Wykład II. Pamięci półprzewodnikowe. Studia Podyplomowe INFORMATYKA Architektura komputerów

Podobne dokumenty
Wykład II. Pamięci operacyjne. Studia stacjonarne Pedagogika Budowa i zasada działania komputera

Wykład I. Podstawowe pojęcia Pamięci półprzewodnikowe. Studia stacjonarne inżynierskie, kierunek INFORMATYKA Architektura systemów komputerowych

Wykład II. Pamięci półprzewodnikowe. Studia stacjonarne inżynierskie, kierunek INFORMATYKA Architektura systemów komputerowych

Wykład II. Pamięci półprzewodnikowe. Studia stacjonarne inżynierskie, kierunek INFORMATYKA Architektura systemów komputerowych

PAMIĘCI. Część 1. Przygotował: Ryszard Kijanka

Struktura i funkcjonowanie komputera pamięć komputerowa, hierarchia pamięci pamięć podręczna. System operacyjny. Zarządzanie procesami

Temat: Pamięci. Programowalne struktury logiczne.

Pamięci półprzewodnikowe w oparciu o książkę : Nowoczesne pamięci. Ptc 2013/

Wykład I. Podstawowe pojęcia. Studia Podyplomowe INFORMATYKA Architektura komputerów

43 Pamięci półprzewodnikowe w technice mikroprocesorowej - rodzaje, charakterystyka, zastosowania

Podstawy Informatyki JA-L i Pamięci

RODZAJE PAMIĘCI RAM. Cz. 1

dr inż. Jarosław Forenc

dr inż. Jarosław Forenc Dotyczy jednostek operacyjnych i ich połączeń stanowiących realizację specyfikacji typu architektury

Zasada działania pamięci RAM Pamięć operacyjna (robocza) komputera - zwana pamięcią RAM (ang. Random Access Memory - pamięć o swobodnym dostępie)

Architektura komputerów

dr inż. Jarosław Forenc

Pamięci półprzewodnikowe

Pamięć wewnętrzna ROM i RAM

Pamięci półprzewodnikowe na podstawie książki: Nowoczesne pamięci

Technika mikroprocesorowa. W. Daca, Politechnika Szczecińska, Wydział Elektryczny, 2007/08

Pamięć operacyjna komputera

Opracował: Grzegorz Cygan 2012 r. CEZ Stalowa Wola. Pamięci półprzewodnikowe

Architektura systemu komputerowego

System mikroprocesorowy i peryferia. Dariusz Chaberski

LEKCJA. TEMAT: Pamięć operacyjna.

Podstawowe zadanie komputera to wykonywanie programu Program składa się z rozkazów przechowywanych w pamięci Rozkazy są przetwarzane w dwu krokach:

Pamięć wirtualna. Przygotował: Ryszard Kijaka. Wykład 4

Architektura harwardzka Architektura i organizacja systemu komputerowego Struktura i funkcjonowanie komputera procesor, rozkazy, przerwania

Spis treúci. Księgarnia PWN: Krzysztof Wojtuszkiewicz - Urządzenia techniki komputerowej. Cz. 1. Przedmowa Wstęp... 11

Systemy operacyjne i sieci komputerowe Szymon Wilk Superkomputery 1

LEKCJA TEMAT: Zasada działania komputera.

Budowa i zasada działania komputera. dr Artur Bartoszewski

Pamięć RAM. Pudełko UTK

Cyfrowe układy scalone

Temat: Pamięć operacyjna.

Cyfrowe układy scalone

Podzespoły Systemu Komputerowego:

Logiczny model komputera i działanie procesora. Część 1.

Zaleta duża pojemność, niska cena

Artykuł zawiera opis i dane techniczne

MIKROKONTROLERY I MIKROPROCESORY

Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego 21

WPROWADZENIE Mikrosterownik mikrokontrolery

Spis treœci. Co to jest mikrokontroler? Kody i liczby stosowane w systemach komputerowych. Podstawowe elementy logiczne

Który z podzespołów komputera przy wyłączonym zasilaniu przechowuje program rozpoczynający ładowanie systemu operacyjnego? A. CPU B. RAM C. ROM D.

