Reconstruction of hit time and hit position of annihilation quanta in the J-PET detector usi ng the Mahalanobis distance



Podobne dokumenty
Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

Few-fermion thermometry

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

Wytwarzanie nowych scyntylatorów polimerowych na bazie poliwinylotoluenu do hybrydowego tomografu J-PET/MR

Tychy, plan miasta: Skala 1: (Polish Edition)

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION

Hard-Margin Support Vector Machines

deep learning for NLP (5 lectures)

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

Knovel Math: Jakość produktu

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytet Mikołaja Kopernika w Toruniu

Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019

POLITECHNIKA ŚLĄSKA INSTYTUT AUTOMATYKI ZAKŁAD SYSTEMÓW POMIAROWYCH


Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards

Helena Boguta, klasa 8W, rok szkolny 2018/2019

Latent Dirichlet Allocation Models and their Evaluation IT for Practice 2016

Wprowadzenie do programu RapidMiner, część 2 Michał Bereta 1. Wykorzystanie wykresu ROC do porównania modeli klasyfikatorów

Instrukcja obsługi User s manual

Stargard Szczecinski i okolice (Polish Edition)

Zarządzanie sieciami telekomunikacyjnymi

Revenue Maximization. Sept. 25, 2018

Updated Action Plan received from the competent authority on 4 May 2017

Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions

Country fact sheet. Noise in Europe overview of policy-related data. Poland

Sargent Opens Sonairte Farmers' Market

Zmiany techniczne wprowadzone w wersji Comarch ERP Altum

Institutional Determinants of IncomeLevel Convergence in the European. Union: Are Institutions Responsible for Divergence Tendencies of Some

ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL

The Overview of Civilian Applications of Airborne SAR Systems

Cracow University of Economics Poland

Extraclass. Football Men. Season 2009/10 - Autumn round

Medical electronics part 10 Physiological transducers

Patients price acceptance SELECTED FINDINGS

Akademia Morska w Szczecinie. Wydział Mechaniczny


DETECTION OF MATERIAL INTEGRATED CONDUCTORS FOR CONNECTIVE RIVETING OF FUNCTION-INTEGRATIVE TEXTILE-REINFORCED THERMOPLASTIC COMPOSITES

OpenPoland.net API Documentation

Katowice, plan miasta: Skala 1: = City map = Stadtplan (Polish Edition)

Raport bieżący: 44/2018 Data: g. 21:03 Skrócona nazwa emitenta: SERINUS ENERGY plc

Rev Źródło:

The impact of the global gravity field models on the orbit determination of LAGEOS satellites

INSPECTION METHODS FOR QUALITY CONTROL OF FIBRE METAL LAMINATES IN AEROSPACE COMPONENTS

Label-Noise Robust Generative Adversarial Networks

MaPlan Sp. z O.O. Click here if your download doesn"t start automatically

Streszczenie rozprawy doktorskiej

WYDZIAŁ BIOLOGII I OCHRONY ŚRODOWISKA

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like

QUANTITATIVE AND QUALITATIVE CHARACTERISTICS OF FINGERPRINT BIOMETRIC TEMPLATES

Urbanek J., Jabłoński A., Barszcz T ssswedfsdfurbanek J., Jabłoński A., Barszcz T., Wykonanie pomiarów

Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application

POLITECHNIKA WARSZAWSKA. Wydział Zarządzania ROZPRAWA DOKTORSKA. mgr Marcin Chrząścik

Machine Learning for Data Science (CS4786) Lecture 24. Differential Privacy and Re-useable Holdout

Domy inaczej pomyślane A different type of housing CEZARY SANKOWSKI


UMOWY WYPOŻYCZENIA KOMENTARZ

CEE 111/211 Agenda Feb 17

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

MULTI-MODEL PROJECTION OF TEMPERATURE EXTREMES IN POLAND IN

Linear Classification and Logistic Regression. Pascal Fua IC-CVLab

Installation of EuroCert software for qualified electronic signature

photo graphic Jan Witkowski Project for exhibition compositions typography colors : : janwi@janwi.com

