WYMIANA (TRANSPORT) CIEPŁA
|
|
- Bogna Witek
- 6 lat temu
- Przeglądów:
Transkrypt
1 WYMIANA CIEPŁA
2 WYMIANA (TRANSPORT) CIEPŁA PRZEWODZENIE (KONDUKCJA) - przekazywanie energii od jednej cząstki do drugiej, za pośrednictwem ruchu drgającego tych cząstek. Proces ten trwa dopóty, dopóki temperatura ciała nie zostanie wyrównana w całej rozpatrywanej objętości. Dotyczy to bezpośredniego kontaktu ciała z ciałem, części ciała z ciałem. PROMIENIOWANIE (RADIACJA) - przekazywanie ciepła w postaci energii promieniowania, którego natura jest taka sama jak energii świetlnej. Energia cieplna przekształca się w energię promieniowania, przebywa określoną przestrzeń z prędkością światła, aby w innym miejscu przekształcić się całkowicie lub częściowo w energię cieplną. KONWEKCJA (WNIKANIE, UNOSZENIE) wiąże się z ruchem konwekcyjnym gazów lub cieczy, wywołanym bądź różnicą gęstości (różnicą temperatur), bądź przez wymuszenie czynnikami zewnętrznymi. W przemyśle ruch ciepła zachodzi równocześnie dwoma lub trzema sposobami, najczęściej odbywa się przez przewodzenie i wnikanie. Mechanizm transportu ciepła łączący wymienione sposoby ruchu ciepła nazywa się PRZENIKANIEM CIEPŁA.
3 PRZEWODZENIE CIEPŁA STRUMIEŃ CIEPLNY (NATĘŻENIE PRZEPŁYWU CIEPŁA) Q * ilość ciepła jaka przepływa przez dane ciało w jednostce czasu Q * = dq dt J =W s [ ] gdzie: Q - ciepło, t - czas, GĘSTOŚĆ STRUMIENIA CIEPLNEGO q (OBCIĄŻENIE CIEPLNE) natężenie przepływu ciepła odniesione do jednostki powierzchni (straty ciepła przypadające na jednostkę powierzchni) q = Q W 2 A m gdzie: A powierzchnia prostopadła do kierunku ruchu ciepła,
4 T 2 PRZEWODZENIE CIEPŁA prawo FOURIERA Q Zakładamy T 1 x( σ) PRZEWODZENIE opiera się na prawie FOURIERA mówiącym o ilości ciepła przewodzonego przez powierzchnię A prostopadłą do kierunku ruchu ciepła: w kierunkach x, y i z gdzie: T- temperatura, λ- współczynnik przewodzenia ciepła, τ- czas, w jednym kierunku np. x: dddd ddττ = cccccccccc gdzie: x (s)-grubość warstwy, ustalone przewodzenie ciepła, otrzymujemy: wiedząc, że strumień cieplny to: Otrzymujemy: dq = λ A QQ = λλ AA dddd dddd gradt ( dτ ) dddd = λλ AA dddd dddd ddττ dddd ddττ = QQ
5 δδtt δδδδ + uu zz δδtt δδδδ + uu zz dddd dddd = QQ λλaa Ośrodek płynny równanie Kirchoffa-Furiera: δδtt δδxx + uu yy δδtt δδxx + uu yy δδtt δδyy + uu zz δδtt δδzz = Dla ciała stałego: δδtt δδyy + uu zz Dla ustalonych warunków wymiany ciepła gdzie: λλ δδ2 tt ccρρ FF δδxx 2 + δδ2 tt δδyy 2 + δδ2 tt δδzz 2 δδtt δδzz = 0, bbbb uu xx = uu yy = uu zz = 0 δδtt δδxx = 0 λλ δδ2 tt ccρρ FF δδxx 2 + δδ2 tt δδyy 2 + δδ2 tt δδzz 2 = 0 λλ = αα ccρρ FF to DYFUZYJNOŚĆ CIEPLNA otrzymuje się:
6 PRZEWODZENIE CIEPŁA Przewodzenie ciepła jest USTALONE gdy dq/dt=const lub Q *1 = Q *2 = Q *3 lub inaczej Jeżeli gradient temperatury jest niezależny od czasu i stały, to proces przewodzenia ciepła jest ustalony. Przewodzenie ciepła jest NIEUSTALONE gdy dq/dt const lub Q *1 Q *2 Q *3
7 wiedząc, że: qq = QQ AA Stąd, gęstość strumienia cieplnego: qq = λλ dddd dddd Z powyższych równań wynika, że: λ = dq dτ A ( dt dx) (m 2 W deg m) = W m deg zatem współczynnik przewodzenia ciepła (λ) jest to ilość ciepła przewodzona przez ciało o powierzchni 1m 2, grubości ścianki 1m, gdy różnica temperatur pomiędzy przeciwległymi ściankami wynosi 1deg (stopień), w ciągu 1s. współczynnik przewodzenia ciepła (λ) stała materiałowa, charakterystyczna dla danego materiału, określająca zdolność materiału do przewodzenia ciepła,
8 WSPÓŁCZYNNIK PRZEWODZENIA CIEPŁA Wielkość współczynnika przewodzenia ciepła jest uzależniona od szeregu czynników: rodzaju wiązań chemicznych ciała stałego i jego struktury zdefektowania struktury mikrostruktury materiału temperatury Dyfuzyjność cieplna określa przepływ ciepła w stanie nieustalonym, natomiast w stanie ustalonym funkcję tę pełni przewodność cieplna. λλ ccρρ FF = αα - dyfuzyjność cieplna ρ gęstość, c ciepło właściwe
9 PROMIENIOWANIE Wymiana ciepła z otoczeniem przez promieniowanie cieplne. Przekształcanie energii cieplnej na promienistą promieniowanie cieplne, proces odwrotny to pochłanianie (absorpcja ciepła). Promieniowanie cieplne ma tą samą naturę, co promieniowanie świetlne, podlega tym samym prawom. PROMIENIE WIDZIALNE MAJĄ DŁUGOŚĆ OD 0,4 DO 0,8 mm ZAŚ PROMIENIE PODCZERWONE OD 0,8 DO 40 mm. Q=Q A +Q R +Q T /:Q 1=Q A /Q+Q R /Q+Q T /Q czyli 1=a+r+t a = współczynnik absorpcji (pochłaniania) a= Q Q r = współczynnik refleksji (odbicia) t = współczynnik transmisji (przepuszczenia) A r = QR Q t = QT Q
10 CIAŁA DOSKONAŁE 1=a+r+t - CIAŁO SZARE najczęściej dla ciał szarych a+r=1 CIAŁO DOSKONALE CZARNE a=1; r=0 i t=0 CIAŁO DOSKONALE PRZEŹROCZYSTE t=1; a=0 i r=0 CIAŁO DOSKONALE BIAŁE r=1; t=0 i a=0
11 PRAWA PROMIENIOWANIA Prawo Plancka Prawo Wiena λλ mmmmmm TT = 0, mm KK Iloczyn długości fali promieni o maksymalnym natężeniu i temperatury bezwzględnej, w której to promieniowanie zachodzi jest wielkością stałą.
