INNOVATIVE SOFTWARE SOLUTION FOR COAL MINES

Podobne dokumenty
Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

Krytyczne czynniki sukcesu w zarządzaniu projektami

DETECTION OF MATERIAL INTEGRATED CONDUCTORS FOR CONNECTIVE RIVETING OF FUNCTION-INTEGRATIVE TEXTILE-REINFORCED THERMOPLASTIC COMPOSITES

Auditorium classes. Lectures

Zarządzanie sieciami telekomunikacyjnymi

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

DM-ML, DM-FL. Auxiliary Equipment and Accessories. Damper Drives. Dimensions. Descritpion

Metodyki projektowania i modelowania systemów Cyganek & Kasperek & Rajda 2013 Katedra Elektroniki AGH

Strona główna > Produkty > Systemy regulacji > System regulacji EASYLAB - LABCONTROL > Program konfiguracyjny > Typ EasyConnect.

Po zy cj o n ow an ie k o m b aj n u ch o d n ik o w eg o w w y r o b isk u k o r y t ar zo w y m

INSPECTION METHODS FOR QUALITY CONTROL OF FIBRE METAL LAMINATES IN AEROSPACE COMPONENTS

Unit of Social Gerontology, Institute of Labour and Social Studies ageing and its consequences for society

4. EKSPLOATACJA UKŁADU NAPĘD ZWROTNICOWY ROZJAZD. DEFINICJA SIŁ W UKŁADZIE Siła nastawcza Siła trzymania

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

WENTYLATORY PROMIENIOWE SINGLE-INLET DRUM BĘBNOWE JEDNOSTRUMIENIOWE CENTRIFUGAL FAN

Health Resorts Pearls of Eastern Europe Innovative Cluster Health and Tourism

Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards

IDENTYFIKACJA PARAMETRÓW CHARAKTERYZUJĄCYCH OBCIĄŻENIE SEKCJI OBUDOWY ZMECHANIZOWANEJ SPOWODOWANE DYNAMICZNYM ODDZIAŁYWANIEM GÓROTWORU

Updated Action Plan received from the competent authority on 4 May 2017

REHABILITATION OF MEDIUM-HEAD HYDROPOWER PLANTS WITH EXPLOITED TWIN-FRANCIS TURBINES.

Effective Governance of Education at the Local Level


Innowacyjne podejście do zarządzania maszynami i urządzeniami górniczymi z wykorzystaniem systemu iris

EGARA Adam Małyszko FORS. POLAND - KRAKÓW r

Kierunek: Informatyka rev rev jrn Stacjonarny EN 1 / 6

Wydział Inżynierii Produkcji i Logistyki Faculty of Production Engineering and Logistics

Rev Źródło:

Akademia Morska w Szczecinie. Wydział Mechaniczny

Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions

BLACKLIGHT SPOT 400W F

Implementation of the JEREMIE initiative in Poland. Prague, 8 November 2011

LED WASHER 30x3W WHITE IP65 F

Patients price acceptance SELECTED FINDINGS

PORTS AS LOGISTICS CENTERS FOR CONSTRUCTION AND OPERATION OF THE OFFSHORE WIND FARMS - CASE OF SASSNITZ

Tychy, plan miasta: Skala 1: (Polish Edition)


ZGŁOSZENIE WSPÓLNEGO POLSKO -. PROJEKTU NA LATA: APPLICATION FOR A JOINT POLISH -... PROJECT FOR THE YEARS:.