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction

Arrays -II. Arrays. Outline ECE Cal Poly Pomona Electrical & Computer Engineering. Introduction

STAŁE TRASY LOTNICTWA WOJSKOWEGO (MRT) MILITARY ROUTES (MRT)

OPBOX ver USB 2.0 Mini Ultrasonic Box with Integrated Pulser and Receiver

ZGŁOSZENIE WSPÓLNEGO POLSKO -. PROJEKTU NA LATA: APPLICATION FOR A JOINT POLISH -... PROJECT FOR THE YEARS:.

ABOUT NEW EASTERN EUROPE BESTmQUARTERLYmJOURNAL

Forested areas in Cracow ( ) evaluation of changes based on satellite images 1 / 31 O

Innowacje społeczne innowacyjne instrumenty polityki społecznej w projektach finansowanych ze środków Europejskiego Funduszu Społecznego

Filozofia z elementami logiki Klasyfikacja wnioskowań I część 2

Camspot 4.4 Camspot 4.5

Kielce University of Technology.

kdpw_stream Struktura komunikatu: Status komunikatu z danymi uzupełniającymi na potrzeby ARM (auth.ste ) Data utworzenia: r.

Warsztaty Ocena wiarygodności badania z randomizacją

DM-ML, DM-FL. Auxiliary Equipment and Accessories. Damper Drives. Dimensions. Descritpion

Supervised Hierarchical Clustering with Exponential Linkage. Nishant Yadav

MoA-Net: Self-supervised Motion Segmentation. Pia Bideau, Rakesh R Menon, Erik Learned-Miller

ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS.

Baptist Church Records

Blow-Up: Photographs in the Time of Tumult; Black and White Photography Festival Zakopane Warszawa 2002 / Powiekszenie: Fotografie w czasach zgielku

Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)

DODATKOWE ĆWICZENIA EGZAMINACYJNE

Pro-tumoral immune cell alterations in wild type and Shbdeficient mice in response to 4T1 breast carcinomas

Has the heat wave frequency or intensity changed in Poland since 1950?


Opis Przedmiotu Zamówienia oraz kryteria oceny ofert. Części nr 10

Model standardowy i stabilność próżni

OPTYMALIZACJA PUBLICZNEGO TRANSPORTU ZBIOROWEGO W GMINIE ŚRODA WIELKOPOLSKA

Spatial planning in floodplains in mountain catchments of different row, in the basin of the Upper Vistula and the Upper and Central Odra

Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2

Compressing the information contained in the different indexes is crucial for performance when implementing an IR system

METODA OGÓLNEJ OCENY STANU ŚRODO- WISKA OBSZARÓW WIEJSKICH NA PODSTAWIE INFORMACJI Z BANKU DANYCH REGIONALNYCH GUS I OSZACOWAŃ PROGRAMU EMEP

archivist: Managing Data Analysis Results

Tytuł pracy w języku angielskim: Physical properties of liquid crystal mixtures of chiral and achiral compounds for use in LCDs

Transkrypt:

NUKLEONIKA 2015;60(4):765769 doi: 10.1515/nuka-2015-0138 ORIGINAL PAPER Reconstruction of hit time and hit position of annihilation quanta in the J-PET detector usi ng the Mahalanobis distance Neha Gupta Sharma, Michał Silarski, Tomasz Bednarski, Piotr Białas, Eryk Czerwiński, Aleksander Gajos, Marek Gorgol, Bożena Jasińska, Daria Kamińska, Łukasz Kapłon, Grzegorz Korcyl, Paweł Kowalski, Tomasz Kozik, Wojciech Krzemień, Ewelina Kubicz, Szymon Niedźwiecki, Marek Pałka, Lech Raczyński, Zbigniew Rudy, Oleksandr Rundel, Artur Słomski, Adam Strzelecki, Anna Wieczorek, Wojciech Wiślicki, Marcin Zieliński, Bożena Zgardzińska, Paweł Moskal Abstract. The J-PET detector being developed at the Jagiellonian University is a positron emission tomograph composed of the long strips of polymer scintillators. At the same time, it is a detector system that will be used for studies of the decays of positronium atoms. The shape of photomultiplier signals depends on the hit time and hit position of the gamma quantum. In order to take advantage of this fact, a dedicated sampling front-end electronics that enables to sample signals in voltage domain with the time precision of about 20 ps and novel reconstruction method based on the comparison of examined signal with the model signals stored in the library has been developed. As a measure of the similarity, we use the Mahalanobis distance. The achievable position and time resolution depend on the number and values of the threshold levels at which the signal is sampled. A reconstruction method as well as preliminary results are presented and discussed. Key words: J-PET detector Mahalanobis distance time resolution threshold levels N. G. Sharma, T. Bednarski, P. Białas, E. Czerwiński, A. Gajos, D. Kamińska, G. Korcyl, T. Kozik, E. Kubicz, P. Moskal, Sz. Niedźwiecki, M. Pałka, Z. Rudy, O. Rundel, M. Silarski, A. Słomski, A. Strzelecki, M. Zieliński Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 S. Łojasiewicza Str., 30-348, Kraków, Poland, E-mail: pnp.neha@gmail.com Ł. Kapłon, A. Wieczorek Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 S. Łojasiewicza Str., 30-348, Kraków, Poland and Institute of Metallurgy and Materials Science of the Polish Academy of Sciences, 25 W. Reymonta Str., 30-059, Kraków, Poland M. Gorgol, B. Jasińska, B. Zgardzińska Department of Nuclear Methods, Institute of Physics, Maria Curie-Sklodowska University, 1 M. Curie-Sklodowskiej Sq., 20-031, Lublin, Poland P. Kowalski, L. Raczyński, W. Wiślicki Świerk Computing Centre, National Centre for Nuclear Research, 7 Andrzeja Soltana Str., 05-400 Otwock/Świerk, Poland W. Krzemień High Energy Physics Division, National Centre for Nuclear Research, 7 Andrzeja Soltana Str., 05-400 Otwock/Świerk, Poland Received: 5 July 2015, Accepted: 28 August 2015 Introduction A new concept of large acceptance the Jagiellonian positron emission tomograph (J-PET) based on the polymer scintillators [1 9] has been developed recently, which provides a solution for a whole-body positron emission tomograph (PET) imaging with an improved time of flight (TOF) resolution 1, as it relies more on the precise time measurement than on energy resolution (like in traditional PETs) and the signals that we probe are very narrow few nanoseconds. To this end, a dedicated new electronics was developed, which enables signal sampling in voltage domain with a time precision of about 20 ps [13]. Moreover, we have been developing new methods of gamma quanta hit time and hit position reconstruction to fully exploit potential of the new tomograph [11, 14, 15]. One of the developed methods is based on the comparison of measured signals with respect to a library of synchronized model signals registered for a set of well-defined positions of scintillation points. The hit position is reconstructed as the one corresponding to the signal from the library that is most similar to the measured signal [11]. The measured signal can also be compared to the averaged model signals determined for each scintillation point that speeds up significantly the reconstruction [12]. The degree of similarity between the measured and the reference signals from the library can be 1 In current tomographs, the best TOF resolution was achieved with LSO (Lu 2 SiO 2 ) crystals and it is equal to about 400 ps [10] and in our previous studies with the plastic scintillators, ~290 ps was achieved [11, 12].