12 PRAWA PROMIENIOWANIA Prawo Kirchoffa W stanie równowagi termicznej natężenie promieniowania i absorpcji energii dla danego ciała są jednakowe. Ciało szare emituje tyle energii promienistej ile absorbowałoby ciało doskonale czarne w tej samej temperaturze: EE 1 = aa 1 EE 0 EE 0 = EE 1 aa 1 EE 0 = EE 2 aa 2. EE 0 = EE nn aa nn EE 1 aa 1 = EE 2 aa 2 = = EE nn aa nn = EE 0 Stosunek natężenia promieniowania do współczynnika absorpcji jest wielkością stałą dla wszystkich ciał i równą natężeniu promieniowania ciała doskonale czarnego w temperaturze T.
13 PRAWA PROMIENIOWANIA Prawo Lamberta Jeżeli źródło światła jest punktowe i promieniuje izotropowo, wówczas moc promieniowania światła przypadająca na jednostkę powierzchni (natężenie oświetlenia) maleje z odległością i zależy od kąta padania. Jeżeli promienie dane tworzą razem kąt a wraz z normalną do powierzchni, wtedy oświetlenie jest proporcjonalne do cosα. dd 2 Ω = εε ππ CC 0 TT ddωddaa 1 ccccccαα EE αα = EE nn ccccccαα
14 PROMIENIOWANIE Światłość J ϕ lub natężenie światła Jest to strumień świetlny wysyłany w danym kierunku w jednostkę kąta bryłowego. Luminancja L lub jaskrawość Wyraża gęstość powierzchniową światłości w danym kierunku. LL = dddd ddddddddddφφ gdzie: df elementarny element powierzchni promieniującej, ϕ - kąt między normalną do powierzchni promieniującej a kierunkiem wyznaczenia luminancji kąt widzenia, Luminancja decyduje o nasileniu subiektywnego wrażenia jasności.
15 PRAWO STEFANA - BOLTZMANA Rozwiązanie prawa Plancka daje prawo Stefana Boltzmana (1879r.), które głosi, że natężenie promieniowania ciała doskonale czarnego jest proporcjonalne do czwartej potęgi temperatury bezwzględnej tego ciała. E0 = σ 0 T gdzie: σ 0 - stała promieniowania 5, W/m 2 K4 dla ciał szarych EE 0 = CC 0 TT EE = εε CC 0 TT gdzie: ε - stopień czarności ciała czyli emisyjność, 4 C = σ = CC TT 100 4
16 EMISYJNOŚĆ (STOPIEŃ CZARNOŚCI CIAŁA) ε Określa zdolność materiałów do emisji i absorpcji promieniowania temperaturowego, zawiera się w granicach od 0 do 1 Emisyjność (stopień czarności) przybiera wartości 0<ε<1 zatem C wynosi od 0 do 5,67 [W/m 2 K 4 ]. EMISYJNOŚĆ CAŁKOWITA stosunek natężenia promieniowania ciała szarego do natężenie promieniowania ciała doskonale czarnego w temperaturze T. εε = EE EE 0 = CC TT CC 0 TT 100 4
17 PROMIENIOWANIE GAZÓW CIECZE natężenia promieniowania jest zbliżone do ciał stałych; ze względu na małe różnice temperatur występujące pomiędzy poszczególnymi punktami w cieczy i konwekcyjny ruch ciepła udział promieniowania cieplnego w ogólnej ilości ciepła jest mały, GAZY w gazach występuje selektywne promieniowanie o określonych długościach fal. Promieniowanie cieplne emitują tylko te gazy, które mają moment dipolowy CO 2, H 2 O, CO, NH 4 Cząsteczki gazów, które są symetryczne np. H 2, O 2, N 2, są dla promieniowania cieplnego przezroczyste. SELEKTYWNA ABSORPCJA I EMISJA W ciałach stałych wymiana energii promieniowania odbywa się w warstwie powierzchniowej, dla gazów w całej ich objętości, zatem: EE Δλλ = ff(tt, LL, pp cc )
18 KONWEKCJA (WNIKANIE, UNOSZENIE) 1. Związana jest z ruchem płynów. 2. Konwekcyjny ruch ciepła może się odbywać podczas uwarstwionego, burzliwego czy przejściowego przepływu płynu. 3. Występuje w przewodach transportujących płyny za pomocą wentylatora lub pompy (konwekcja wymuszona), w przewodach kominowych gdzie różnica temperatur w różnych punktach wywołuje zmianę gęstości płynu (zmianę ciśnień statycznych), co powoduje ruch płynów (konwekcja naturalna), w zbiornikach gdzie wrze ciecz lub kondensuje para (konwekcja przy zmianie stanu skupienia). 4. Zachodzi zarówno podczas ogrzewania jak i chłodzenia płynów. 5. Jest trudna do teoretycznego ujęcia przez związek ruchu płynu z ruchem ciepła. Różny charakter ruchu płynu, zmienna lepkość w różnych temperaturach, różny rozkład prędkości, wiry, kłębienia itp. wpływają na zjawisko konwekcji. Formułuje się tzw. równania kryterialne, wyznaczane na podstawie analizy wymiarowej.