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

European Crime Prevention Award (ECPA) Annex I - new version 2014

Instrukcja obsługi User s manual

TACHOGRAPH SIMULATOR DTCOSIM

XXIII Konferencja Naukowa POJAZDY SZYNOWE 2018

KATOWICE SPECIAL ECONOMIC ZONE GLIWICE SUBZONE and its influence on local economy KATOWICE SPECIAL ECONOMIC ZONE - GLIWICE SUBZONE

Installation of EuroCert software for qualified electronic signature

P R A C A D Y P L O M O W A

Economical utilization of coal bed methane emitted during exploitation of coal seams energetic and environmental aspects

TRANSPORT W RODZINNYCH GOSPODARSTWACH ROLNYCH

Selection of controller parameters Strojenie regulatorów

The list of 20 abstracts, prepared in March 2005 CIS ( ) [Nr 31]

Cracow University of Economics Poland

System optymalizacji produkcji energii

QUANTITATIVE AND QUALITATIVE CHARACTERISTICS OF FINGERPRINT BIOMETRIC TEMPLATES

Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application


OSI Physical Layer. Network Fundamentals Chapter 8. Version Cisco Systems, Inc. All rights reserved. Cisco Public 1

Brief description of the paper/report. Chain 90% 10% District

DATA-S MONITORING ROZPROSZONY OŚWIETLENIA AWARYJNEGO DIVERSIFIED MONITORING OF EMERGENCY LIGHTING

ROZPRAWA DOKTORSKA. Model obliczeniowy ogrzewań mikroprzewodowych

Formularz recenzji magazynu. Journal of Corporate Responsibility and Leadership Review Form

archivist: Managing Data Analysis Results

F-16 VIRTUAL COCKPIT PROJECT OF COMPUTER-AIDED LEARNING APPLICATION WEAPON SYSTEM POWER ON PROCEDURE

UNIWERSALNY ELEKTRONICZNY PULPIT NASTAWCZY

Building Technologies

Streszczenia / Abstracts 6/ 2011

WYDZIAŁ NAUK EKONOMICZNYCH. Studia II stopnia niestacjonarne Kierunek Międzynarodowe Stosunki Gospodarcze Specjalność INERNATIONAL LOGISTICS

AKADEMIA MORSKA W SZCZECINIE WYDZIAŁ MECHANICZNY ROZPRAWA DOKTORSKA. mgr inż. Piotr Smurawski

OPTYMALIZACJA PUBLICZNEGO TRANSPORTU ZBIOROWEGO W GMINIE ŚRODA WIELKOPOLSKA

ETICS: Few words about the Polish market Dr. Jacek Michalak Stowarzyszenie na Rzecz Systemów Ociepleń (SSO), Warsaw, Poland

STEROWANIA RUCHEM KOLEJOWYM Z WYKORZYSTANIEM METOD SYMULACYJNYCH

Kielce University of Technology.

PROCEEDINGS OF THE INSTITUTE OF VEHICLES 2(106)/2016 (12 pt)

The Overview of Civilian Applications of Airborne SAR Systems

Medical electronics part 10 Physiological transducers

1 / 5. Inżynierii Mechanicznej i Robotyki. Mechatronic Engineering with English as instruction language. stopnia

Faculty of Environmental Engineering. St.Petersburg 2010

Evaluation of the main goal and specific objectives of the Human Capital Operational Programme

Streszczenie rozprawy doktorskiej

Urbanek J., Jabłoński A., Barszcz T ssswedfsdfurbanek J., Jabłoński A., Barszcz T., Wykonanie pomiarów

Suplement do dyplomu

Call 2013 national eligibility criteria and funding rates

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

POLISH ELEVATOR MARKET ONE YEAR AFTER JOINING EU

Financial support for start-uppres. Where to get money? - Equity. - Credit. - Local Labor Office - Six times the national average wage (22000 zł)

POLITECHNIKA WARSZAWSKA. Wydział Zarządzania ROZPRAWA DOKTORSKA. mgr Marcin Chrząścik

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

INTERFEJSY DIAGNOSTYCZNE DLA SYSTEMÓW

Sargent Opens Sonairte Farmers' Market

Tłumaczenie oryginalnej deklaracji ( z języka angielskiego)

Dobór parametrów eksploatacyjnych maszyny roboczej, do lokalnych warunków jej pracy

Raport bieżący: 44/2018 Data: g. 21:03 Skrócona nazwa emitenta: SERINUS ENERGY plc

25 27 May th Logistics, Warehousing and Transport Expo. summary.

