LABORATORIUM PRZEKŁADNIKÓW

Podobne dokumenty
LABORATORIUM PRZEKŁADNIKÓW

LABORATORIUM PRZEKŁADNIKÓW

LABORATORIUM PRZEKŁADNIKÓW

BADANIE PRZEKŁADNIKÓW PRĄDOWYCH

PL B1. Sposób wyznaczania błędów napięciowego i kątowego indukcyjnych przekładników napięciowych dla przebiegów odkształconych

Ćwiczenie: "Obwody ze sprzężeniami magnetycznymi"

LABORATORIUM PRZEKŁADNIKÓW

Wydział Elektryczny Katedra Elektroenergetyki. Instrukcja do zajęć laboratoryjnych. Ćwiczenie nr 1

INSTRUKCJA LABORATORIUM ELEKTROTECHNIKI BADANIE TRANSFORMATORA. Autor: Grzegorz Lenc, Strona 1/11

14. PARAMETRY PRZEKŁADNIKÓW PRĄDOWYCH

LABORATORIUM PODSTAW ELEKTROTECHNIKI Badanie transformatora jednofazowego

Wyznaczenie parametrów schematu zastępczego transformatora

Laboratorium Elektroenergetycznej Automatyki Zabezpieczeniowej Instrukcja laboratoryjna LABORATORIUM ELEKTROENERGETYCZNEJ AUTOMATYKI ZABEZPIECZENIOWEJ

transformatora jednofazowego.

PL B1. Sposób oceny dokładności transformacji indukcyjnych przekładników prądowych dla prądów odkształconych. POLITECHNIKA ŁÓDZKA, Łódź, PL

Badanie transformatora

15. UKŁADY POŁĄCZEŃ PRZEKŁADNIKÓW PRĄDOWYCH I NAPIĘCIOWYCH

Politechnika Wrocławska Instytut Maszyn, Napędów i Pomiarów Elektrycznych Z TR C. Materiał ilustracyjny do przedmiotu. (Cz. 3)

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude

Ć W I C Z E N I E nr 9 BADANIE TRANSFORMATORA JEDNOFAZOWEGO

I. Cel ćwiczenia: Poznanie własności obwodu szeregowego, zawierającego elementy R, L, C.

Badanie przekładnika prądowego

LABORATORIUM PODSTAWY ELEKTROTECHNIKI

PRZEKŁADNIK NAPIĘCIOWY WNĘTRZOWY VTD 12

POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C

Temat: Analiza pracy transformatora: stan jałowy, obciążenia i zwarcia.

ĆWICZENIE NR 7. Badanie i pomiary transformatora

I. Cel ćwiczenia: Poznanie własności obwodu szeregowego zawierającego elementy R, L, C.

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2014/2015

TRANSFORMATORY. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Ćwiczenie 15. Sprawdzanie watomierza i licznika energii

Ćwiczenie nr 7. Badanie wybranych elementów i układów z rdzeniami ferromagnetycznymi

DOBÓR PRZEKŁADNIKÓW NAPIĘCIOWYCH DO UKŁADÓW POMIAROWYCH I ZABEZPIECZENIOWYCH

Ćwiczenie 6. BADANIE TRANSFORMATORÓW STANOWISKO I. Badanie transformatora jednofazowego V 1 X

Generator. R a. 2. Wyznaczenie reaktancji pojemnościowej kondensatora C. 2.1 Schemat układu pomiarowego. Rys Schemat ideowy układu pomiarowego

PRZEKŁADNIKI PRĄDOWE MONTAŻ I EKSPLOATACJA

Schemat ten jest stosowany w schematach zastępczych sieci elektroenergetycznych, przy obliczeniach prądów zwarciowych.

