WOJSKOWA AKADEMIA TECHICZA im. Jarosława Dąbrowskiego w Warszawie Wydział Elektroniki LABORATORIUM PROCESÓW STOCHASTYCZYCH Grupa Podgrupa Data wykonania ćwiczenia Ćwiczenie prowadził. Skład podgrupy 1.... 2.... 3.... 4.... 5.... 6.... 7.... 8.... 9.... 10.... Data oddania sprawozdania Ocena Podpis prowadzącego Temat ćwiczenia Pomiary parametrów i charakterystyk statystycznych sygnałów losowych 1. Wykaz przyrządów pomiarowych użytych w ćwiczeniu Lp. azwa przyrządu Typ Firma umer fabryczny 1. 2. 3. 4. 5.
2. Obserwacja kształtów funkcji gęstości prawdopodobieństwa wartości chwilowych wybranych sygnałów losowych a generatorze funkcyjnym firmy Agilent (HP) ustawić następujące wartości parametrów wartość międzyszczytową (dynamikę sygnału) 500 mvpp [Ampl]; wartość składowej stałej 0V [Offset]; wartość częstotliwości podstawowej 1kHz [Freq]; współczynnik wypełnienia (dla fali prostokątnej) 50% [%Duty]. astępnie, dla poszczególnych sygnałów stochastycznych A) sygnał normalny szum biały [oise]; B) sygnał harmoniczny z losową fazą; C) sygnał prostokątny z losową fazą; D) sygnał trójkątny z losową fazą; E) sygnał piłokształtny z losową fazą zaobserwować jak normują się (przy zwiększaniu liczby realizacji pomiarów ) kumulowane charakterystyki funkcji gęstości prawdopodobieństwa wartości chwilowych sygnałów. Dla >100 przerysować charakterystyki do odpowiednich ramek. a osiach nanieść odpowiednie wartości! A) B) C) D) E F)
W ramce F) narysować charakterystykę funkcję gęstości prawdopodobieństwa wartości chwilowych dla zadanego przez prowadzącego sygnału. przy zmienionym jednym z parametrów (wskazanym przez prowadzącego zaznaczyć, którym) a) wartość międzyszczytowa (dynamika sygnału) 800 mvpp [Ampl]; b) wartość składowej stałej 250mV [Offset]; c) wartość częstotliwości podstawowej 2kHz [Freq]; d) współczynnik wypełnienia (dla fali prostokątnej) 25% [%Duty]. 3. Pomiary parametrów statystycznych sygnałów losowych Wykonać pomiary parametrów kumulowanych (uśrednionych) mg, Sg i w funkcji liczby realizacji pomiarów. Pomiary realizować dla od =1 do 20 z krokiem co 1, (1, 2, 3, 4,, 19, 20) od =20 do 100 z krokiem co 5, (25, 30, 35,, 95, 100) od =100 do 300 z krokiem co 20, (100, 120,, 280, 300) od =300 do 1000 z krokiem co 50, (350, 400,, 950, 1000) a) b) c) d) Jeżeli badany sygnał był sumą szumu (OISE) i sygnału zdeterminowanego z losową fazą (SIGAL) oceń stosunek SR mocy sygnału użytecznego (P SIGAL ) do mocy szumu (P OISE ). Pomiar ten wykonaj dla każdego z sumowanych sygnałów z osobna na podstawie pomiaru ich średniej mocy kumulowanej dla >100. W tym celu skorzystać z zależności P ( ) SR = P SIGAL = OISE OISE ( ) > 100 Dla sygnału normalnego (szumu) zapisać wartości wszystkich parametrów mg, Sg, dla >100 (do wykorzystania w punkcie 5a). SIGAL 4. Tabela wyników (obliczenia) Dla każdego z sygnałów wykonać tabelę wyników według wzoru mg Sg mg f [mv] 1 2 3 950 1000 MI Sg f [mv] f [(mv) 2 ] mg n Sg n n gdzie, MI wartości maksymalne i minimalne analizowanego parametru;