19 KONWEKCJA (WNIKANIE, UNOSZENIE) 5. Z technicznego punktu widzenia najważniejszym mechanizmem jest przekazywanie ciepła od (do) ścianki do (od) płynącego zarówno ruchem laminarnym jak i burzliwym płynu (WNIKANIE),
20 KONWEKCJA (WNIKANIE) Wnikanie ciepła pomiędzy powierzchnią ścianki i płynem opisuje równanie Newtona: dddd ddττ = QQ = ααaa(tt ww TT) gdzie: Q natężenie przepływu ciepła [W], α - współczynnik wnikania (przejmowania) ciepła [W/m 2 deg], A powierzchnia ścianki [m 2 ]. T w temperatura powierzchni ścianki [K, o C], T temperatura płynu [K, o C], α Q W = 2 A ( Tw T) m deg
21 PRZENIKANIE CIEPŁA W przemyśle ruch ciepła zachodzi równocześnie dwoma lub trzema sposobami, najczęściej odbywa się przez przewodzenie i wnikanie. Mechanizm transportu ciepła łączący wymienione sposoby ruchu ciepła nazywa się PRZENIKANIEM CIEPŁA. PRZE(WODZENIE)+(W)NIKANIE = PRZENIKANIE Przepływ ciepła jest ustalony, zatem: dq dt = Q * = const
22 Ponieważ ruch ciepła jest ustalony Q = * 1 = Q*2 Q*3 można równania dodać stronami, Strumień cieplny i gęstość strumienia cieplnego na drodze przenikania można, zatem wyrazić następująco: Q 1 1 σ α λ α * = 1 2 A (T1 - T2 ) [ W] q 1 W = (T1-T 2) 2 1 σ m α λ α 1 2 gdzie: K = 1 1 σ α λ α 1 2 m 2 W deg współczynnik przenikania ciepła deg (z ang. degree) stopień o C, K
23 Q = K A ( T 1 T ) * 2 zatem: QQ AA = ( TT 1 TT 2 ) 1 KK gdzie, 1/K to opór termiczny R t równy sumie oporów: ośrodka ogrzewającego, ścianki i ośrodka ogrzewanego : 1 [W] KK = RR tt = 1 αα 1 + σσ λλ + 1 αα 2 q= K T T WSPÓŁCZYNNIK PRZENIKANIA K: QQ KK = AA(TT 1 TT 2 ) = WW mm 2 dddddd 2 ( 1 2) [W m ]
24 Współczynnik K oznacza tę ilość ciepła jaka przenika przez ściankę od ośrodka grzejnego do ogrzewanego gdy powierzchnia ścianki wynosi 1m 2 a spadek temperatury 1 deg. PRZENIKANIE PRZEZ ŚCIANKĘ PŁASKĄ WIELOWARSTWOWĄ Q = K A ( T 1 T ) * 2 [W] q = K T T 2 ( 1 2) [W m ] gdzie: K 1 W = i= n 2 1 σ 1 m deg + + α λ α 1 i= 1 2
25 PRZENIKANIE PRZEZ ŚCIANKĘ CYLINDRYCZNĄ JEDNOWARSTWOWĄ 1. Wnikanie od ośrodka grzejnego do ścianki QQ 1 = αα 1 2ππrr 1 LL(TT 1 TT ww1 ) 2. Przewodzenie przez ściankę QQ 2 = ππll(tt ww1 TT ww2 ) 1 llll rr 2 2λλ 1 rr1 3. Wnikanie od ścianki do ośrodka ogrzewanego r 2 r 1 QQ 3 = αα 2 2ππrr 2 LL(TT ww2 TT 2 ) Zsumowanie równań na spadki temperatur dla każdego przypadku daje: Q = Kd π L ( T 1 T ) * 2 [W] T w2 T 1 T T w1 w1 T w2 T 2 T 2 L K d = r 1 + ln + α1 2 1 r 2λ 1 r α2 2 2 r W m deg
26 KK dd = QQ ππll(tt 1 TT 2 ) = WW mm dddddd Współczynnik K d oznacza tę ilość ciepła jaka przenika przez ściankę od ośrodka grzejnego do ogrzewanego gdy długość rury wynosi 1m a spadek temperatury 1 deg. Sumaryczny opór cieplny podczas ruchu ciepła przez ściankę cylindryczną: 1 KK dd = RR tt = 1 αα 1 2rr λλ 1 llll rr 2 rr αα 2 2rr 2 PRZENIKANIE PRZEZ ŚCIANKĘ CYLINDRYCZNĄ WIELOWARSTWOWĄ K d 1 W = i= n 1 1 ri m deg + ln + α 2r 2λ r α 2r 1 1 i= 1 i i 2 2
27 W przypadku ścianek cylindrycznych można stosować uproszczenia: Gdy rura jest cienkościenna i gdy T jest nieznaczna można stosować wzory dla ścianki płaskiej. Warunek d ZEWN /d WEWN 2. Q = K A ( T 1 T )[W] A = 2πr L * 2 Wówczas we wzorze na powierzchnię za r X podstawia się: jeżeli α 1 >>α 2 to r X =r 2 promień zewnętrzny rury, (przenikanie od wnętrza ścianki do otoczenia) jeżeli α 1 α 2 to: r 1 + r r 2 x = 2 jeżeli α 1 <<α 2 to r X =r 1 - promień wewnętrzny rury. (przenikanie od otoczenia do wnętrza ścianki) x
gazów lub cieczy, wywołanym bądź różnicą gęstości (różnicą temperatur), bądź przez wymuszenie czynnikami zewnętrznymi.
WYMIANA (TRANSPORT) CIEPŁA Trzy podstawowe mechanizmy transportu ciepła (wymiany ciepła):. PRZEWODZENIE - przekazywanie energii od jednej cząstki do drugiej, za pośrednictwem ruchu drgającego tych cząstek.
gazów lub cieczy, wywołanym bądź różnicą gęstości (różnicą temperatur), bądź przez wymuszenie czynnikami zewnętrznymi.