EFEKTYWNE UŻYTKOWANIE ENERGII ELEKTRYCZNEJ

Pomiar mocy czynnej, biernej i pozornej

Pomiar wysokich napięć

I. Cel ćwiczenia: Poznanie budowy i właściwości transformatora jednofazowego.

ENERGIA BEZPIECZNIE POŁĄCZONA APARATURA ŁĄCZENIOWA. Nowość PRZEKŁADNIKI PRĄDOWE NISKIEGO NAPIĘCIA

ĆWICZENIE 5 BADANIE PRZEKŁADNIKA FERRANTIEGO

PROTOKÓŁ POMIARY W OBWODACH PRĄDU PRZEMIENNEGO

Politechnika Wrocławska Instytut Maszyn, Napędów i Pomiarów Elektrycznych. Materiał ilustracyjny do przedmiotu. (Cz. 4)

Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4)

z ćwiczenia nr Temat ćwiczenia: BADANIE RÓWNOLEGŁEGO OBWODU RLC (SYMULACJA)

Ćwiczenie nr.14. Pomiar mocy biernej prądu trójfazowego. Q=UIsinϕ (1)

BADANIE ELEKTRYCZNEGO OBWODU REZONANSOWEGO RLC

Ćwiczenie 3 BADANIE OBWODÓW PRĄDU SINUSOIDALNEGO Z ELEMENTAMI RLC

BADANIE IZOLACJI ODŁĄCZNIKA ŚREDNIEGO NAPIĘCIA

PRZEKŁADNIKI W IZOLACJI ŻYWICZNEJ WNĘTRZOWE I NAPOWIETRZNE INTRA

Impedancje i moce odbiorników prądu zmiennego

Pracownia Elektrotechniki

TRANSFORMATOR TRÓJFAZOWY

Ćwiczenie nr.13 Pomiar mocy czynnej prądu trójfazowego

ĆWICZENIE NR 5 BADANIE ZABEZPIECZEŃ ZIEMNOZWARCIOWYCH ZEROWO-PRĄDOWYCH

Ćwiczenie nr 1. Badanie obwodów jednofazowych RLC przy wymuszeniu sinusoidalnym

ELEMENTY RLC W OBWODACH PRĄDU SINUSOIDALNIE ZMIENNEGO

Ćwiczenie 4 WYZNACZANIE INDUKCYJNOŚCI WŁASNEJ I WZAJEMNEJ

Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO

Ćwiczenia tablicowe nr 1

Maszyny Synchroniczne

Indukcja wzajemna. Transformator. dr inż. Romuald Kędzierski

LABORATORIUM PODSTAW ELEKTROTECHNIKI Kompensacja mocy biernej

Ćw. 15 : Sprawdzanie watomierza i licznika energii

ĆWICZENIE 2 BADANIE TRANSFORMATORA JEDNOFAZOWEGO

BADANIE TRANSFORMATORA I.

Sposób analizy zjawisk i właściwości ruchowych maszyn synchronicznych zależą od dwóch czynników:

Badanie silnika indukcyjnego jednofazowego i transformatora

Produkty Średniego Napięcia Przekładniki prądowe typu: IBZ 12b; IBZ 17,5b; IBZ 24b

Pomiary dużych prądów o f = 50Hz

WZORCOWANIE URZĄDZEŃ DO SPRAWDZANIA LICZNIKÓW ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO

Laboratorium Podstaw Elektrotechniki i Elektroniki

Badanie transformatora

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude

Produkty średniego napięcia. Przekładniki prądowe jednofazowe, wnętrzowe, wsporcze typu: TPU 4x.xx, TPU 5x.xx, TPU 6x.xx

Podstawy Elektroenergetyki 2

Współczynnik bezpieczeństwa FS i współczynnik graniczny dokładności ALF przekładników prądowych

Ćwiczenie 1 Badanie układów przekładników prądowych stosowanych w sieciach trójfazowych

Źródła zasilania i parametry przebiegu zmiennego

Pomiar rezystancji metodą techniczną

PRZEKŁADNIKI PRĄDOWE typu IMZ 12, IMZ 17, IMZ 24. Karta katalogowa

Układy przekładników napięciowych

ĆWICZENIE 1 JEDNOFAZOWE OBWODY RLC U L U R U C. Informatyka w elektrotechnice

Laboratorium Podstaw Elektrotechniki i Elektroniki

Elementy i obwody nieliniowe

Ćwiczenie: "Silnik indukcyjny"

Obwody liniowe. Sprawdzanie praw Kirchhoffa

Produkty Średniego Napięcia. Przekładniki prądowe przepustowe lub szynowe, jednofazowe typu ISZ A

LABORATORIUM PRZETWORNIKÓW ELEKTROMECHANICZNYCH

Przekładniki Prądowe nn

PRZEKŁADNIKI PRĄDOWE DO POMIARÓW NISKIEGO NAPIĘCIA TYPU ELA...