Pamięci magnetorezystywne MRAM czy nowa technologia podbije rynek pamięci RAM?

Organizacja typowego mikroprocesora

dr hab. Joanna Jędrzejowicz Podstawy informatyki i komputeryzacji Gdańska Wyższa Szkoła Humanistyczna

PAMIĘCI SYNCHRONICZNE

PODSTAWY INFORMATYKI

Wykład IV. Układy we/wy. Studia Podyplomowe INFORMATYKA Architektura komputerów

Tranzystor JFET i MOSFET zas. działania

Pamięć. Podstawowe własności komputerowych systemów pamięciowych:

Architektura Systemów Komputerowych. Paweł Pełczyński

Budowa pamięci RAM Parametry: tcl, trcd, trp, tras, tcr występują w specyfikacjach poszczególnych pamięci DRAM. Czym mniejsze są wartości tych

Układ sterowania, magistrale i organizacja pamięci. Dariusz Chaberski

Podstawy Informatyki DMA - Układ bezpośredniego dostępu do pamięci

ARCHITEKTURA PROCESORA,

REFERAT PAMIĘĆ OPERACYJNA

Komputer IBM PC niezależnie od modelu składa się z: Jednostki centralnej czyli właściwego komputera Monitora Klawiatury

Sprawdzian test egzaminacyjny GRUPA I

Architektura komputerów

Pamięć operacyjna (robocza) komputera - zwana pamięcią RAM (ang. Random Acces Memory - pamięć o swobodnym dostępie) służy do przechowywania danych

Zaliczenie Termin zaliczenia: Sala IE 415 Termin poprawkowy: > (informacja na stronie:

Bramki logiczne Podstawowe składniki wszystkich układów logicznych

Architektura systemów komputerowych. dr Artur Bartoszewski

Architektura komputera

Architektura systemów komputerowych. dr Artur Bartoszewski

PROJEKTOWANIE SYSTEMÓW KOMPUTEROWYCH

Mikroprocesor Operacje wejścia / wyjścia

Wykład Mikroprocesory i kontrolery

Podstawy obsługi komputerów. Budowa komputera. Podstawowe pojęcia

Układy sekwencyjne. Podstawowe informacje o układach cyfrowych i przerzutnikach (rodzaje, sposoby wyzwalania).

Przestrzeń pamięci. Układy dekoderów adresowych

Architektura komputera. Dane i rozkazy przechowywane są w tej samej pamięci umożliwiającej zapis i odczyt

Magistrala systemowa (System Bus)

Architektura komputerów

Architektura komputera. Cezary Bolek. Uniwersytet Łódzki. Wydział Zarządzania. Katedra Informatyki. System komputerowy

Współpraca procesora ColdFire z pamięcią

Technika Mikroprocesorowa

UKŁADY PAMIĘCI. Tomasz Dziubich

Programowanie sterowników PLC wprowadzenie

Cyfrowe układy scalone

Dydaktyka Informatyki budowa i zasady działania komputera

Urządzenia Techniki. Klasa I TI 5. PAMIĘĆ OPERACYJNA.

W sklepie komputerowym sprzedawca zachwala klientowi swój najnowszy towar: -Ten komputer wykona za pana połowę pracy! - W takim razie biorę dwa.

Pamięć operacyjna. Moduł pamięci SDR SDRAM o pojemności 256MB

Technologia informacyjna. Urządzenia techniki komputerowej

dr inż. Jarosław Forenc

2. Architektura mikrokontrolerów PIC16F8x... 13

Wykład I. Podstawowe pojęcia. Studia stacjonarne Pedagogika Budowa i zasada działania komputera

Wybrane bloki i magistrale komputerów osobistych (PC) Opracował: Grzegorz Cygan 2010 r. CEZ Stalowa Wola

Podstawy Projektowania Przyrządów Wirtualnych. Wykład 9. Wprowadzenie do standardu magistrali VMEbus. mgr inż. Paweł Kogut

Dyski półprzewodnikowe

1.2 Schemat blokowy oraz opis sygnałów wejściowych i wyjściowych

Wykorzystanie standardu JTAG do programowania i debugowania układów logicznych

Architektura komputerów. Układy wejścia-wyjścia komputera

Rys. 1. Podłączenie cache do procesora.