WYMIANA (TRANSPORT) CIEPŁA Trzy podstawowe mechanizmy transportu ciepła (wymiany ciepła): 1. PRZEWODZENIIE - przekazywanie energii od jednej cząstki do drugiej, za pośrednictwem ruchu drgającego tych cząstek.
wymiana energii ciepła
wymiana energii ciepła Karolina Kurtz-Orecka dr inż., arch. Wydział Budownictwa i Architektury Katedra Dróg, Mostów i Materiałów Budowlanych 1 rodzaje energii magnetyczna kinetyczna cieplna światło dźwięk
WYMIANA (TRANSPORT) CIEPŁA
WYMIANA CIEPŁA WYMIANA (TRANSPORT) CIEPŁA Trzy podstawowe mechanizmy transportu ciepła (wymiany ciepła): PRZEWODZENIE (KONDUKCJA) - przekazywanie energii od jednej cząstki do drugiej, za pośrednictwem
WSPÓŁCZYNNIK PRZEJMOWANIA CIEPŁA PRZEZ KONWEKCJĘ
INSYU INFORMAYKI SOSOWANEJ POLIECHNIKI ŁÓDZKIEJ Ćwiczenie Nr2 WSPÓŁCZYNNIK PRZEJMOWANIA CIEPŁA PRZEZ KONWEKCJĘ 1.WPROWADZENIE. Wymiana ciepła pomiędzy układami termodynamicznymi może być realizowana na
Przedmowa Przewodność cieplna Pole temperaturowe Gradient temperatury Prawo Fourier a...15
Spis treści 3 Przedmowa. 9 1. Przewodność cieplna 13 1.1. Pole temperaturowe.... 13 1.2. Gradient temperatury..14 1.3. Prawo Fourier a...15 1.4. Ustalone przewodzenie ciepła przez jednowarstwową ścianę
Wnikanie ciepła przy konwekcji swobodnej. 1. Wstęp
Wnikanie ciepła przy konwekcji swobodnej 1. Wstęp Współczynnik wnikania ciepła podczas konwekcji silnie zależy od prędkości czynnika. Im prędkość czynnika jest większa, tym współczynnik wnikania ciepła
WYMIANA CIEPŁA i WYMIENNIKI CIEPŁA
WYMIANA CIEPŁA i WYMIENNIKI CIEPŁA Prof. M. Kamiński Gdańsk 2015 PLAN Znaczenie procesowe wymiany ciepła i zasady ogólne Pojęcia i definicje podstawowe Ruch ciepła na drodze przewodzenia Ruch ciepła na
Wyznaczanie współczynnika przenikania ciepła dla przegrody płaskiej
Katedra Silników Spalinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI Wyznaczanie współczynnika przenikania ciepła dla przegrody płaskiej - - Wstęp teoretyczny Jednym ze sposobów wymiany ciepła jest przewodzenie.
Wymiana ciepła. Transport ciepła. Wykład 2
Wymiana ciepła ransport ciepła Wykład Wymiana ciepła Pole temperatur Zbiór jednoczesnych temperatur we wszystkich punktach rozpatrywanego ciała W przestrzeni jest określone pole temperatur = (x,y,z,t)
Laboratorium komputerowe z wybranych zagadnień mechaniki płynów
ANALIZA PRZEKAZYWANIA CIEPŁA I FORMOWANIA SIĘ PROFILU TEMPERATURY DLA NIEŚCIŚLIWEGO, LEPKIEGO PRZEPŁYWU LAMINARNEGO W PRZEWODZIE ZAMKNIĘTYM Cel ćwiczenia Celem ćwiczenia będzie obserwacja procesu formowania
Wnikanie ciepła pomiędzy powierzchnią ścianki a płynem, gazem opisuje równanie różniczkowe Newtona: Nu liczba Nusselta, Gr liczba Grashofa,
KONWEKCJA (WNIKANIE). Dotyczy głównie przenoszenia ciepła w warstwie granicznej pomiędzy płynem (cieczą, gazem) a ścianką rurociągu (ciałem stałym).. Związana jest z ruchem płynów. 3. Konwekcyjny ruch
Symulacja przepływu ciepła dla wybranych warunków badanego układu
Symulacja przepływu ciepła dla wybranych warunków badanego układu I. Część teoretyczna Ciepło jest formą przekazywana energii, która jest spowodowana różnicą temperatur (inną formą przekazywania energii
BADANIE WYMIENNIKÓW CIEPŁA
1.Wprowadzenie DNIE WYMIENNIKÓW CIEPŁ a) PŁSZCZOWO-RUROWEGO b) WĘŻOWNICOWEGO adanie wymiennika ciepła sprowadza się do pomiaru współczynników przenikania ciepła k w szerokim zakresie zmian parametrów ruchowych,
Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne
Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne W3. Zjawiska transportu Zjawiska transportu zachodzą gdy układ dąży do stanu równowagi. W zjawiskach
BADANIE WYMIENNIKA CIEPŁA TYPU RURA W RURZE
BDNIE WYMIENNIK CIEPŁ TYPU RUR W RURZE. Cel ćwiczenia Celem ćwiczenia jest zapoznanie z konstrukcją, metodyką obliczeń cieplnych oraz poznanie procesu przenikania ciepła w rurowych wymiennikach ciepła..
1. Wprowadzenie: dt q = - λ dx. q = lim F
PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W PILE INSTYTUT POLITECHNICZNY Zakład Budowy i Eksploatacji Maszyn PRACOWNIA TERMODYNAMIKI TECHNICZNEJ INSTRUKCJA Temat ćwiczenia: WYZNACZANIE WSPÓŁCZYNNIKA PRZEWODNOŚCI
WYZNACZENIE STAŁEJ STEFANA - BOLTZMANNA
ĆWICZENIE 32 WYZNACZENIE STAŁEJ STEFANA - BOLTZMANNA Cel ćwiczenia: Wyznaczenie stałej Stefana-Boltzmanna metodami jednakowej temperatury i jednakowej mocy. Zagadnienia: ciało doskonale czarne, zdolność
I. PROMIENIOWANIE CIEPLNE
I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.
Modelowanie w projektowaniu maszyn i procesów cz.7
Modelowanie w projektowaniu maszyn i procesów cz.7 Solvery MES zaimplementowane do środowisk CAD - termika Dr hab. inż. Piotr Pawełko p. 141 Piotr.Pawełko@zut.edu.pl www.piopawelko.zut.edu.pl Przekazywanie
Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu) (1.1) (1.2a)
PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.
ZBIORNIK Z WRZĄCĄ CIECZĄ
KONWEKCJA (WNIKANIE, PRZEJMOWANIE CIEPŁA) 1. Związana jest z ruchem płynów.. Konwekcyjny ruch ciepła może się odbywać podczas uwarstwionego, burzliwego czy przejściowego przepływu płynu. 3. Występuje w
Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu)
PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.