ENS1C BADANIE DŁAWIKA E04

Weryfikacja przyłączenia zabezpieczenia odległościowego ZCS 4E i ZCR 4E. ( Test kierunkowości )

6.2. Obliczenia zwarciowe: impedancja zwarciowa systemu elektroenergetycznego: " 3 1,1 15,75 3 8,5

Ćwiczenie 1 i 2 Regulacja napięcia w elektroenergetycznej sieci rozdzielczej za pomocą kompensacji równoległej i szeregowej

WIROWYCH. Ćwiczenie: ĆWICZENIE BADANIE PRĄDÓW ZAKŁ AD ELEKTROENERGETYKI. Opracował: mgr inż. Edward SKIEPKO. Warszawa 2000

POMIARY MOCY (OBWODY JEDNO- I TRÓJFAZOWE). POMIARY PRĄDÓW I NAPIĘĆ W OBWODACH TRÓJFAZOWYCH

2.3. Praca samotna. Rys Uproszczony schemat zastępczy turbogeneratora

Transkrypt:

Politechnika Łódzka, Wydział Elektrotechniki, Elektroniki, nformatyki i Automatyki nstytut Elektroenergetyki, Zakład Przekładników i Kompatybilności Elektromagnetycznej Grupa dziekańska... Rok akademicki... LABORATORM PRZEKŁADNKÓW ĆWCZENE Sprawdzanie dokładności indukcyjnych przekładników napięciowych Nazwisko i imię Numer albumu Ocena kolokwium Ocena sprawozdania

. Cel ćwiczenia Poznanie metody sprawdzania dokładności indukcyjnych przekładników napięciowych. Wyznaczenie wartości błędu napięciowego i kątowego przy różnych wartościach skutecznych napięcia pierwotnego oraz obciążenia obwodu wtórnego (moc pozorna i współczynnik mocy). Wyjaśnienie przyczyn zmian wartości błędów na podstawie schematu zastępczego i wykresu wskazowego. Określenie klasy dokładności badanego indukcyjnego przekładnika napięciowego zgodnie z normą PN-EN 6869-3.. Podstawy teoretyczne Przekładnik napięciowy jest to transformator pomiarowy, pracujący w warunkach zbliżonych do stanu jałowego. Stosowany jest, już przy napięciach liniowych od 4 V, w stacjach elektroenergetycznych, podstacjach sieci rozdzielczych, rozdzielniach zakładowych, laboratoriach wysokiego napięcia oraz jako transformator zasilający lub probierczy. Przekładnik zapewnia z zadaną klasą dokładności transformację napięć o wysokich wartościach na napięcia o wartościach dostosowanych do obwodów pomiarowych \ zabezpieczeniowych niskiego napięcia przyłączonych do strony wtórnej ( V lub V ewentualnie V) dla przekładników pomiarowych włączonych na napięcie międzyprzewodowe lub / 3 V lub / 3 V dla przekładników włączonych na napięcie fazowe w układach trójfazowych, jeżeli znamionowe napięcie pierwotne jest liczbą podzieloną przez 3. Przekładnik napięciowy zapewnia również separację galwaniczną, przyłączonych urządzeń pomiarowych lub zabezpieczeniowych, od sieci elektroenergetycznej. Zabezpiecza przed wystąpieniem zbyt wysokich napięć w obwodzie wtórnym (zadziałanie bezpiecznika w obwodzie pierwotnym lub zniszczenie izolacji uzwojenia). kłady pracy jednofazowych przekładników napięciowych (VT) przedstawiono na rysunku. Rys.. kłady pracy jednofazowych przekładników napięciowych kład nazywamy jednobiegunowym ze względu na uziemienie zacisku N uzwojenia pierwotnego. kład nazywamy dwubiegunowym, ponieważ oba zaciski A i B uzwojenia pierwotnego nie są uziemione. W obydwu układach jeden z zacisków uzwojenia wtórnego (n lub b) pozostaje uziemiony. W związku z tym, w przypadku przekładników napięciowych przeznaczonych do pomiaru napięć międzyprzewodowych (układ ) w sieciach z izolowanym punktem neutralnym, izolacja każdego zacisku pierwotnego względem ziemi musi być dostosowana do napięcia międzyprzewodowego sieci, a nie do napięcia fazowego (układ ). Stosowanie przekładników przewidzianych do pracy w układzie nie jest