Transkrypt:

Studia Podyplomowe INFORMATYKA Architektura komputerów Wykład II Pamięci półprzewodnikowe 1,

Pamięci półprzewodnikowe Pamięciami półprzewodnikowymi nazywamy cyfrowe układy scalone przeznaczone do przechowywania większych ilości informacji w postaci binarnej. Pojemnością pamięci nazywamy maksymalną ilość informacji, jaką możemy przechować w danej pamięci. 2

Pamięci półprzewodnikowe Pamięcią o dostępie swobodnym nazywamy pamięć, dla której czas dostępu praktycznie nie zależy od adresu słowa w pamięci, czyli od miejsca, w którym jest przechowywana informacja, UWAGA: Pamięci ROM są pamięciami o dostępie swobodnym w przeciwieństwie do pamięci o dostępie sekwencyjnym (kolejki danych, pamięci taśmowe), czy pamięci o dostępie blokowym (pamięci masowe). 3

Pamięci półprzewodnikowe Pamięcią RAM nazywamy pamięć półprzewodnikową o dostępie swobodnym przeznaczaną do zapisu i odczytu. Pamięć RAM jest pamięcią ulotną, co ozna cza, że po wyłączeniu jej zasilania informacja w niej przechowywana jest tracona. Pamięcią ROM nazywamy pamięć półprzewodnikową o dostępie swobodnym, której zapis następuje na innej drodze niż odczyt (dawniej pamięć tylko do odczytu). Pamięć ROM jest pamięcią nieulotną. 4

Pamięci półprzewodnikowe Ze względu na technologię wykonania, pamięci RAM dzielimy na dwie podstawowe grupy: pamięci dynamiczne DRAM pamięci statyczne - SRAM. Pamięci dynamiczne są pamięciami wolniejszymi ale tańsze od pamięci statycznych. Pamięci dynamiczne znacznie łatwiej podlegają scalaniu, co oznacza, że dla porównywalnej wielkości układu uzyskujemy w nich znacznie większe pojemności. Wadą pamięci dynamicznych jest fakt, że dla poprawnego ich funkcjonowania konieczny jest tak zwany proces odświeżania. Polega on na cyklicznym, ponownym zapisie przechowywanej informacji do komórek tej pamięci. 5

Pamięci półprzewodnikowe Informacje przechowywane są w pamięci DRAM pod postacią ładunku zgromadzonego przez kondensator. Kondensator naładowany 1 Kondensator rozładowany 0 http://www.bryk.pl/teksty/liceum/pozosta%c5%82 e/informatyka/ Komórka (bit) pamięci dynamicznej to zaledwie 2 jeden tranzystor i 2 kondensatory. 6

Pamięci półprzewodnikowe Gdy linia słowa jest w stanie "1", tranzystory są włączone. Gdy linia słowa jest w stanie "0", tranzystory są wyłączone. Przerzutnik statyczny w komórce pamięci trwa w stanie, jaki został ostatnio zapisany. http://vlsi.imio.pw.edu.pl/pmk/pmk_w7_3.html Każda komórka (bit) pamięci statycznej składa się z kilku bramek logicznych i tranzystorów. 7

Pamięci półprzewodnikowe Pamięci dynamiczne stosowane są do budowy głównej pamięci operacyjnej komputera (RAM). Szybkie pamięci statyczne stosowane są do budowy pamięci podręcznej (cache) 8

Kości pamięci DB - Szyna wejścia/wyjścia danych służy do wprowadzania i wyprowadzania informacji do i z pamięci. AB - Wejście adresowe służy do dokonania wyboru, na którym z wielu słów w pamięci zastanie wykonana operacja (zapisu bądź odczytu). R/W# - Wejście sterujące informuje układ pamięci, jakiego rodzaju operacja będzie wykonywana: odczyt czy zapis. CS# - służy do uaktywnienia układu pamięci. Wejście to jest używane przy budowie zespołów pamięci metodą łączenia dwóch lub więcej układów scalonych pamięci. 9