Hydrostatyczne Układy Napędowe Laboratorium
Hydrostatyczne Układy Napędowe Laboratorium Temat: Eksperymentalne wyznaczenie charakteru oporów w przewodach hydraulicznych opory liniowe Opracował: Z. Kudźma, P. Osiński, J. Rutański, M. Stosiak CEL
Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne.
Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. DUALIZM ŚWIATŁA fala interferencja, dyfrakcja, polaryzacja,... kwant, foton promieniowanie ciała doskonale
1. Podstawowe pojęcia w wymianie ciepła
PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.
Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła
W- (Jaroszewicz) 19 slajdów Na podstawie prezentacji prof. J. Rutkowskiego Fizyka kwantowa promieniowanie termiczne zjawisko fotoelektryczne kwantyzacja światła efekt Comptona dualizm korpuskularno-falowy
Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu)
PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.
LABORATORIUM Z FIZYKI TECHNICZNEJ
Projekt Plan rozwoju Politechniki Częstochowskiej współfinansowany ze środków UNII EUROPEJSKIEJ w ramach EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Numer Projektu: POKL.04.01.01-00-59/08 INSTYTUT FIZYKI WYDZIAŁ
ZADANIE 28. Wyznaczanie przewodnictwa cieplnego miedzi
ZADANIE 28 Wyznaczanie przewodnictwa cieplnego miedzi Wstęp Pomiędzy ciałami ogrzanymi do różnych temperatur zachodzi wymiana ciepła. Ciało o wyższej temperaturze traci ciepło, a ciało o niższej temperaturze
Układ termodynamiczny Parametry układu termodynamicznego Proces termodynamiczny Układ izolowany Układ zamknięty Stan równowagi termodynamicznej
termodynamika - podstawowe pojęcia Układ termodynamiczny - wyodrębniona część otaczającego nas świata. Parametry układu termodynamicznego - wielkości fizyczne, za pomocą których opisujemy stan układu termodynamicznego,
Spis treści. Przedmowa WPROWADZENIE DO PRZEDMIOTU... 11
Spis treści Przedmowa... 10 1. WPROWADZENIE DO PRZEDMIOTU... 11 2. PODSTAWOWE OKREŚLENIA W TERMODYNAMICE... 13 2.1. Układ termodynamiczny... 13 2.2. Wielkości fizyczne, układ jednostek miary... 14 2.3.
ZJAWISKA KWANTOWO-OPTYCZNE
ZJAWISKA KWANTOWO-OPTYCZNE Źródła światła Prawo promieniowania Kirchhoffa Ciało doskonale czarne Promieniowanie ciała doskonale czarnego Prawo promieniowania Plancka Prawo Stefana-Boltzmanna Prawo przesunięć
Wstęp do astrofizyki I
Wstęp do astrofizyki I Wykład 2 Tomasz Kwiatkowski 12 październik 2009 r. Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 2 1/21 Plan wykładu Promieniowanie ciała doskonale czarnego Związek temperatury
Techniczne podstawy promienników
Techniczne podstawy promienników podczerwieni Technical Information,, 17.02.2009, Seite/Page 1 Podstawy techniczne Rozdz. 1 1 Rozdział 1 Zasady promieniowania podczerwonego - Podstawy fizyczne - Widmo,
Stany skupienia materii
Stany skupienia materii Ciała stałe Ciecze Płyny Gazy Plazma 1 Stany skupienia materii Ciała stałe - ustalony kształt i objętość - uporządkowanie dalekiego zasięgu - oddziaływania harmoniczne Ciecze -
całkowite rozproszone
Kierunek: Elektrotechnika, II stopień, semestr 1 Technika świetlna i elektrotermia Laboratorium Ćwiczenie nr 14 Temat: BADANIE KOLEKTORÓW SŁONECZNYCH 1. Wiadomości podstawowe W wyniku przemian jądrowych
POLITECHNIKA CZĘSTOCHOWSKA. Poszukiwanie optymalnej średnicy rurociągu oraz grubości izolacji
POLITECHNIKA CZĘSTOCHOWSKA Instytut Maszyn Cieplnych Optymalizacja Procesów Cieplnych Ćwiczenie nr 3 Poszukiwanie optymalnej średnicy rurociągu oraz grubości izolacji Częstochowa 2002 Wstęp. Ze względu
Wstęp do astrofizyki I
Wstęp do astrofizyki I Wykład 2 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, shortinst Wstęp do astrofizyki I,
Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
Zajęcia wyrównawcze z fizyki -Zestaw 4 -eoria ermodynamika Równanie stanu gazu doskonałego Izoprzemiany gazowe Energia wewnętrzna gazu doskonałego Praca i ciepło w przemianach gazowych Silniki cieplne
Termodynamika. Energia wewnętrzna ciał
ermodynamika Energia wewnętrzna ciał Cząsteczki ciał stałych, cieczy i gazów znajdują się w nieustannym ruchu oddziałując ze sobą. Sumę energii kinetycznej oraz potencjalnej oddziałujących cząsteczek nazywamy
PRZEPŁYW CIEPŁA PRZEZ PRZEGRODY BUDOWLANE
PRZEPŁYW CIEPŁA PRZEZ PRZEGRODY BUDOWLANE dr inż. Andrzej Dzięgielewski 1 OZNACZENIA I SYMBOLE Q - ciepło, energia, J, kwh, (kcal) Q - moc cieplna, strumień ciepła, J/s, W (kw), (Gcal/h) OZNACZENIA I SYMBOLE
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na specjalności: Inżynieria cieplna i samochodowa Rodzaj zajęć: wykład, laboratorium Wymiana ciepła Heat transfer Forma
LABORATORIUM TERMODYNAMIKI
Pomiar współczynnika przejmowania ciepła Celem ćwiczenia jest identyfikacja współczynnika przejmowania ciepła metodą quasistatyczną z wykorzystaniem próbki o znanej przewodności cieplnej. 1. WSTĘP TEORETYCZNY
Promieniowanie cieplne ciał.