DATA-S EASY MONITORING ROZPROSZONY OŚWIETLENIA AWARYJNEGO DIVERSIFIED MONITORING OF EMERGENCY LIGHTING

Exposure assessment of mercury emissions

Profil Czasopisma / The Scope of a Journal

Robotic Arm Assembly Manual

Latent Dirichlet Allocation Models and their Evaluation IT for Practice 2016

SYNTEZA SCENARIUSZY EKSPLOATACJI I STEROWANIA

Przeciwpożarowe sterowniki dla bram zwijanych, sekcyjnych i przesuwnych. Fire-proof controls for roller shutters, sectional doors and sliding gates

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction

PROGRAM STAŻU. Nazwa podmiotu oferującego staż / Company name IBM Global Services Delivery Centre Sp z o.o.

Transkrypt:

STUDIA INFORMATICA 2017 Volume 38 Number 3 (132) Dariusz JASIULEK, Joanna ROGALA-ROJEK KOMAG Institute of Mining Technology INNOVATIVE SOFTWARE SOLUTION FOR COAL MINES Summary. Organisational measures and research projects performed at the KOMAG Institute of Mining Technology in the scope of mechatronics and information technology are presented in this paper. Results of chosen, implemented scientific research project results are given. Developed solutions, e.g. identification system of powered roof support unit components, a roadheader smart control system and a longwall shearer vibrodiagnostics system. Showed solutions are examples of innovative software solutions implemented in the hard coal mining industry. Keywords: roadheader smart control system, vibrodiagnostics, RFID INNOWACYJNE OPROGRAMOWANIE DLA GÓRNICTWA WĘGLA KAMIENNEGO Streszczenie. W artykule przedstawiono wyniki projektów badawczych zrealizowanych w Instytucie Techniki Górniczej KOMAG z zakresu mechatroniki i technologii informacyjnych. Przedstawione rozwiązania: system identyfikacji elementów ścianowej obudowy zmechanizowanej, inteligentny system sterowania kombajnu chodnikowego oraz system wibrodiagnostki podzespołów kombajnu ścianowego, stanowią przykłady innowacyjnych rozwiązań oprogramowania zrealizowanego na potrzeby górnictwa węgla kamiennego. Słowa kluczowe: inteligentny układu sterowania kombajnu chodnikowego, wibrodiagnostyka, RFID 1. Introduction Polish Energy Policy assumes the use of coal as main energy source for power engineering to guarantee an appropriate level of national energy security. In the current

46 D. Jasiulek, J. Rogala-Rojek economic situation, mines are looking for the solutions, which may increase production efficiency and improve safety and work conditions of mining personnel. In the KOMAG Institute of Mining Technology, projects in electronics, computer science, robotics and telematics are focused on development of solutions aiding the production processes of mineral raw materials. The article presents three innovative software solutions along with a description of the mechatronic systems they are part of. The vibrodiagnostics system of longwall shearer and the electronic system for the identification of mining machine components have been developed, implemented and tested. The adaptive system for controlling the roadheader operation is in the real-estate testing phase. 2. Adaptive system for controlling the roadheader operation Drivage of roadways with use of roadheaders is one of the main operations in underground mining industry, which makes the deposit open and prepares it for being mined. In the Polish mining industry over 92% of roadways are currently driven by a selective mechanical cutting method using jib roadheaders. Forecasts for coming years anticipate the necessity of driving from 500 to 700 km of roadways per year [7, 8, 15]. Necessity of opening coal seams on more deep levels causes an increase of driving problems due to: requirement of driving roadways of greater cross-sections, what is indispensable to ensure a proper ventilation at increasing temperatures and at production rate increase, increase of rocks compactness and their strength to uniaxial compression. High concentration of mining depends on using the roadways development technology with high advance. High drivage advance depends on comprehensive mechanization of operations and proper selection of parameters of the machines that are used in the process [11]. However, the operations have not been fully automated so far, what is associated with large number of factors having impact on these operations, complexity of mining with use of cutter head and difficulties in mathematical description of the process [1, 2, 5, 10, 12]. At present large share of costs of roadways drivage in coal production results from large number of employed people and high costs of materials. Low level of mechanization and automation of operations, many of which are still manual, is one of the reasons of such situation. For example, control of operation of cutter head is manual, what causes that mining is often ineffective or leads to critical exceeding the operational parameters of drives, e.g. rated current of motor of cutter head drive. It results in frequent failures and breakdowns of