wskazane do połączenia w układzie ze względu na zbyt małą indukcję magnetyczną w rdzeniu tego przekładnika przy napięciu fazowym i w związku z tym pogorszenie się jego właściwości metrologicznych. W literaturze stosowany jest również podział przekładników napięciowych ze względu na zasadę działania. Przekładniki indukcyjne i pojemnościowe nazywane są konwencjonalnymi, natomiast przekładniki wykorzystujące inne zjawiska fizyczne, w których sygnał wtórny jest proporcjonalny do napięcia lub prądu pierwotnego nazywane są niekonwencjonalnymi... Wielkości charakteryzujące przekładniki napięciowe Podstawowe wielkości charakteryzujące przekładniki napięciowe są ustalone przez normę PN-EN 6869-3. Według tej normy są to przede wszystkim: napięcie znamionowe pierwotne i wtórne, moc znamionowa, wartości graniczne błędów i klasa dokładności, wytrzymałość elektryczna izolacji, dopuszczalne przyrosty temperatur uzwojeń. Znamionowy poziom izolacji przekładnika określany jest jako kombinacja trzech znormalizowanych napięć (najwyższego roboczego, probierczego o częstotliwości sieciowej i probierczego udarowego), charakteryzujących izolację przekładnika pod względem jej wytrzymałości dielektrycznej. Najwyższe napięcie robocze m, określa największą wartość skuteczną napięcia międzyprzewodowego, które może występować w normalnych warunkach pracy i dla którego została zaprojektowana izolacja przekładnika. Wartości napięć probierczych są określone w normie PN-EN 6869- dla najwyższego napięcia roboczego. Przykładowo, jeżeli napięcie znamionowe przekładnika wynosi kv to jego znamionowy poziom izolacji wynosi 45 kv / 46 kv / 5 kv. stotnym parametrem przekładników napięciowych, także zdefiniowanym w normie, jest współczynnik napięciowy, którego wartość określają przewidywane ustalone przepięcia o częstotliwości sieciowej. Znamionowy współczynnik napięciowy może mieć wartości:,,,5 lub,9 zależnie od sposobu przyłączenia uzwojenia pierwotnego w sieci oraz sposobu uziemienia jej punktu neutralnego. Ponadto, przekładnik powinien zachować wymaganą wytrzymałość cieplną w określonym czasie podanym na tabliczce znamionowej, przy napięciu pierwotnym wynikającym z pomnożenia znamionowego napięcia przez znamionowy współczynnik napięciowy. Nie powinny wówczas zostać przekroczone dopuszczalne przyrosty temperatur uzwojeń, co warunkuje graniczną wartość natężenia prądu przepływającego przez uzwojenia. Na podstawie iloczynu granicznej wartości natężenia prądu przepływającego przez uzwojenie pierwotne przekładnika napięciowego oraz znamionowego napięcia tego uzwojenia określana jest moc graniczna przekładnika. Moc znamionowa określana jest natomiast jako wartość graniczna obciążenia, przy którym przekładnik napięciowy pracujący w warunkach znamionowych (napięcie, częstotliwość) zachowuje swoje właściwości metrologiczne wynikające z klasy dokładności. Ponadto, w normie PN-EN 6869-3 zdefiniowana jest także znamionowa przekładnia K n określana jako stosunek znamionowego napięcia pierwotnego n do znamionowego napięcia wtórnego n : n Kn = () n Rzeczywista przekładnia K wyznacza stosunek rzeczywistej wartości skutecznej napięcia pierwotnego do rzeczywistej wartości skutecznej napięcia wtórnego : K = ()