mg, Sg, wartości parametrów wyznaczonych w trakcie pomiarów; mg f, Sg f, f wartości parametrów przeliczone na jednostki fizyczne*; mg n, Sg n, n wartości parametrów unormowanych według zależności mg ( ) ( ) mg( 1000 ) mgn =, ( ) Sg( ) Sg( ) Sg n = n = mg mg Sg Sg MI 1000, ( ) ( ) ( 1000) MI *) Przeliczenie na jednostki fizyczne dokonujemy poprzez porównanie sygnału harmonicznego o zadanej wartości pik-pik (jej odpowiada określona wartość amplitudy sygnału harmonicznego, a tym samym określona wartość skuteczna tego sygnału) z odpowiadającą jej wartością skuteczną Sg() dla >100. MI 5. Charakterystyki normowania się parametrów statystycznych sygnałów losowych a) Jeżeli badanym sygnałem był sygnał normalny, wykreśl na jednym wykresie funkcje gęstości prawdopodobieństwa wartości chwilowych dla tych sygnałów, korzystając z wartości parametrów mg f (1000) i Sg f (1000). Jeżeli badanym sygnałem była suma sygnału normalnego i sygnału zdeterminowanego z losową fazą wykreślić opisane charakterystyki przy wykorzystaniu wartości parametrów zanotowanych w trakcie obliczania stosunku SR (>100). a osiach nanieść parametry przeliczone na jednostki fizyczne. b) Wykreślić charakterystyki parametrów mg f, Sg f, f w funkcji (na trzech wykresach na każdym wykresie jeden parametr dla dwóch sygnałów). a tych charakterystykach zaznaczyć dla każdego sygnału proste mg f (1000), mg f (1000) ± 10%, mg f (1000) ± 5%; Sg f (1000), Sg f (1000) ± 2%, Sg f (1000) ± 1%; f (1000), f (1000) ± 0, 5%, f (1000) ± 0, 25%. a podstawie wykreślonych prostych znaleźć dla każdego sygnału i zaznaczyć na odpowiednim wykresie taką wartość i, że mg(1000) 10% mg( ) mg(1000) + 10% 1 2 3 4 5 6 1 1000 2 1000 3 1000 4 1000 5 1000 6 1000 mg(1000) 5% mg( ) mg(1000) + 5% Sg(1000) 2% Sg( ) Sg(1000) + 2% Sg(1000) 1% Sg( ) Sg(1000) + 1% (1000) 0.5% ( ) (1000) + 0.5% (1000) 0.25% ( ) (1000) + 0.25%
c) Wykreślić charakterystyki parametrów unormowanych mg n, Sg n, n w funkcji (na trzech wykresach na każdym wykresie jeden parametr dla dwóch sygnałów). d) Dla każdego sygnału z osobna, wykreślić na jednym wykresie trzy charakterystyki parametrów unormowanych mg n, Sg n, n w funkcji. 6. Wnioski We wnioskach zanotować swoje spostrzeżenia. Spróbować odpowiedzieć na poniższe pytania (rozwiązać zadania / problemy). a) Czy narysowane w punkcie 2 wszystkie charakterystyki są właściwe? Z czego może wynikać fakt, że np. w sygnale prostokątnym z losową fazą o współczynniku wypełnienia 50% pojawiające się dystrybucje mogą nie być jednakowej wielkości? b) Jak wpływa kształt rozkładu prawdopodobieństwa wartości chwilowych (a tym samym jak wpływają wartości parametrów statystycznych rozkładu) na szybkość stabilizowania się parametrów? c) Które parametry stabilizują się najszybciej i dlaczego? d) Jaki jest sens, z punktu widzenia wykonywania pomiarów, wyznaczania wartości parametru i? e) Czy z charakterystyk parametrów unormowanych można wyciągnąć inne wnioski dotyczące szybkości stabilizowania się tych parametrów aniżeli z charakterystyk dla parametrów nieunormowanych? Jeżeli tak, to dlaczego? f) Jeżeli badane były minimum dwa sygnały odpowiedzieć jak wpływa miara SR na stabilizowanie się parametrów tych sygnałów? g*) W literaturze znaleźć zależności analityczne opisujące narysowane w punkcie 2. funkcje gęstości prawdopodobieństwa wartości chwilowych.