Innovative Software Solution for Coal Mines 47 machines to repair them, what generates further costs. Moreover, according to the reports of the State Mining Authority, many accidents, including fatal and severe accidents, still happen during these operations. Currently, in the scope of operations to develop innovative, adaptive control system for a roadheader, the following control and diagnostic algorithms are developed: estimation of cutting resistance, selection of cutting parameters, selection of parameters to the mined layer, selection of cutting trajectory and limiting the cutter head movement beyond the working outline, positioning the cutter head in the working. Estimation of cutting resistance is a stage of determining the angular velocity value of a roadheader arm. During model pre-testing, a cutting resistance identification module based on an artificial neural network has been developed. The network was prepared using MATLAB software and was thought with the use of available data collected during roadheader tests in real operation conditions [9, 15]. The results of performed simulations indicate that cutting resistance estimation by that artificial neural network is possible. The following input parameters of artificial neural network were selected on the basis of analysis of measuring data obtained during the tests of roadway development [15]: current of cutting drum motor I O, efficient value of acceleration of mechanical vibrations A, under-piston pressure of turning base ram P On, over-piston pressure of turning base ram P Op, angular speed of the cutter jib. The results obtained by means of the artificial neural network are shown in the cutting trajectory. In Fig. 1a cutting resistance when cutting arenaceous shale in the working upper part is shown, and in Fig. 1b cutting resistance when cutting of coal in the working lower part is shown [15]. Fig. 2 shows the response of the artificial neural network in the scope of estimated cutting resistance to the selected set of real data registered during mine tests. The developed algorithms will be implemented in components of KOGASTER control system [6]. At the KOMAG Institute of Mining Technology, within the tests on an adaptive roadheader control system, an attempt to synthesize the fuzzy system was taken, for the purpose of generating control surfaces, which can be used for an automatic generation of a roadheader operating parameters controlled with the use of PLC group equipment [9, 13].

48 D. Jasiulek, J. Rogala-Rojek Fig. 1. A response of the artificial neural network, Cycle 18 RcSSN in the range: a) 35 to 41MPa, b) 15 to 21MPa [15] Rys. 1. Odpowiedź sztucznej sieci neuronowej, Cycle 18 RcSSN w zakresie: a) 35 do 41MPa, b) 15 do 21MPa [15] Fig. 2. Simulation result with use of data Cycle 18 MLP 5-5-1network [15] Rys. 2. Wyniki symulacji danych Cyklu 18 sieci MLP 5-5-1 [15] A structure of adaptive automatic control system of one process parameter is proposed as in Fig. 3. In the presented structure, several modules can be distinguished. In the ANFIS module generating of control surfaces is performed on the basis of collected measurement data concerning the roadheader operating parameters, depending on cutting parameters and strength of the rock mass (in the case of cutting conditions change, on the basis of collected data, a new control surface generation is possible). In the next module, an analysis is performed, aimed at a generation of an optimal combination of roadheader operation parameters. Those parameters are automatically entered into PLC controller, supervising the roadheader, cutting process according to the set trajectory. Feedback in the form of current arm position angle values, its extension etc. is generated by roadheader sensors (encoders, callipers, etc.). This information is further subject to a transformation to obtain for example a real arm deflection value. This value is further compared in an adaptive controller, where rock mass strength parameters are also updated (as well as other parameters). In the result of adaptation procedures, a generation of new set values for the PLC controller is performed [9].