Zwojowa przekładnia przekładnika określa stosunek liczby zwojów uzwojenia pierwotnego z do liczby zwojów uzwojenia wtórnego z : z z K Z = (3) Klasa dokładności przekładnika napięciowego warunkuje, dopuszczalne według normy, graniczne wartości błędów napięciowego (ozn. w normie ε) i kątowego δ (ozn. w normie ϕ). Błąd napięciowy wynika z różnicy między przekładnią znamionową, a przekładnią rzeczywistą przekładnika napięciowego. Obliczany jest na podstawie zależności (3), jako procentowa różnica wartości skutecznych napięcia wtórnego, pomnożonego przez znamionową przekładnię przekładnika napięciowego, i napięcia pierwotnego, odniesiona do napięcia pierwotnego. Kn ( ε ) = % (4) W przekładnikach niekorygowanych, w których zwojowa przekładnia jest równa znamionowej przekładni napięciowej, błąd napięciowy jest zawsz ujemny. Błąd napięciowy może zostać zmniejszony (przesunięty w kierunku wartości dodatnich) po przez zastosowanie poprawki zwojowej z polegającej na zmniejszeniu liczby zwojów z uzwojenia pierwotnego. Procentowa poprawka zwojowa k może zostać obliczona z zależności: z k = [%] (5) z Błąd kątowy jest to kąt między wektorem napięcia pierwotnego o przesunięciu fazowym ϕ względem początku układu współrzędnych i odwróconym o 8 wektorem napięcia wtórnego o przesunięciu fazowym, wyrażony w minutach lub centyradianach. Błąd kątowy jest dodatni, jeśli odwrócony o 8 wektor napięcia wtórnego wyprzedza wektor napięcia pierwotnego. ( ϕ) δ = ϕ ϕ (6) Znormalizowanymi klasami dokładności przekładników do pomiarów są klasy:,,,5, 3, a przekładników do zabezpieczeń klasy 3P i 6P. Tabela : Klasy dokładności indukcyjnych przekładników napięciowych pomiarowych według normy PN-EN 6869-3 3

Tabela : Klasy dokładności indukcyjnych przekładników napięciowych zabezpieczeniowych według normy PN-EN 6869-3 Podczas badań dokładności indukcyjnych przekładników napięciowych napięcie pierwotne, dla przekładników do pomiarów wynosi od 8% do wartości wynikającej ze znamionowego współczynnika napięciowego danego przekładnika (% lub 5% lub 9%). Dla przekładników do zabezpieczeń pomiary wykonuje się przy 5% (%) napięcia znamionowego oraz przy napięciu o wartości wynikającej ze znamionowego współczynnika napięciowego danego przekładnika (% lub 5% lub 9%). W przypadku znamionowych obciążeń uzwojeń wtórnych indukcyjnych przekładników napięciowych o wartości mocy pozornej od VA do VA współczynnik mocy podczas badań dokładności wynosi,8 ind., a wykonuje się je przy obciążeniu znamionowym przekładnika oraz dla obciążenia o wartości 5% obciążenia znamionowego. W przypadku obciążeń o wartości mocy pozornej od VA do VA współczynnik mocy wynosi, a badania dokładności wykonuje się przy obciążeniu znamionowym oraz bez obciążenia... Schemat zastępczy i jego parametry Klasyczny schemat zastępczy przekładnika napięciowego przedstawiono na rysunku. Rys.. Schemat zastępczy przekładnika napięciowego Na schemacie tym zastosowano następujące oznaczenia (symbole z dwiema kreskami (bis) oznaczają wielkości sprowadzone do obwodu wtórnego): napięcie pierwotne przeliczone na stronę wtórną, - prąd pierwotny przeliczony na stronę wtórną, R rezystancja uzwojenia pierwotnego przeliczona na stronę wtórną, X r reaktancja rozproszenia uzwojenia pierwotnego przeliczona na stronę wtórną, R Fe rezystancja odwzorowująca straty w rdzeniu przeliczona na stronę wtórną, Fe - prąd odwzorowujący 4