766 N. G. Sharma et al. expressed by several metrics, e.g. the methods described in the articles [11, 12] use 2 metric. In the present article, we discuss a method based on the Mahalanobis distance [16], which accounts for the correlation among the compared variables. Principle of time and position reconstruction using library of model signals The method was validated by using the experimental data collected by means of the double-strip J-PET prototype and 22 Na isotope as a source of annihilation gamma quanta. For noise suppression and selection of annihilation gamma quanta, a coincident registration of signals from both detectors was used. Pedestal correction was also implemented to all the collected signals. In order to construct the library only with the high-energy deposition events, only those signals were selected for which number of registered photoelectrons is greater than half of the number of photoelectrons corresponding to the Compton edge for 511-keV gamma quanta. Next, a two-dimensional plot of number of photoelectrons obtained from left- and right-sided photomultipliers connected to the same strip was bisected into four regions (region 1, region 2, region 3, and region 4). An example for central position is shown in Fig. 1. Bisection was done in order to suppress the uncertainties arising due to the variation of time resolution as a function of number of registered photoelectrons. Then, for each bisected region, signals were synchronized by shifting their time scales in such a way that time of the gamma quantum hit inside the detector is the same for all events in the library. Finally, the shape of a model signal for each bisected region is determined by averaging pedestal corrected and synchronized signals 2. For reconstructing the hit-position of gamma quanta in the detector, the measured signals are compared with each model signal from the library. Signals can be represented as a vector of time values at defined threshold levels. In this article, we consider two threshold cases ( 60 mv and 120 mv) where t L1, t L2 and t R1, t R2 are time values on left and right signals (registered simultaneously at both ends of the scintillator) defined at 60 mv and 120 mv threshold levels, respectively: (1) t = [t L1, t L2, t R1, t R2 ]. The position and time of the examined signal is determined by minimizing the Mahalanobis distance (Eq. (2)) between this signal and the model signals stored in the library. For each X( t, z,region) (2) Mz (, t,region) Covz (,region) 1 X( t, z,region) 2 For detailed descriptions of experimental setup and the method of constructing library of model signals, see Ref. [12]. Fig. 1. Distribution of number of photoelectrons obtained from left- and right-sided photomultipliers connected to scintillator at central position. (3) Cov(,) ij(,region) z t( ki ( ))(,region) z tavg( i) (,region) z N t( k( j)) (,region) z tavg( j) (,region) z N k1 measured position, a covariance matrix has been constructed using Eq. (3), where k is an index that shows a current signal from the set of measured signals for given position and N is the total number of measured signals. t k(i) indicates an i-th component of the k-th signal and t avg(i) denotes i-th component of the average signal. X (t, z, region) given in Eq. (4) is the difference between the vectors describing the examined and model signals with an additional term t, which is the parameter varied when minimizing the Mahalanobis distance: (4) X( t, z,region) tmodel( i) ( z,region) tk( i) t. () i The reconstructed hit-position is the position of most similar signal from the library with respect to measured signal (i.e., model signal for which Mahalanobis distance computed for different bisected region is minimal 3 ). The time of particle interaction is determined as a relative time between the measured signal and the most similar model signal from the library. This method also provides the determination of the gamma quantum TOF given by Eq. (5): t firststrip = t firststrip (5) t secondstrip = t secondstrip TOF = t secondstrip t firststrip where t firststrip and t secondstrip denote shifts in time obtained for two scintillators, for which the computed Mahalanobis distance defined in Eq. (2) is lowest. 3 The degree of similarity is represented by the Mahalanobis distance value.

Reconstruction of hit time and hit position of annihilation quanta in the J-PET detector... 767 a) Fig. 2. Distribution of Mahalanobis distance (defined in Eq. (3)) for a signal from the central position (i.e., 150 mm) from region 2 and 3. Preliminary results on performance of the method An example of the Mahalanobis distance distribution calculated according to Eq. (2) for one of the measured exemplary signal at central position of the strip is shown in Fig. 2. One can see a clear b) a) Fig. 4. (a) Position resolution as a function of the position of gamma quantum interaction. (b) TOF resolution as a function of position along the scintillator. minimum corresponding to z 150 mm. Figures 3a and 3b show distributions of differences between the true and reconstructed values for position and TOF, respectively 4. The estimated resolution of position and TOF reconstruction based on these distributions amounts to z 10 mm and TOF 140 ps, respectively. They were determined for signals measured at several positions along the scintillator as it is shown in Figs. 4a and 4b. These results indicate that the resolutions do not change much with position. Summary The reconstruction method introduced in this article was validated for two-threshold levels, and the preliminary results show that it is possible to obtain a spatial resolution of about 10 mm () for the gamma quanta hit position and TOF resolution of about 140 ps (). In the present version of the J-PET, which is being built now, we install electronics that will allow us to determine time at four-threshold levels, so a further improvement is expected in the future by including more bisected regions and more threshold levels. b) Fig. 3. (a) Distribution of differences between the true and reconstructed position z for signals measured at z = 150 mm. (b) Distribution of differences between the true and reconstructed TOF for events registered at z = 150 mm. 4 In principle, the true value of TOF should be equal to zero when the source was positioned in the middle between detection modules. However, because of different electronics offsets, the reconstructed mean values of TOF may be different from zero.

