁ TECHNICZNY EFEKTY KSZTAŁCENIA. Kierunek studiów INŻYNIERIA ŚRODOWISKA

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W KONINIE WYDZIAŁ TECHNICZNY EFEKTY KSZTAŁCENIA. Kierunek studiów INŻYNIERIA ŚRODOWISKA Zał. nr 2 do uchwały nr 321/V/V/2015Senatu PWSZ w Koninie z dnia 19 maja w sprawie efektów kształcenia dla kierunków studiów w PWSZ w Koninie PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W KONINIE WYDZIAŁ TECHNICZNY

Bardziej szczegółowo

Inżynieria Produkcji

Inżynieria Produkcji Inżynieria Produkcji Literatura 1. Chlebus Edward: Techniki komputerowe CAx w inżynierii produkcji. Wydawnictwo Naukowo-Techniczne, Warszawa 2000. 2. Karpiński Tadeusz: Inżynieria Produkcji. Wydawnictwo

Bardziej szczegółowo

Projektowanie inżynierskie Engineering Design

Projektowanie inżynierskie Engineering Design Załącznik nr 7 do Zarządzenia Rektora nr 10/1 z dnia 1 lutego 01r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu ETI 6/1 Nazwa modułu Projektowanie inżynierskie Engineering Design Nazwa modułu w języku angielskim

Bardziej szczegółowo

RoHS Laminaty Obwód drukowany PCB

RoHS Laminaty Obwód drukowany PCB Mini słownik RoHS Restriction of Hazardous Substances - unijna dyrektywa (2002/95/EC), z 27.01.2003. Nowy sprzęt elektroniczny wprowadzany do obiegu na terenie Unii Europejskiej począwszy od 1 lipca 2006

Bardziej szczegółowo

WYDZIAŁ TRANSPORTU I INFORMATYKI MECHANIKA I BUDOWA MASZYN I STOPIEŃ PRAKTYCZNY

WYDZIAŁ TRANSPORTU I INFORMATYKI MECHANIKA I BUDOWA MASZYN I STOPIEŃ PRAKTYCZNY WYDZIAŁ TRANSPORTU I INFORMATYKI Nazwa kierunku Poziom kształcenia Profil kształcenia Symbole efektów kształcenia na kierunku K_W01 K _W 02 K _W03 MECHANIKA I BUDOWA MASZYN I STOPIEŃ PRAKTYCZNY Efekty

Bardziej szczegółowo

KIERUNKOWE EFEKTY KSZTAŁCENIA

KIERUNKOWE EFEKTY KSZTAŁCENIA Zał. nr 1 do Programu kształcenia KIERUNKOWE EFEKTY KSZTAŁCENIA WYDZIAŁ INFORMATYKI I ZARZĄDZANIA Kierunek studiów: INŻYNIERIA SYSTEMÓW Stopień studiów: STUDIA II STOPNIA Obszar Wiedzy/Kształcenia: OBSZAR

Bardziej szczegółowo

Opis podstawowych modułów

Opis podstawowych modułów Opis podstawowych modułów Ofertowanie: Moduł przeznaczony jest dla działów handlowych, pozwala na rejestrację historii wysłanych ofert i istotnych zdarzeń w kontaktach z kontrahentem. Moduł jest szczególnie

Bardziej szczegółowo

Proces produkcji kabli elektrycznych

Proces produkcji kabli elektrycznych Proces produkcji kabli elektrycznych TOP CABLE Witamy w TOP CABLE. Jesteśmy jednym z największych na świecie producentów przewodów i kabli elektrycznych. VIDEO-BLOG Na tym video-blogu pokażemy jak produkujemy

Bardziej szczegółowo

Efekty kształcenia na kierunku studiów projektowanie mebli i ich odniesienie do efektów obszarowych oraz kompetencji inżynierskich

Efekty kształcenia na kierunku studiów projektowanie mebli i ich odniesienie do efektów obszarowych oraz kompetencji inżynierskich Załącznik nr 1 do uchwały nr 46/2013 Senatu UP Efekty kształcenia na kierunku studiów projektowanie mebli i ich odniesienie do efektów obszarowych oraz kompetencji inżynierskich Wydział prowadzący kierunek:

Bardziej szczegółowo

Efekty kształcenia dla kierunku studiów Zarządzanie i Inżynieria Produkcji po ukończeniu studiów pierwszego stopnia

Efekty kształcenia dla kierunku studiów Zarządzanie i Inżynieria Produkcji po ukończeniu studiów pierwszego stopnia Szczegółowe efekty kształcenia na kierunku Zarządzanie i Inżynieria Produkcji i ich odniesienie do efektów obszarowych nauk rolniczych, leśnych i weterynaryjnych, nauk technicznych oraz nauk społecznych.

Bardziej szczegółowo

Projektowanie przestrzenne. Projektowanie osiedli PN-B-01027:2002P

Projektowanie przestrzenne. Projektowanie osiedli PN-B-01027:2002P 91.020 Projektowanie przestrzenne. Projektowanie osiedli PN-B-01027:2002P Rysunek budowlany - Oznaczenia graficzne stosowane w projektach zagospodarowania działki lub terenu Podano oznaczenia graficzne

Bardziej szczegółowo

Kierunkowe efekty kształcenia wraz z odniesieniem do efektów obszarowych. Budownictwo studia I stopnia

Kierunkowe efekty kształcenia wraz z odniesieniem do efektów obszarowych. Budownictwo studia I stopnia Załącznik 1 do uchwały nr /d/05/2012 Wydział Inżynierii Lądowej PK Kierunkowe efekty kształcenia wraz z odniesieniem do efektów Kierunek: Budownictwo studia I stopnia Lista efektów z odniesieniem do efektów

Bardziej szczegółowo

1. Bezpieczeństwo i higiena pracy, 4. Informatyka w zarządzaniu przedsiębiorstwem, 2. Zarządzanie przedsiębiorstwem i ochrona środowiska,

1. Bezpieczeństwo i higiena pracy, 4. Informatyka w zarządzaniu przedsiębiorstwem, 2. Zarządzanie przedsiębiorstwem i ochrona środowiska, Na kierunku ZARZĄDZANIE I INŻYNIERIA PRODUKCJI oferujemy 4 specjalności: 1. Bezpieczeństwo i higiena pracy, 4. Informatyka w zarządzaniu przedsiębiorstwem, 2. Zarządzanie przedsiębiorstwem i ochrona środowiska,

Bardziej szczegółowo

Szczegółowy opis wszystkich sprawdzanych czynności wraz z poziomem ich wykonania zawiera poniższa tabela.

Szczegółowy opis wszystkich sprawdzanych czynności wraz z poziomem ich wykonania zawiera poniższa tabela. Analiza wyników egzaminu gimnazjalnego w części matematyczno-przyrodniczej z zakresu przedmiotów przyrodniczych przeprowadzonego w roku szkolnym 2012/2013 Arkusz egzaminacyjny z przedmiotów przyrodniczych

Bardziej szczegółowo

ZASADY KONSTRUKCJI APARATURY ELEKTRONICZNEJ

ZASADY KONSTRUKCJI APARATURY ELEKTRONICZNEJ Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej ZASADY KONSTRUKCJI APARATURY ELEKTRONICZNEJ Dr hab. inż. JAN FELBA Profesor nadzwyczajny PWr 1 PROGRAM WYKŁADU Cele i bariery Ogólne

Bardziej szczegółowo

Moduły kształcenia. Efekty kształcenia dla programu kształcenia (kierunku) MK_06 Krystalochemia. MK_01 Chemia fizyczna i jądrowa

Moduły kształcenia. Efekty kształcenia dla programu kształcenia (kierunku) MK_06 Krystalochemia. MK_01 Chemia fizyczna i jądrowa Matryca efektów kształcenia określa relacje między efektami kształcenia zdefiniowanymi dla programu kształcenia (efektami kierunkowymi) i efektami kształcenia zdefiniowanymi dla poszczególnych modułów