Innovative Software Solution for Coal Mines 49 Fig. 3. Proposal of adaptive automatic control system of the roadheader arm angular velocity [9] Rys. 3. Propozycja adaptacyjnego sterowania prędkością wychylania ramienia kombajnu chodnikowego [9] 3. Vibrodiagnostics system of longwall shearer The analysis of coal deposits in Poland showed that 18.5% of them are the coal seams of thickness up to 1.5 m. Those seams, so-called thin seams, are located within the majority of Polish mines. However, coal extraction from those seams is marginal. Development of mining machine of new generation designed to low-wall mining has become an urgent need. Within the initiative of National Centre for Research and Development named IniTech, between January 2010 and December 2014, the consortium composed of KOMAG Institute of Mining Technology, KOPEX Machinery S.A. and KOPEX Electric Systems S.A. completed the project: Innovative solutions of mining machines increasing the national energy security (acronym INERG), which resulted in development of KSW-800NE shearer [16, 17]. Within the project, the KOMAG Institute of Mining Technology developed a vibrodiagnostics system, the idea of which is early detection of gear element damage and identification of its location. The vibrodiagnostics system consists of two basic components: VITO vibrodiagnostics hardware module, designed for installation on the machine for data collection in the form of signals, their pre-processing and transfer to the software module (Fig. 4).

50 D. Jasiulek, J. Rogala-Rojek Software module, which enables the analysis and expert s opinion for identification and location of possible failure or malfunction. The vibrodiagnostics system is based on analysis of vibration signals for monitoring and diagnostics of gear components of operating machines. The characteristic feature of the said vibrodiagnostics system is the possibility of automatic operation under varying load conditions during underground mining, what differs it from other diagnostic systems. The structure of vibrodiagnostics system of the shearer is shown in Fig. 5. Fig. 4. VITO vibrodiagnostics module, intrinsic safety manufacture [4] Rys. 4. Iskrobezpieczny moduł wibrodiagnostyczny VITO [4] Information about gear state are mainly acquired on the basis of analysis of the received signal parameter from the vibration sensors. Ten vibration sensors are installed on an arm and advancing unit of the shearer. In the vibrodiagnostics module, the analysis aiming at determination of trends indicating the technical condition of those subassemblies is performed. An example of a signal of vibration acceleration, recorded on the gear arm during operation of the shearer, is shown in Fig. 6. Changing operational conditions in a mine result in increase or decrease of the analysed signal parameters, which are strongly dependent on momentary load of cutting drums. Neglecting that fact in analyses and calculations leads to wrong interpretation of measured diagnostic indicators. Momentary load parameters were recorded to make the system independent from the operational conditions. That is why rotational speed sensors of the gear were used, as the load of drums directly depends on their rotational speed. Additionally, load to the gear of the tested subassemblies is also identified on the basis of currents in wires that supply the motors. This information is taken from the machine s control system. InergDiag managing software (Fig. 7) is the basic controlling element of the vibrodiagnostics system. It controls launching each task and sub-programmes in a specific time and order, and it has the following functions: Parameterize of the hardware module, Collect data through the hardware module (in cooperation with the communication InergVibroComm software), including information about vibration from installed acceleration sensors and other information specific to the machine,

Innovative Software Solution for Coal Mines 51 Predict damages of the selected components of the mining machine with cooperation of expert system, Visualise condition of the mining machine and generate messages about potential risks, Enable edition, deletion and creation of new expert rules, used by expert sub-system to predict damages, Enable observation of archival analyses. InergVibroComm communication software is intended to communicate between the vibrodiagnostics module and the computer of the roadheader. This software is not equipped with graphic user interface (GUI) and communicates directly with the hardware, saving received data in a database. Left drive train Left arm Vibration and rotation speed measurement Vibration and rotation speed measurement ETHERNET Shearer controller CAN VITO vibrodiagnostics hardware module USB VITO/PEN external memory Electrical equipment box Vibration and rotation speed measurement Right drive train Vibration and rotation speed measurement Right arm PC computer Vibrodiagnostics software module KSW-800NE shearer Fig. 5. The structure of vibrodiagnostics system of KSW-800NE shearer [3] Rys. 5. Struktura systemu wibrodiagnostyki kombajnu KSW-800NE [3] Fig. 6. Vibrodiagnostics signal of the KSW800-NE shearer arm in a function of time (a) and frequency (b) [4] Rys. 6. Przebiegi drgań zarejestrowane na ramieniu kombajnu KSW800-NE w funkcji czasu (a) i częstotliwości (b) [4]