768 N. G. Sharma et al. References 1. Moskal, P. (2014). UE Patents Nos. EP2454612B1 and EP2454611B8. Munich: European Patent Office; Moskal, P. (2014). Polish Patents Nos. WO2011008119 and WO2011008118. Kraków: Urząd Patentowy Rzeczypospolitej Polskiej. 2. Moskal, P., Salabura, P., Silarski, M., Smyrski, J., Zdebik, J., & Zieliński, M. (2011). Novel detector systems for the Positron Emission Tomography. Bio-Algorithms and Med-Systems, 7, 73 78. [arxiv:1305.5187]. 3. Moskal, P., Bednarski, T., Białas, P., Ciszewska, M., Czerwiński, E., Heczko, A., Kajetanowicz, M., Kapłon, Ł., Kochanowski, A., Konopka-Cupiał, G., Korcyl, G., Krzemień, W., Łojek, K., Majewski, J., Migdał, W., Molenda, M., Niedzwiecki, Sz., Pałka, M., Rudy, Z., Salabura, P., Silarski, M., Słomski, A., Smyrski, J., Zdebik, J., & Zieliński, M. (2012). STRIP-PET: a novel detector concept for the TOF-PET scanner. Nucl. Med. Rev., 15, C68 C69. [arxiv:1305.5562]. 4. Moskal, P., Bednarski, T., Białas, P., Ciszewska, M., Czerwiński, E., Heczko, A., Kajetanowicz, M., Kapłon, Ł., Kochanowski, A., Konopka-Cupiał, G., Korcyl, G., Krzemień, W., Łojek, K., Majewski, J., Migdał, W., Molenda, M., Niedzwiecki, Sz., Pałka, M., Rudy, Z., Salabura, P., Silarski, M., Słomski, A., Smyrski, J., Zdebik, J., & Zieliński, M. (2012). TOF- -PET detector concept based on organic scintillators. Nucl. Med. Rev., 15, C81 C84. [arxiv:1305.5559]. 5. Moskal, P., Niedźwiecki, Sz., Bednarski, T., Czerwiński, E., Kapłon, Ł., Kubicz, E., Moskal, I., Pawlik-Niedźwiecka, M., Sharma, N. G., Silarski, M., Zieliński, M., Zoń, N., Białas, P., Gajos, A., Kochanowski, A., Korcyl, G., Kowal, J., Kowalski, P., Kozik, T., Krzemień, W., Molenda, M., Pałka, M., Raczyński, L., Rudy, Z., Salabura, P., Słomski, A., Smyrski, J., Strzelecki, A., Wieczorek, A., & Wiślicki, W. (2014). Test of a single module of the J-PET scanner based on plastic scintillators. Nucl. Instrum. Methods Phys. 764, 317 321. DOI: 10.1016/j.nima.2014.07.052. [arxiv:1407.7395]. 6. Kowalski, P., Moskal, P., Wiślicki, W., Raczyński, L., Bednarski, T., Białas, P., Bułka, J., Czerwiński, E., Gajos, A., Gruntowski, A., Kamińska, D., Kapłon, Ł., Kochanowski, A., Korcyl, G., Kowal, J., Kozik, T., Krzemień, W., Kubicz, E., Niedźwiecki, Sz., Pałka, M., Rudy, Z., Salabura, P., Sharma, N. G., Silarski, M., A., Wochlik, I., Zieliński, M., & Zoń, N. (2015). Multiple scattering and accidental coincidences in the J-PET detector simulated using GATE package. Acta Phys. Pol. A, 127(5), 1505 1512. DOI: 10.12693/ APhysPolA.127.1505. [arxiv:1502.04532]. 7. Krzemień, W., Gajos, A., Gruntowski, A., Stoła, K., Trybek, D., Bednarski, T., Bialas, P., Czerwiński, E., Kaminska, D., Kapłon, Ł., Kochanowski, A., Korcyl, G., Kowal, J., Kowalski, P., Kozik, T., Kubicz, E., Moskal, P., Niedźwiecki, Sz., Pałka, M., Raczyński, L., Rudy, Z., Salabura, P., Sharma, N. G., Silarski, M., A., Wiślicki, W., Zieliński, M., & Zon, N. (2015). Analysis framework for the J-PET scanner. Acta Phys. Pol. A, 127(5), 1491 1494. DOI: 10.12693/ APhysPolA.127.1491. [arxiv:1503.00465]. 