Bardziej szczegółowo

Darmowy fragment www.bezkartek.pl

Darmowy fragment www.bezkartek.pl Wszelkie prawa zastrzeżone. Rozpowszechnianie całości lub fragmentów niniejszej publikacji w jakiejkolwiek postaci bez zgody wydawcy zabronione. Autor oraz wydawca dołożyli wszelkich starań aby zawarte

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Komputerowe wspomaganie materiałów Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy na kierunku Mechatronika Rodzaj zajęć: Wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU

Bardziej szczegółowo

EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW BUDOWNICTWO STUDIA PIERWSZEGO STOPNIA PROFIL OGÓLNOAKADEMICKI

EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW BUDOWNICTWO STUDIA PIERWSZEGO STOPNIA PROFIL OGÓLNOAKADEMICKI UCZELNIA TECHNICZNO-HANDLOWA IM. H. CHODKOWSKIEJ WYDZIAŁ IŻYNIERYJNY Warszawa, rok 2014 EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW BUDOWNICTWO STUDIA PIERWSZEGO STOPNIA PROFIL OGÓLNOAKADEMICKI Objaśnienie

Bardziej szczegółowo

Uchwała nr 152/2014 Senatu Uniwersytetu Przyrodniczego w Poznaniu z dnia 23 kwietnia 2014 r.

Uchwała nr 152/2014 Senatu Uniwersytetu Przyrodniczego w Poznaniu z dnia 23 kwietnia 2014 r. Uchwała nr 152/2014 Senatu Uniwersytetu Przyrodniczego w Poznaniu z dnia 23 kwietnia 2014 r. w sprawie: utworzenia na Wydziale Technologii Drewna kierunku studiów inżynieria oraz określenia dla niego efektów

Bardziej szczegółowo

ZAKŁADNE EFEKTY KSZTAŁCENIA DLA KIERUNKU Inżynieria Biomedyczna

ZAKŁADNE EFEKTY KSZTAŁCENIA DLA KIERUNKU Inżynieria Biomedyczna ZAKŁADNE EFEKTY KSZTAŁCENIA DLA KIERUNKU Inżynieria Biomedyczna Jednostka prowadząca kierunek studiów Nazwa kierunku studiów Specjalności Obszar Profil Poziom Forma Tytuł zawodowy uzyskiwany przez absolwenta

Bardziej szczegółowo

WIEDZA T1P_W06. K_W01 ma podstawową wiedzę o zarządzaniu jako nauce, jej miejscu w systemie nauk i relacjach do innych nauk;

WIEDZA T1P_W06. K_W01 ma podstawową wiedzę o zarządzaniu jako nauce, jej miejscu w systemie nauk i relacjach do innych nauk; SYMBOL Efekty kształcenia dla kierunku studiów: inżynieria zarządzania; Po ukończeniu studiów pierwszego stopnia na kierunku inżynieria zarządzania, absolwent: Odniesienie do obszarowych efektów kształcenia

Bardziej szczegółowo

Specjalności. Mechanika i budowa maszyn studia I stopnia

Specjalności. Mechanika i budowa maszyn studia I stopnia Specjalności Mechanika i budowa maszyn studia I stopnia specjalność: Budowa i eksploatacja maszyn i urządzeń Absolwent tej specjalności posiada wiedzę i kwalifikacje umożliwiające podjęcie zatrudnienia

Bardziej szczegółowo

Cel walidacji- zbadanie, czy procedura/wyrób/technologia/projekt/... może zostać w sposób niebudzący wątpliwości wprowadzona/y/e do użytkowania

Cel walidacji- zbadanie, czy procedura/wyrób/technologia/projekt/... może zostać w sposób niebudzący wątpliwości wprowadzona/y/e do użytkowania 1. Proszę krótko scharakteryzować w sposób "ilościowy": a) produkt i technologię wytwarzania tego produktu przez firmę którą założyła Pani/Pana podgrupa oraz wyjaśnić dlaczego wybrana technologia jest

Bardziej szczegółowo

EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW

EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW WYDZIAŁ KIERUNEK z obszaru nauk POZIOM KSZTAŁCENIA FORMA STUDIÓW PROFIL JĘZYK STUDIÓW Podstawowych Problemów Techniki Informatyka technicznych 6 poziom, studia inżynierskie

Bardziej szczegółowo

LUZS-12 LISTWOWY UNIWERSALNY ZASILACZ SIECIOWY DOKUMENTACJA TECHNICZNO-RUCHOWA. Wrocław, kwiecień 1999 r.