Wypromieniowanie fal elektromagnetycznych przez ciała Promieniowanie cieplne (termiczne) Luminescencja Chemiluminescencja Elektroluminescencja Katodoluminescencja Fotoluminescencja Emitowanie fal elektromagnetycznych
Klimat na planetach. Szkoła Podstawowa Klasy VII-VIII Gimnazjum Klasa III Doświadczenie konkursowe 2
Szkoła Podstawowa Klasy VII-VIII Gimnazjum Klasa III Doświadczenie konkursowe Rok 019 1. Wstęp teoretyczny Podstawowym źródłem ciepła na powierzchni planet Układu Słonecznego, w tym Ziemi, jest dochodzące
Wydajność konwersji energii słonecznej:
Wykład II E we Wydajność konwersji energii słonecznej: η = E wy E we η całkowite = η absorpcja η kreacja η dryft/dyf η separ η zbierania E wy Jednostki fotometryczne i energetyczne promieniowania elektromagnetycznego
Zjawisko termoelektryczne
34 Zjawisko Peltiera polega na tym, że w obwodzie składającym się z różnych przewodników lub półprzewodników wytworzenie różnicy temperatur między złączami wywołuje przepływ prądu spowodowany różnicą potencjałów
BADANIE PROMIENIOWANIA CIAŁA DOSKONALE CZARNEGO
ZADANIE 9 BADANIE PROMIENIOWANIA CIAŁA DOSKONALE CZARNEGO Wstęp KaŜde ciało o temperaturze wyŝszej niŝ K promieniuje energię w postaci fal elektromagnetycznych. Widmowa zdolność emisyjną ciała o temperaturze
Instrukcja do laboratorium z fizyki budowli.
Instrukcja do laboratorium z fizyki budowli. Ćwiczenie: Pomiar współczynnika przewodzenia ciepła materiałów budowlanych Strona 1 z 5 Cel ćwiczenia Prezentacja metod stacjonarnych i dynamicznych pomiaru
Podstawy fizyki kwantowej
Podstawy fizyki kwantowej Fizyka kwantowa - co to jest? Światło to fala czy cząstka? promieniowanie termiczne efekt fotoelektryczny efekt Comptona fale materii de Broglie a równanie Schrodingera podstawa
Pole przepływowe prądu stałego
Podstawy elektromagnetyzmu Wykład 5 Pole przepływowe prądu stałego Czym jest prąd elektryczny? Prąd elektryczny: uporządkowany ruch ładunku. Prąd elektryczny w metalach Lity metalowy przewodnik zawiera
Ćwiczenie 375. Badanie zależności mocy promieniowania cieplnego od temperatury. U [V] I [ma] R [ ] R/R 0 T [K] P [W] ln(t) ln(p)
1 Nazwisko... Data... Wydział... Imię... Dzień tyg.... Godzina... Ćwiczenie 375 Badanie zależności mocy promieniowania cieplnego od temperatury = U [V] I [ma] [] / T [K] P [W] ln(t) ln(p) 1.. 3. 4. 5.
ĆWICZENIE 2 BADANIE TRANSPORTU CIEPŁA W WARUNKACH STACJONARNYCH
ĆWICZENIE BADANIE TRANSPORTU CIEPŁA W WARUNKACH STACJONARNYCH Cel ćwiczenia. Celem ćwiczenia jest zapoznanie się z podstawowymi zjawiskami fizycznymi towarzyszącymi wymianie ciepła w warunkach stacjonarnych
RADIACYJNA WYMIANA CIEPŁA
RADIACYJNA WYMIANA CIEPŁA WYKŁAD 0 Dariusz Mikielewicz Politechnika Gdańska ska Wydział Mechaniczny Katedra Techniki Cieplnej Wstęp W nagrzanym ciele zachodzi szereg złożonych procesów molekularnych i
Maszyny cieplne substancja robocza
Maszyny cieplne cel: zamiana ciepła na pracę (i odwrotnie) pracują cyklicznie pracę wykonuje substancja robocza (np.gaz, mieszanka paliwa i powietrza) która: pochłania ciepło dostarczane ze źródła ciepła
WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ
WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ Instrukcja do ćwiczenia T-06 Temat: Wyznaczanie zmiany entropii ciała
wrzenie - np.: kotły parowe, wytwornice pary, chłodziarki parowe, chłodzenie (np. reaktory jądrowe, silniki rakietowe, magnesy nadprzewodzące)
Wymiana ciepła podczas wrzenia 1. Wstęp wrzenie - np.: kotły parowe, wytwornice pary, chłodziarki parowe, chłodzenie (np. reaktory jądrowe, silniki rakietowe, magnesy nadprzewodzące) współczynnik wnikania
Przenikanie ciepła obliczanie współczynników przenikania ciepła skrót wiadomości
obliczanie współczynników przenikania ciepła skrót wiadomości 10.09.2013 Systemy energetyki odnawialnej 1 Definicja ciepła Ciepło jest to forma energii przekazywana między dwoma układami (lub układem i
SPRAWDZANIE PRAWA STEFANA BOLTZMANNA
Ćwiczenie 31 SPRAWDZANIE PRAWA STEFANA BOLTZMANNA Cel ćwiczenia: poznanie podstawowych pojęć związanych z promienio-waniem termicznym ciał, eksperymentalna weryfikacja teorii promieniowania ciała doskonale
PRZENIKANIE CIEPŁA W CHŁODNICY POWIETRZNEJ
1. Wprowadzenie PRZENIKANIE CIEPŁA W CHŁODNICY POWIERZNEJ Ruch ciepła między dwoma ośrodkami gazowymi lub ciekłymi przez przegrodę z ciała stałego nosi nazwę przenikania ciepła. W pojęciu tym mieści się
Fizyka dla Informatyków Wykład 8 Mechanika cieczy i gazów
Fizyka dla Informatyków Wykład 8 Katedra Informatyki Stosowanej PJWSTK 2008 Spis treści Spis treści 1 Podstawowe równania hydrodynamiki 2 3 Równanie Bernoulliego 4 Spis treści Spis treści 1 Podstawowe
Akademia Górniczo - Hutnicza im. Stanisława Staszica w Krakowie