Organizacja pamięci Adresem nazywamy niepowtarzalną liczbę (numer) przypisaną danemu miejscu (słowu) w pamięci celem jego identyfikacji Słowem w pamięci nazywamy zestaw pojedynczych komórek pamięci, do którego odwołujemy się pojedynczym adresem. Organizacją pamięci nazywamy sposób podziału obszaru pamięci na słowa. 10

Organizacja pamięci Z warunku niepowtarzalności adresu wynika minimalna ilość linii szyny adresowej: Przy m-bitowej szynie danych mamy do dyspozycji 2 m rożnych adresów. N =2 m M = n * 2 m gdzie: m szerokość magistrali N ilość słów n długość słowa M Pojemność pamięci 11

Organizacja pamięci Pamięci na obu rysunkach mają tą samą pojemność (32b). Różnią się natomiast organizacją. Pamięć z rysunku a) ma organizację bitową. Możemy o niej powiedzieć, że jest to pamięć 32 x 1b. Pamięć z rysunku b) ma organizacje bajtową, czyli jest to pamięć 4 x 8b (lub inaczej 4 x 1B). 12

Łączenie układów pamięci Budowa bloków (banków) pamięci polega na łączeniu układów scalonych pamięci o określonej pojemności i organizacji w ten sposób, aby uzyskać zespoły pamięci o większej pojemności i/lub o zmienionej długości słowa. Stąd problem rozbudowy pamięci możemy podzielić na dwa podstawowe przypadki: zwiększanie (rozszerzanie) długości słowa przy niezmienionej ilości słów zwiększanie ilości słów przy niezmienionej długości słowa. Oczywiście obydwa przypadki mogą występować (i w praktyce często występują) jednocześnie. 13

Łączenie układów pamięci Zwiększanie długości słowa 14

Łączenie układów pamięci W celu zwiększenia długości słowa pamięci szerszą magistralę danych budujemy z bitów linii danych kolejnych układów scalonych pamięci, natomiast magistralę adresową i sygnały sterujące łączymy równolegle. We wszystkich połączonych układach, wybieramy słowa położone w takim samym miejscu. Wszystkie układy dostają te same sygnały sterujące. Wszystkie układy są równocześnie uaktywnione (sygnałcs#). Na wszystkich słowach składowych wykonujemy tę samą operację, zapis lub odczyt, (ten sam sygnał R/W#) 15

Łączenie układów pamięci Zwiększenie liczby słów w pamięci (zwiększenie pojemności pamięci) Bity A19 i A18 adresu, podawane na dekoder, uaktywniają dokładnie jedno z jego czterech wyjść. Powoduje to uaktywnienie dokładnie jednego układu scalonego pamięci. W ramach tego układu przy pomocy pozostałych bitów adresu wybieramy słowo, na którym zostanie wykonana operacja zapisu bądź odczytu. 16

Łączenie układów pamięci Zwiększenie ilości słów pamięci oznacza zwiększenie ilości potrzebnych adresów, a co za tym idzie - rozbudowę szyny adresowej o dodatkowe bity potrzebne do uzyskania tych adresów. Przy niezmienionej długości słowa szyna danych pozostaje bez zmian. Dodatkowe bity adresu służą, przy wykorzystaniu dekodera, do wyboru jednego z łączonych układów pamięci, z którego odczytamy lub do którego zapiszemy informacje. Wyboru dokonujemy przy użyciu wejścia CS# uaktywniającego układy scalone pamięci. Magistrale adresowe, danych i sygnały sterujące układów, z których budujemy nowy blok pamięci, łączymy równolegle. 17

Obsługa pamięci DRAM Sposób adresowania słowa w pamięci DRAM Wyprowadzenia pamięci DRAM 18

Obsługa pamięci DRAM Adres słowa, na którym chcemy wykonać operacje, podawany jest w dwóch równych częściach zwanych adresem wiersza i adresem kolumny. Zmniejsza to ilość potrzebnych wyprowadzeń szyny adresowej i upraszcza konstrukcję dekoderów adresu. 19