LUZS-12 LISTWOWY UNIWERSALNY ZASILACZ SIECIOWY DOKUMENTACJA TECHNICZNO-RUCHOWA. Wrocław, kwiecień 1999 r. LISTWOWY UNIWERSALNY ZASILACZ SIECIOWY DOKUMENTACJA TECHNICZNO-RUCHOWA Wrocław, kwiecień 1999 r. 50-305 WROCŁAW TEL./FAX (+71) 373-52-27 ul. S. Jaracza 57-57a TEL. 602-62-32-71 str.2 SPIS TREŚCI 1.OPIS

Bardziej szczegółowo

Podsumowanie wyników ankiety

Podsumowanie wyników ankiety SPRAWOZDANIE Kierunkowego Zespołu ds. Programów Kształcenia dla kierunku Informatyka dotyczące ankiet samooceny osiągnięcia przez absolwentów kierunkowych efektów kształcenia po ukończeniu studiów w roku

Bardziej szczegółowo

czynny udział w projektowaniu i implementacji procesów produkcyjnych

czynny udział w projektowaniu i implementacji procesów produkcyjnych Inżynier Procesu Zarobki: min. 3500 zł brutto (do negocjacji) czynny udział w projektowaniu i implementacji procesów produkcyjnych określenie cyklu produkcyjnego opis działań produkcyjnych dla nowych projektów,

Bardziej szczegółowo

TABELA ODNIESIEŃ EFEKTÓW KIERUNKOWYCH DO EFEKTÓW OBSZAROWYCH

TABELA ODNIESIEŃ EFEKTÓW KIERUNKOWYCH DO EFEKTÓW OBSZAROWYCH Załącznik nr 3 do Zarządzenia Rektora nr 10 /12 z dnia 21 lutego 2012r. TABELA ODNIESIEŃ EFEKTÓW KIERUNKOWYCH DO EFEKTÓW OBSZAROWYCH nazwa kierunku studiów: INŻYNIERIA ŚRODOWISKA poziom kształcenia: studia

Bardziej szczegółowo

RAPORT. Gryfów Śląski

RAPORT. Gryfów Śląski RAPORT z realizacji projektu Opracowanie i rozwój systemu transportu fluidalnego w obróbce horyzontalnej elementów do układów fotogalwanicznych w zakresie zadań Projekt modelu systemu Projekt automatyki

Bardziej szczegółowo

KIERUNKOWE EFEKTY KSZTAŁCENIA KIERUNEK TECHNOLOGIE OCHRONY ŚRODOWISKA P O L I T E C H N I K A POZNAŃSKA WYDZIAŁ TECHNOLOGII CHEMICZNEJ

KIERUNKOWE EFEKTY KSZTAŁCENIA KIERUNEK TECHNOLOGIE OCHRONY ŚRODOWISKA P O L I T E C H N I K A POZNAŃSKA WYDZIAŁ TECHNOLOGII CHEMICZNEJ P O L I T E C H N I K A POZNAŃSKA WYDZIAŁ TECHNOLOGII CHEMICZNEJ ul. Piotrowo 3 60-965 POZNAŃ tel. 061 6652351 fax 061 6652852 E-mail: office_dctf@put.poznan.pl http://www.fct.put.poznan.pl KIERUNKOWE

Bardziej szczegółowo

Zakładane efekty kształcenia dla kierunku Wydział Telekomunikacji, Informatyki i Elektrotechniki

Zakładane efekty kształcenia dla kierunku Wydział Telekomunikacji, Informatyki i Elektrotechniki Jednostka prowadząca kierunek studiów Nazwa kierunku studiów Specjalności Obszar kształcenia Profil kształcenia Poziom kształcenia Forma kształcenia Tytuł zawodowy uzyskiwany przez absolwenta Dziedziny