straty w rdzeniu przeliczony na stronę wtórną, X µ - reaktancja główna przeliczona na stronę wtórną, µ prąd magnesujący przeliczony na stronę wtórną, X r reaktancja rozproszenia uzwojenia wtórnego, R rezystancja uzwojenia wtórnego, napięcie wtórne, - prąd wtórny, Z impedancja obciążenia. mpedancje uzwojeń przekładnika: Z = R + jx (7) a impedancja obciążenia: Z = R + jx (8) Z = R + jx (9) Na podstawie Prawa Kirchhoffa dla schematu zastępczego z rysunku można zapisać: Natomiast na podstawie Prawa Kirchhoffa: R + jx ) + ( R + jx ) = ( + () = + () µ = Fe + () Parametry schematu zastępczego umożliwiają obliczenie wartości skutecznych prądu strony pierwotnej, prądu strony wtórnej, prądu jałowego i jego składowych: czynnej Fe oraz biernej µ. Wartość prądu Fe jest wyznaczona dla zadanej wartości indukcji w rdzeniu przekładnika na podstawie dostarczanej przez producentów materiałów magnetycznych charakterystyki strat mocy czynnej materiału rdzeniowego wykreślonej w funkcji indukcji. Wartość prądu µ jest obliczana na podstawie charakterystyki magnesowania rdzenia przekładnika, dla zadanej indukcji odczytywana jest wartość maksymalna natężenia pola magnetycznego w rdzeniu. P = Fe Fe (3) H ml Fe µ = (4) z Fe = µ + (5) Sn = (6) przy czym: P Fe straty mocy czynnej w rdzeniu przekładnika napięciowego; H m amplituda natężenia pola magnetycznego w rdzeniu; l Fe średnia długość drogi strumienia w rdzeniu; S n - znamionowa moc pozorna uzwojenia wtórnego przekładnika napięciowego. 5

Na podstawie Prawa Kirchhoffa dla schematu zastępczego z rysunku, przy założeniu, że : (7) ) ( R + R + R ) + ( X + X + X.3. Wykres wskazowy Na podstawie równań () i () napięcie pierwotne może zostać wyrażone zależnością: R + jx ) + ( R + R ) + j ( X + X ) = ( + (8) Powyższe równanie przedstawione za pomocą wykresu wskazowego (wektorowego) z rysunku 3 umożliwia dla schematu zastępczego z rysunku graficznie wyznaczenie napięcia oraz określenie wartości błędów prądowego, kątowego i całkowitego. Rys. 3. Wykres wskazowy przekładnika napięciowego V / V przy obciążeniu uzwojenia wtórnego mocą znamionową 5 VA o współczynniku mocy cosψ =,8 Wartość i charakter zmian błędów przekładnika są ściśle uzależnione od czterech kątów: ϕ r, ϕ, ψ, α. Kąty te dla wykresu wskazowego z rysunku 3 zostały opisane zależnościami: 6

α = arctg Fe (9) µ X + X ϕ r = arctg () R + R X ϕ = arctg () R X ψ = arctg () R Kąt α jest kątem strat materiału ferromagnetycznego, kąt ϕ r - charakteryzuje stosunek reaktancji obu uzwojeń do ich rezystancji, natomiast ϕ - stosunek reaktancji uzwojenia pierwotnego do jego rezystancji a kąt ψ określa charakter obciążenia przyłączonego do zacisków wtórnych przekładnika (w przedstawionym przypadku cosψ =,8). Wykres wskazowy z rysunku 3 umożliwia wyprowadzenie zależności określających składowe błędów napięciowego i kątowego przekładnika napięciowego: ' ' Z sin( ϕ + α ) = % (3) δ δ = Z ' r cos( ψ ϕ r ) % ' ' Z cos( ϕ + α ) = 344 min = Z ' r sin( ψ ϕr ) 344 min (4) (5) (6) - składowa niekorygowanego błędu napięciowego spowodowana tylko prądem jałowym przekładnika, - składowa niekorygowanego błędu napięciowego spowodowana tylko prądem obciążenia przekładnika, δ - składowa błędu kątowego spowodowana tylko prądem jałowym, δ - składowa błędu kątowego spowodowana tylko prądem obciążenia. Wypadkowe błędy przy obciążeniu są sumą błędów: jałowych i obciążeniowych, czyli: (7) = + δ δ + δ = (8) Na rysunku 4 przedstawiono przykładowy wykres wskazowy wykonany dla indukcyjnego przekładnika napięciowego o przekładni 5 kv \ V przy obciążeniu uzwojenia wtórnego mocą znamionową 5 VA o współczynniku mocy cosψ =,8. 7

Rys. 4. Wykres wskazowy wykonany dla indukcyjnego przekładnika napięciowego o przekładni 5 kv / V Na rysunku 5 przedstawiono wykres wskazowy przekładnika napięciowego V \ V w przypadku obciążenia uzwojenia wtórnego mocą znamionową 5 W. Rys. 5. Wykres wskazowy przekładnika napięciowego V / V przy obciążeniu uzwojenia wtórnego mocą znamionową o współczynniku mocy cosψ = 8