8. Wieczorek, A., Moskal, P., Niedźwiecki, Sz., Bednarski, T., Białas, P., Czerwiński, E., Danel, A., Gajos, A., Gruntowski, A., Kamińska, D., Kapłon, Ł., Kochanowski, A., Korcyl, G., Kowal, J., Kowalski, P., Kozik, T., Krzemień, W., Kubicz, E., Molenda, M., Pałka, M., Raczyński, L., Rudy, Z., Rundel, O., Salabura, P., Sharma, N. G., Silarski, M., Słomski, A., Smyrski, J., Strzelecki, A., Uchacz, T., Wiślicki, W., Zieliński, M., & Zoń, N. (2015). A pilot study of the novel J-PET plastic scintillator with 2-(4-styrylphenyl)benzoxazole as a wavelength shifter. Acta Phys. Pol. A, 127(5), 1487 1490. DOI: 10.12693/APhysPolA.127.1487. [arxiv:1502.02901]. 9. Białas, P., Kowal, J., Strzelecki, A., Bednarski, T., Czerwiński, E., Gajos, A., Kamińska, D., Kapłon, Ł., Kochanowski, A., Korcyl, G., Kowalski, P., Kozik, T., Krzemień, W., Kubicz, E., Moskal, P., Niedźwiecki, Sz., Pałka, M., Raczyński, L., Rudy, Z., Rundel, O., Salabura, P., Sharma, N. G., Silarski, M., Słomski, A., Smyrski, J., Wieczorek, A., Wiślicki, W., Zieliński, M., & Zoń, N. (2015). GPU accelerated image reconstruction in a two-strip J-PET tomograph. Acta Phys, Pol. A, 127(5), 1500 1504. DOI: 10.12693/ APhysPolA.127.1500. [arxiv:1502.07478]. 10. Moses, W. W., & Derenzo, S. E. (1999). Prospects for time-of-flight PET using LSO scintillator. IEEE Trans. Nucl. Sci., 46, 474 478. DOI: 10.1109/23.775565. 11. Moskal, P., Zoń, N., Bednarski, T., Białas, P., Czerwiński, E., Gajos, A., Kamińska, D., Kapłon, Ł., Kochanowski, A., Korcyl, G., Kowal, J., Kowalski, P., Kozik, T., Krzemień, W., Kubicz, E., Niedźwiecki, Sz., Pałka, M., Raczyński, L., Rudy, Z., Rundel, O., Salabura, P., Sharma, N. G., Silarski, M., Słomski, A., Smyrski, J., Strzelecki, A., Wieczorek, A., Wiślicki, W., & Zieliński, M. (2015). A novel method for the line-of-response and time-of-flight reconstruction in TOF-PET detectors based on a library of synchronized model signals. Nucl. Instrum. Methods Phys. 775, 54 62. DOI: 10.1016/j.nima.2014.12.005. [arxiv:1412.6963]. 12. Moskal, P., Sharma, N. G., Silarski, M., Bednarski, T., Białas, P., Bulka, J., Czerwiński, E., Gajos, A., Kamińska, D., Kapłon, Ł., Kochanowski, A., Korcyl, G., Kowal, J., Kowalski, P., Kozik, T., Krzemień, W., Kubicz, E., Niedźwiecki, Sz., Pałka, M., Raczyński, L., Rudy, Z., Rundel, O., Salabura, P., Słomski, A., Smyrski, J., Strzelecki, A., Wieczorek, A., Wiślicki, W., Wochlik, I., Zieliński, M., & Zoń, N. (2015). Hit time and hit position reconstruction in the J-PET detector based on a library of averaged model signals. Acta Phys. Pol. A, 127(5), 1495 1499. DOI: 10.12693/ APhysPolA.127.149. [arxiv:1502.07886]. 13. Pałka, M., Bednarski, T., Białas, P., Czerwiński, E., Kapłon, Ł., Kochanowski, A., Korcyl, G., Kowal, J., Kowalski, P., Kozik, T., Krzemień, W., Molenda, M., Moskal, P., Niedźwiecki, Sz., Pawlik, M., Raczyński, L., Rudy, Z., Salabura, P., Sharma, N. G., Silarski, M., Słomski, A., Smyrski, J., Strzelecki, A., Wiślicki, W., Zieliński, M., & Zoń, N. (2014). A novel method based solely on FPGA units enabling measurement of time and charge of analog signals in Positron Emission Tomography. Bio-Algorithms and Med-Systems, 10(1), 41 45. DOI: 10.1515/bams-2013-0104. [arxiv:1311.6127]. 14. Raczyński, L., Moskal, P., Kowalski, P., Wiślicki, W., Bednarski, T., Białas, P., Czerwiński, E., Kapłon, Ł., Kochanowski, A., Korcyl, G., Kowal, J., Kozik, T., Krzemień, W., Kubicz, E., Molenda, M., Moskal, I., Niedźwiecki, Sz., Pałka, M., Pawlik-Niedźwiecka, M., Rudy, Z., Salabura, P., Sharma, N. G., Silarski, M., A., Zieliński, M., & Zoń, N. (2014). Novel method for hit-position reconstruction using voltage signals