Operacja odczytu dla pamięci DRAM 20

Odświeżanie pamięci DRAM Czas, jaki upływa od momentu podania prawidłowego adresu przez zarządcę magistral do momentu pojawienia się poprawnych danych na magistrali adresowej, nazywamy czasem dostępu (t a ). Po odczycie zawartości słowa musi upłynąć kolejny odcinek czasu potrzebny do doładowania komórek pamięci odczytywanego słowa (ang. precharge delay). Dopiero wówczas może się rozpocząć kolejny cykl dostępu do pamięci. Odświeżanie komórek pamięci DRAM polega na cyklicznym doładowywaniu pojemności pamiętających przechowujących wartość 1. 21

Dostęp w trybie stronicowanym Dostęp do pamięci w trybie stronicowania jest sposobem na przyspieszenie współpracy z pamięcią DRAM. Wykorzystuje się tu dwa fakty. 1. Większość odczytów dokonywana jest spod kolejnych, położonych koło siebie adresów. Oznacza to, że starsza część adresu, adres wiersza, nie zmienia się, a zmienia się jedynie adres kolumny. 2. Czas przesłania adresu wiersza stanowi około 50% czasu dostępu. Jeżeli przy odczytach kolejnych słów nie będziemy zmieniać adresu wiersza, a jedynie adres kolumny, to czas dostępu do pamięci ulegnie skróceniu. 22

Dostęp w trybie stronicowanym Realizacja efektywnego trybu ze stronicowaniem wymaga od procesora możliwości adresowania potokowego, czyli możliwości podania adresu następnego słowa jeszcze w czasie realizacji dostępu do słowa poprzedniego. 23

Dostęp w trybie seryjnym (bust) Dostęp w trybie seryjnym (ang. bursf) stosowany jest przy współpracy pamięci głównej z pamięcią cache. Pamięć ta odczytuje bądź zapisuje informacje liniami, których długość zależy od rozwiązania pamięci cache. Przykładowo dla systemów z procesorem 80486 wynosi 16 bajtów. Ponieważ procesor ten ma magistrale danych 32-bitową (4 bajty), do wypełnienia linii potrzeba 4 dostępów do pamięci. Operacje te dotyczą jednak kolejnych, leżących obok siebie słów. Oznacza to, że adres wiersza nie będzie się zmieniał, zaś adres kolumny przy każdym kolejnym dostępie będzie większy o jeden. 24

Dostęp w trybie seryjnym (bust) Dostęp w trybie seryjnym (ang. bursf) stosowany jest przy współpracy pamięci głównej z pamięcią cache. Pamięć ta odczytuje bądź zapisuje informacje liniami, których długość zależy od rozwiązania pamięci cache. Przykładowo dla systemów z procesorem 80486 wynosi 16 bajtów. Ponieważ procesor ten ma magistrale danych 32-bitową (4 bajty), do wypełnienia linii potrzeba 4 dostępów do pamięci. Operacje te dotyczą jednak kolejnych, leżących obok siebie słów. Oznacza to, że adres wiersza nie będzie się zmieniał, zaś adres kolumny przy każdym kolejnym dostępie będzie większy o jeden. 25

Synchroniczna pamięć RAM SRAM (S = Synchroniczne) Wszystkie sygnały sterujące pamięci SDRAM synchronizowane są przez jeden przebieg zegarowy. Ułatwia to współpracę pamięci z magistralami. Sygnał taktujący pozwala na dokładne zsynchronizowanie ze sobą operacji wykonywanych przez pamięć i jej kontroler umożliwia to skrócenie czasu przeznaczonego na te operacje, a więc przyspieszenie działania pamięci. Obsługa odświeżania pamięci przeniesiona została do wnętrza kości. Każdy chip wyposażony jest we własny generator pobudzający w odpowiednim rytmie wszystkie komórki pamięci. Powoduje to odciążenie kontrolera pamięci i umożliwia dalsze przyspieszenie jej pracy. 26