52 D. Jasiulek, J. Rogala-Rojek Fig. 7. Window of detailed data of the vibrodiagnostics in InergDiag software Rys. 7. Okno danych wibrodiagnostyki w oprogramowaniu InergDiag 4. Identification of mining machines components Studies on implementation of RFID (Radio Frequency Identification) technology in the mining industry were initiated at the KOMAG Institute of Mining Technology in 2004. System for electronic identification of powered roof support components was developed in a result of collaboration between KOMAG, Silesian University of Technology and ELSTA Group. The system has been implemented, commercially or on a test level, in nearly thirty hard coal mines in Poland as well as in companies manufacturing the powered roof supports [13, 18]. In the developed system the basic components of powered roof support are identified unequivocally with the use of RFID transponders (Fig. 8). Introduction of logic relationships between transponder identification number and a series of support s attributes enables automation of logistic processes associated e.g. with repair or replacement of responsible components, what enables rational management of the capital assets [13]. Due to environmental conditions (high humidity, dust, possibility of methane and/or coal dust explosion), the use of RFID technology was not an easy task. Main requirements included in ATEX Directive should have been taken into account during designing of electronic system for identification of powered roof support components [3]. Assessment of conformity conducted by the notified certifying body is the basis to mark the equipment with CE mark and to issue a conformity declaration by the manufacturer, i.e. ELSTA Group [13]. The advantages of implementation of RFID-based system have granted in increased interest from further manufacturers and users of machines and equipment. Therefore, a project aimed at a development and commercial implementation of a complex hardware and

Innovative Software Solution for Coal Mines 53 software solution for identification of machines, equipment, fixed assets and transportation means was started. Work aiming at a development of IT-system iris (intelligent Rapid Identification System), compatible with previous hardware solutions, and aimed at comprehensive identification and control of fixed assets, was carried out at KOMAG [12, 13]. The iris system consists of the following platforms: PECM (for machines, equipment and components used in underground workings, Fig. 9), PEUBP (for explosion-proof machines and equipment), PEŚT (for transportation means), PEMP (for machines, equipment and components designed for surface use), PEŚTB (for office equipment). Devices of new generation manufactured by Intertex presented in Fig. 10 cooperate with this software program. PC Computer Server PDA RFID Reader RFID Transponder Fig. 8. Components of electronic system for identification of mining machines components [13] Rys. 8. Składowe systemu elektronicznej identyfikacji komponentów maszyn górniczych [13] Fig. 9. PECM software (for machines, equipment and components used in underground workings) Rys. 9. Oprogramowanie PECM (dedykowane do maszyn, urządzeń i komponentów używanych w podziemiach zakładów górniczych)