Reconstruction of hit time and hit position of annihilation quanta in the J-PET detector... 769 in plastic scintillators and its application to Positron Emission Tomography. Nucl. Instrum. Methods Phys. 764, 186 192. DOI: 10.1016/j.nima.2014.07.032. [arxiv:1311.6127]. 15. Raczyński, L., Moskal, P., Kowalski, P., Wiślicki, W., Bednarski, T., Białas, P., Czerwiński, E., Gajos, A., Kapłon, Ł., Kochanowski, A., Korcyl, G., Kowal, J., Kozik, T., Krzemień, W., Kubicz, E., Niedźwiecki, Sz., Pałka, M., Rudy, Z., Rundel, O., Salabura, P., Sharma, N. G., Silarski, M., Słomski, A., Smyrski, J., Strzelecki, A., Wieczorek, A., Zieliński, M., & Zoń, N. (2015). Compressive sensing of signals generated in plastic scintillators in a novel J-PET instrument. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 786, 105 112. DOI: 10.1016/j.nima.2015.03.032. [arxiv:1503.05188]. 16. Mahalanobis, P. C. (1936). On the generalised distance in statistics. Proceedings of the National Institute of Sciences of India, 2(1), 49 55. 17. Bettinardi, V., Presotto, L., Rapisarda, E., Picchio, M., Gianolli, L., & Gilardi, M. C. (2011). Physical performance of the new hybrid PET/CT Discovery-690. Med. Phys., 38(10), 5394 5411. DOI: 10.1118/1.3635220.