Akademia Górniczo - Hutnicza im. Stanisława Staszica w Krakowie Wydział Energetyki i Paliw BADANIE WYMIENNIKÓW CIEPŁA Przygotował: mgr inż. Marcin Borcuch borcuch@agh.edu.pl Podstawy wymiany ciepła Sposoby
Pytania do ćwiczeń na I-szej Pracowni Fizyki
Ćw. nr 5 Oscylator harmoniczny. 1. Ruch harmoniczny prosty. Pojęcia: okres, wychylenie, amplituda. 2. Jaka siła powoduje ruch harmoniczny spręŝyny i ciała do niej zawieszonego? 3. Wzór na okres (Studenci
Aerodynamika i mechanika lotu
Prędkość określana względem najbliższej ścianki nazywana jest prędkością względną (płynu) w. Jeśli najbliższa ścianka porusza się względem ciał bardziej oddalonych, to prędkość tego ruchu nazywana jest
Instrukcja stanowiskowa
POLITECHNIKA WARSZAWSKA Wydział Budownictwa, Mechaniki i Petrochemii Instytut Inżynierii Mechanicznej w Płocku Zakład Aparatury Przemysłowej LABORATORIUM WYMIANY CIEPŁA I MASY Instrukcja stanowiskowa Temat:
Spis treści. PRZEDMOWA.. 11 WYKAZ WAśNIEJSZYCH OZNACZEŃ.. 13
Spis treści PRZEDMOWA.. 11 WYKAZ WAśNIEJSZYCH OZNACZEŃ.. 13 Wykład 16: TERMODYNAMIKA POWIETRZA WILGOTNEGO ciąg dalszy 21 16.1. Izobaryczne chłodzenie i ogrzewanie powietrza wilgotnego.. 22 16.2. Izobaryczne
WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY NA PODSTAWIE PRAWA STOKESA
Ćwiczenie 8 WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY NA PODSTAWIE PRAWA STOKESA Cel ćwiczenia: Badanie ruchu ciał spadających w ośrodku ciekłym, wyznaczenie współczynnika lepkości cieczy metodą Stokesa,
Wykład 14. Termodynamika gazu fotnonowego
Wykład 14 Termodynamika gazu fotnonowego dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 16 stycznia 217 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki statystycznej
OCENA PRZYDATNOŚCI FARBY PRZEWIDZIANEJ DO POMALOWANIA WNĘTRZA KULI ULBRICHTA
OCENA PRZYDATNOŚCI FARBY PRZEWIDZIANEJ DO POMALOWANIA WNĘTRZA KULI ULBRICHTA Przemysław Tabaka e-mail: przemyslaw.tabaka@.tabaka@wp.plpl POLITECHNIKA ŁÓDZKA Instytut Elektroenergetyki WPROWADZENIE Całkowity
WOJSKOWA AKADEMIA TECHNICZNA WYDZIAŁ MECHANICZNY INSTYTUT POJAZDÓW MECHANICZNYCH I TRANSPORTU
WOJSKOWA AKADEMIA TECHNICZNA WYDZIAŁ MECHANICZNY INSTYTUT POJAZDÓW MECHANICZNYCH I TRANSPORTU ZAKŁAD SILNIKÓW POJAZDÓW MECHANICZNYCH ĆWICZENIE LABORATORYJNE Z TERMODYNAMIKI TECHNICZNEJ Temat: Wymiana i
Semestr zimowy Brak Tak
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 01/013 Z-ZIP-1006 Mechanika Płynów i Wymiana Ciepła Fluid Mechanics and Heat Transfer
Wykład 7: Przekazywanie energii elementy termodynamiki
Wykład 7: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ emperatura Fenomenologicznie wielkość informująca o tym jak ciepłe/zimne
POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA
POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA ĆWICZENIE LABORATORYJNE NR 1 Temat: Wyznaczanie współczynnika
WYZNACZANIE WSPÓŁCZYNNIKA WNIKANIA CIEPŁA PODCZAS KONWEKCJI WYMUSZONEJ GAZU W RURZE
Ćwiczenie 1: WYZNACZANIE WSPÓŁCZYNNIKA WNIKANIA CIEPŁA PODCZAS KONWEKCJI WYMUSZONEJ GAZU W RURZE 1. CEL ĆWICZENIA Celem ćwiczenia jest eksperymentalne wyznaczenie współczynnika wnikania ciepła podczas
Sprawdzanie prawa Ohma i wyznaczanie wykładnika w prawie Stefana-Boltzmanna
Sprawdzanie prawa Ohma i wyznaczanie wykładnika w prawie Stefana-Boltzmanna Wprowadzenie. Prawo Stefana Boltzmanna Φ λ nm Rys.1. Prawo Plancka. Pole pod każdą krzywą to całkowity strumień: Φ c = σs T 4
Temperatura, PRZYRZĄDY DO POMIARU TEMPERATURY
Temperatura, PRZYRZĄDY DO POMIARU TEMPERATURY Pojęcie temperatury jako miary stanu cieplnego kojarzy się z odczuciami fizjologicznymi Jeden ze parametrów stanu termodynamicznego układu charakteryzujący
Wyznaczenie współczynników przejmowania ciepła dla konwekcji wymuszonej
LABORATORIUM TERMODYNAMIKI INSTYTUTU TECHNIKI CIEPLNEJ I MECHANIKI PŁYNÓW WYDZIAŁ MECHANICZNO-ENERGETYCZNY POLITECHNIKI WROCŁAWSKIEJ INSTRUKCJA LABORATORYJNA Temat ćwiczenia 18 Wyznaczenie współczynników
Zadania przykładowe z przedmiotu WYMIANA CIEPŁA na II roku studiów IŚ PW
YMIANA CIEPŁA zadania przykładowe Zadania przykładowe z przedmiotu YMIANA CIEPŁA na II roku studiów IŚ P Zad. 1 Obliczyć gęstość strumienia ciepła, przewodzonego przez ściankę płaską o grubości e=10cm,
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na specjalności: Inżynieria cieplna i samochodowa Rodzaj zajęć: wykład, laboratorium Wymiana ciepła Heat transfer Forma
Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał
Statyka Cieczy i Gazów Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał 1. Podstawowe założenia teorii kinetyczno-molekularnej budowy ciał: Ciała zbudowane są z cząsteczek. Pomiędzy cząsteczkami
Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017
Optyka Wykład V Krzysztof Golec-Biernat Fale elektromagnetyczne Uniwersytet Rzeszowski, 8 listopada 2017 Wykład V Krzysztof Golec-Biernat Optyka 1 / 17 Plan Swobodne równania Maxwella Fale elektromagnetyczne