Synchroniczna pamięć RAM SRAM (S = Synchroniczne) Wszystkie sygnały sterujące pamięci SDRAM synchronizowane są przez jeden przebieg zegarowy. Ułatwia to współpracę pamięci z magistralami. Sygnał taktujący pozwala na dokładne zsynchronizowanie ze sobą operacji wykonywanych przez pamięć i jej kontroler umożliwia to skrócenie czasu przeznaczonego na te operacje, a więc przyspieszenie działania pamięci. Obsługa odświeżania pamięci przeniesiona została do wnętrza kości. Każdy chip wyposażony jest we własny generator pobudzający w odpowiednim rytmie wszystkie komórki pamięci. Powoduje to odciążenie kontrolera pamięci i umożliwia dalsze przyspieszenie jej pracy. 27

Synchroniczna pamięć RAM Pamięć SDRAM podzielona jest na niezależne moduły zwane bankami. Przed przystąpieniem do zapisu bank należy aktywować, to znaczy przygotować elektronikę kości do rozpoczęcia operacji wymiany danych. 28

Pamięć ROM Komórka pamięci FLASHROM (jedno z dwu obecnie stosowanych rozwiązań) 29

Pamięć ROM Pamięć ROM (ang. read only memory) jest pamięcią nieulotną, gdzie zapis następuje na innej drodze niż odczyt. Nieulotność oznacza, że po wyłączeniu napięcia zasilania tej pamięci, informacja w niej przechowywana nie jest tracona (zapominana). Do pamięci tej nie możemy zapisywać danych w trakcie jej normalnej pracy w systemie (cyklu rozkaowego). Pamięci ROM są pamięciami o dostępie swobodnym. Określenie, że jest to pamięć tylko do odczytu, nie jest równoznaczne z tym, że zawartości tej pamięci w określonych warunkach nie można zmieniać. Dla niektórych typów technologicznych pamięci ROM jest to możliwe. 30

Rodzaje pamięci ROM 1. MROM (ang. mascable ROM) - pamięci, których zawartość jest ustalana w procesie produkcji (przez wykonanie odpowiednich masek - stąd nazwa) i nie może być zmieniana. Przy założeniu realizacji długich serii produkcyjnych jest to najtańszy rodzaj pamięci ROM. W technice komputerowej dobrym przykładem zastosowania tego typu pamięci jest BIOS obsługujący klawiaturę. 2. PROM (ang. programmable ROM) - pamięć jednokrotnie programowalna. Oznacza to, że użytkownik może sam wprowadzić zawartość tej pamięci, jednakże potem nie można jej już zmieniać. Cecha ta wynika z faktu, że programowanie tej pamięci polega na nieodwracalnym niszczeniu niektórych połączeń wewnątrz niej. Obecnie ten typ pamięci nie jest już używany. 31

Rodzaje pamięci ROM 3. EPROM - pamięć wielokrotnie programowalna, przy czym kasowanie poprzedniej zawartości tej pamięci odbywa się drogą naświetlania promieniami UV. Programowanie i kasowanie zawartości tej pamięci odbywa się poza systemem w urządzeniach zwanych odpowiednio kasownikami i programatorami pamięci. Pamięć ta wychodzi już z użycia. 4. EEPROM - pamięć kasowana i programowana na drodze czysto elektrycznej. Istnieje możliwość wprowadzenia zawartości tego typu pamięci bez wymontowywania jej z systemu (jeżeli oczywiście jego projektant przewidział taką opcje) choć czas zapisu informacji jest nieporównywalnie dłuższy niż czas zapisu do pamięci RAM. Wykonywana w różnych postaciach (np. jako FLASH), różniących się sposobem organizacji kasowania i zapisu. 32

Literatura: Metzger Piotr - Anatomia PC, wydanie XI, Helion 2007 Wojtuszkiewicz Krzysztof - Urządzenia techniki komputerowej, część I: Jak działa komputer, MIKOM, Warszawa 2000 Wojtuszkiewicz Krzysztof - Urządzenia techniki komputerowej, część II: Urządzenia peryferyjne i interfejsy, MIKOM, Warszawa 2000 Komorowski Witold - Krótki kurs architektury i organizacji komputerów, MIKOM Warszawa 2004 Gook Michael - Interfejsy sprzętowe komputerów PC, Helion, 2005 33 dr Artur Bartoszewski - WYKŁAD: Podstawy informatyki; Studia Podyplomowe INFORMATYKA, Edycja 11