Bardziej szczegółowo

Opis efektów uczenia się dla kwalifikacji na poziomie 7 Polskiej Ramy Kwalifikacji

Opis efektów uczenia się dla kwalifikacji na poziomie 7 Polskiej Ramy Kwalifikacji Załącznik nr 2 do Uchwały nr 103/2018-2019 Senatu UP w Lublinie z dnia 28 czerwca 2019 r. Opis efektów uczenia się dla kierunku studiów Nazwa kierunku studiów: Biologia Poziom: studia drugiego stopnia

Bardziej szczegółowo

Working for You. Anton Paar Certified Service

Working for You. Anton Paar Certified Service Working for You. Anton Paar Certified Service Anton Paar Certified Service opieka gwarancyjna Przedłużenie gwarancji nawet do 3 lat, obejmujące wszystkie naprawy* od dnia dostawy W połączeniu z umową serwisową

Bardziej szczegółowo

Efekty kształcenia dla kierunku Energetyka

Efekty kształcenia dla kierunku Energetyka Załącznik nr 5 do Uchwały Nr 673 Senatu UWM w Olsztynie z dnia 6 marca 2015 roku w sprawie zmiany Uchwały Nr 187 Senatu UWM w Olsztynie z dnia 26 marca 2013 roku zmieniającej Uchwałę Nr 916 Senatu UWM

Bardziej szczegółowo

1. Tabela odniesień efektów kierunkowych do efektów obszarowych. bezpieczeństwo i higiena pracy studia pierwszego stopnia

1. Tabela odniesień efektów kierunkowych do efektów obszarowych. bezpieczeństwo i higiena pracy studia pierwszego stopnia Załącznik do uchwały nr 56/2015-2016 Senatu Uniwersytetu Przyrodniczego w Lublinie 1. Tabela odniesień efektów kierunkowych do efektów obszarowych bezpieczeństwo i higiena pracy studia pierwszego stopnia

Bardziej szczegółowo

Pytania kierunkowe KIB 10 KEEEIA 5 KMiPKM 5 KIS 4 KPB 4 KTMiM 4 KBEPiM 3 KMRiMB 3 KMiETI 2

Pytania kierunkowe KIB 10 KEEEIA 5 KMiPKM 5 KIS 4 KPB 4 KTMiM 4 KBEPiM 3 KMRiMB 3 KMiETI 2 Kierunek: INŻYNIERIA BEZPIECZEŃSTWA I stopień studiów I. Pytania kierunkowe Pytania kierunkowe KIB 10 KEEEIA 5 KMiPKM 5 KIS 4 KPB 4 KTMiM 4 KBEPiM 3 KMRiMB 3 KMiETI 2 Katedra Budowy, Eksploatacji Pojazdów

Bardziej szczegółowo

WYZNACZANIE OPTYMALIZOWANYCH PROCEDUR DIAGNOSTYCZNO-OBSŁUGOWYCH

WYZNACZANIE OPTYMALIZOWANYCH PROCEDUR DIAGNOSTYCZNO-OBSŁUGOWYCH ZAKŁAD EKSPLOATACJI SYSTEMÓW ELEKTRONICZNYCH INSTYTUT SYSTEMÓW ELEKTRONICZNYCH WYDZIAŁ ELEKTRONIKI WOJSKOWA AKADEMIA TECHNICZNA ---------------------------------------------------------------------------------------------------------------

Bardziej szczegółowo

Zastosowanie metod eksploracji danych (data mining) do sterowania i diagnostyki procesów w przemyśle spożywczym

Zastosowanie metod eksploracji danych (data mining) do sterowania i diagnostyki procesów w przemyśle spożywczym POLITECHNIKA WARSZAWSKA Instytut Technik Wytwarzania Zastosowanie metod eksploracji danych (data mining) do sterowania i diagnostyki procesów w przemyśle spożywczym Marcin Perzyk Dlaczego eksploracja danych?

Bardziej szczegółowo