Laboratorium InŜynierii i Aparatury Przemysłu SpoŜywczego
Laboratorium InŜynierii i Aparatury Przemysłu SpoŜywczego 1. Temat ćwiczenia :,,Wyznaczanie współczynnika przenikania ciepła 2. Cel ćwiczenia : Określenie globalnego współczynnika przenikania ciepła k
Wykres fazowy dla wody
Wykres fazowy dla wody ciało stałe ciecz gaz Parowanie przemiana cieczy w gaz Skraplanie przemiana gazu w ciecz Para nasycona para będąca w równowadze ze swoja cieczą Prężność oraz gęstość pary nasyconej
Skuteczność izolacji termicznych
Skuteczność izolacji termicznych Opracowanie Polskiego Stowarzyszenia Wykonawców Izolacji Przemysłowych Warszawa, marzec 2014 rok 1.1. Rola izolacji termicznych. W naszych warunkach klimatycznych izolacje
Prąd elektryczny - przepływ ładunku
Prąd elektryczny - przepływ ładunku I Q t Natężenie prądu jest to ilość ładunku Q przepływającego przez dowolny przekrój przewodnika w ciągu jednostki czasu t. Dla prądu stałego natężenie prądu I jest
dn dt C= d ( pv ) = d dt dt (nrt )= kt Przepływ gazu Pompowanie przez przewód o przewodności G zbiornik przewód pompa C A , p 1 , S , p 2 , S E C B
Pompowanie przez przewód o przewodności G zbiornik przewód pompa C A, p 2, S E C B, p 1, S C [W] wydajność pompowania C= d ( pv ) = d dt dt (nrt )= kt dn dt dn / dt - ilość cząstek przepływających w ciągu
INSTRUKCJA LABORATORYJNA NR 3-WPC WYZNACZANIE WSPÓŁCZYNNIKA PRZEWODZENIA CIEPŁA MATERIAŁÓW BUDOWLANYCH
LABORATORIUM ODNAWIALNYCH ŹRÓDEŁ ENERGII Katedra Aparatury i Maszynoznawstwa Chemicznego Wydział Chemiczny Politechniki Gdańskiej INSTRUKCJA LABORATORYJNA NR 3-WPC WYZNACZANIE WSPÓŁCZYNNIKA PRZEWODZENIA
WŁASNOŚCI CIAŁ STAŁYCH I CIECZY
WŁASNOŚCI CIAŁ STAŁYCH I CIECZY Polimery Sieć krystaliczna Napięcie powierzchniowe Dyfuzja 2 BUDOWA CIAŁ STAŁYCH Ciała krystaliczne (kryształy): monokryształy, polikryształy Ciała amorficzne (bezpostaciowe)
LABORATORIUM METROLOGII
LABORATORIUM METROLOGII POMIARY PRZEWODNOŚCI CIEPLNEJ CIAŁ STAŁYCH Cel ćwiczenia: zapoznanie z metodami pomiaru współczynnika przewodzenia ciepła, oraz jego wyznaczenie metodą stacjonarną. 1 WPROWADZENIE
MECHANIKA PŁYNÓW Płyn
MECHANIKA PŁYNÓW Płyn - Każda substancja, która może płynąć, tj. pod wpływem znikomo małych sił dowolnie zmieniać swój kształt w zależności od naczynia, w którym się znajduje, oraz może swobodnie się przemieszczać
Ψ(x, t) punkt zamocowania liny zmienna t, rozkład zaburzeń w czasie. x (lub t)
RUCH FALOWY 1 Fale sejsmiczne Fale morskie Kamerton Interferencja RÓWNANIE FALI Fala rozchodzenie się zaburzeń w ośrodku materialnym lub próżni: fale podłużne i poprzeczne w ciałach stałych, fale podłużne
Przykładowe kolokwium nr 1 dla kursu. Przenoszenie ciepła ćwiczenia
Przykładowe kolokwium nr 1 dla kursu Grupa A Zad. 1. Określić różnicę temperatur zewnętrznej i wewnętrznej strony stalowej ścianki kotła parowego działającego przy nadciśnieniu pn = 14 bar. Grubość ścianki
TERMODYNAMIKA FENOMENOLOGICZNA
TERMODYNAMIKA FENOMENOLOGICZNA Przedmiotem badań są własności układów makroskopowych w zaleŝności od temperatury. Układ makroskopowy Np. 1 mol substancji - tyle składników ile w 12 gramach węgla C 12 N
Laboratorium. Hydrostatyczne Układy Napędowe
Laboratorium Hydrostatyczne Układy Napędowe Instrukcja do ćwiczenia nr Eksperymentalne wyznaczenie charakteru oporów w przewodach hydraulicznych opory liniowe Opracowanie: Z.Kudżma, P. Osiński J. Rutański,
[ ] ρ m. Wykłady z Hydrauliki - dr inż. Paweł Zawadzki, KIWIS WYKŁAD WPROWADZENIE 1.1. Definicje wstępne
WYKŁAD 1 1. WPROWADZENIE 1.1. Definicje wstępne Płyn - ciało o module sprężystości postaciowej równym zero; do płynów zaliczamy ciecze i gazy (brak sztywności) Ciecz - płyn o małym współczynniku ściśliwości,
Temperatura, ciepło, oraz elementy kinetycznej teorii gazów
Temperatura, ciepło, oraz elementy kinetycznej teorii gazów opis makroskopowy równowaga termodynamiczna temperatura opis mikroskopowy średnia energia kinetyczna molekuł Równowaga termodynamiczna A B A
Analiza spektralna widma gwiezdnego
Analiza spektralna widma gwiezdnego JG &WJ 13 kwietnia 2007 Wprowadzenie Wprowadzenie- światło- podstawowe źródło informacji Wprowadzenie- światło- podstawowe źródło informacji Wprowadzenie- światło- podstawowe
Obliczenie natężenia promieniowania docierającego do powierzchni absorpcyjnej
Kolektor słoneczny dr hab. inż. Bartosz Zajączkowski, prof. uczelni Politechnika Wrocławska Wydział Mechaniczno-Energetyczny Katedra Termodynamiki, Teorii Maszyn i Urządzeń Cieplnych email: bartosz.zajaczkowski@pwr.edu.pl
XXXI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne
XXXI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne Rozwiąż dowolnie przez siebie wybrane dwa zadania spośród poniższych trzech: Nazwa zadania: ZADANIE T A. Oblicz moment bezwładności jednorodnego