54 D. Jasiulek, J. Rogala-Rojek Fig. 10. RFID reader offered by Intertex Rys. 10. RFID oferowana przez firmę Intertex 5. Summary Development possibilities of mechatronic systems are now increasing due to the fact that most of designed machines and equipment require innovative control as well as monitoring and diagnostic systems. Those machines and equipment must comply with the regulatory requirements. Hence, mechanical solutions must be integrated with security and control systems starting already at the designing stage. KOMAG industry partners constantly indicate their needs within the scope of mechatronic systems, due to that joint research, developmental and targeted projects are carried out. A continuous improvement of personnel qualification as well as development of research and testing infrastructure in the domain of mechatronics are visible. In the mining industry implementation of smart diagnostic systems for machines and equipment takes place. A realization of research projects in close cooperation with industry representatives allows for increasing the innovation level. Possibilities of supporting those projects with national or European funds. It facilitates a realisation of project objectives oriented onto an innovative and safe project. BIBLIOGRAPHY 1. Abdi H., Salami A., Ahmadi A.: Implementation of a New Neural Network Function Block to Programmable Logic Controllers Library Function. World Academy of Science, Engineering and Technology 29, 2007. 2. Bartoszek S.: Pozycjonowanie kombajnu chodnikowego w wyrobisku korytarzowym (in Polish). Maszyny Górnicze, no. 1, 2016, 22 35. 3. ATEX Dyrektywa Parlamentu Europejskiego i Rady 2014/34/UE z dnia 26 lutego 2014 r.

Innovative Software Solution for Coal Mines 55 4. Bartoszek S., Jagoda J., Jasiulek D., Jura J., Latos M., Stankiewicz K.: System wibrodiagnostyczny maszyn górniczych (in Polish). KOMTECH 2013, Innowacyjne techniki i technologie dla górnictwa, Bezpieczeństwo - Efektywność - Niezawodność, Instytut Techniki Górniczej KOMAG, Gliwice 2013, p. 347 363. 5. Grima M.A., Bruines P.A. Verhoef P.N.W.: Modeling Tonnel Boring Mechine Performance by Neuro-Fuzzy Methods. Tunneling and Underground Space Technology, vol. 15. 2000. p. 259 269. 6. Jasiulek D., Bartoszek S., Jagoda J., Jura J., Krzak Ł.: Nowe moduły iskrobezpiecznego systemu sterowania KOGASTER (in Polish). KOMTECH 2015, Innowacyjne techniki i technologie dla górnictwa, Bezpieczeństwo - Efektywność - Niezawodność, Instytut Techniki Górniczej KOMAG, Gliwice 2015, p. 283 292. 7. Jasiulek D., Rogala-Rojek J., Stankiewicz K.: Możliwości implementacji technik sztucznej inteligencji w układach sterowania kombajnów chodnikowych (in Polish). Napędy i Sterowanie, no. 7/8, 2011, p. 100 103. 8. Jonak J., Rogala-Rojek J.: Analiza czynników mających wpływ na kształtowanie się wydajności urabiania kombajnami chodnikowymi (in Polish). Maszyny Górnicze, no. 1, 2011, p. 29 33. 9. Jonak J., Rogala-Rojek J.: System doradczy wspomagający operatora kombajnu chodnikowego (in Polish). Prace Naukowe Monografie KOMAG, nr 38, Instytut Techniki Górniczej KOMAG, Gliwice 2012, p. 1 132. 10. Kahraman S., Altun H., Tezekici B.S., Fener M.: Sawability Prediction of Carbonate Rocks from Shear Strength Parameters Using Artificial Neural Networks. International Journal of Rock Mechanics & Mining Sciences 43, 2006, p. 157 164. 11. Kotwica K.: Kierunki rozwoju technologii i technik mechanizacyjnych stosowanych do drążenia wyrobisk korytarzowych udostępniających i przygotowawczych w polskich kopalniach węgla kamiennego (in Polish). Innowacyjne i bezpieczne urządzenia dla górnictwa węgla kamiennego, KOMTECH, Szczyrk 2007. 12. Meulenkamp F., Grima M.A.: Application of Neural Networks for the Prediction of the Unconfined Compressive Strenght (UCS) from Wquotio Gardness. Int. J. Rock Mechanics and Mining Sciences, 36, 1999, p. 29 39. 13. Rogala-Rojek J., Latos M.: Management of Enterprise Assets with the Use of the iris System. Problemy Eksploatacji, no. 1, 2015, p. 139 148. 14. Stankiewicz K., Jasiulek D., Rogala-Rojek J., Woszczyński M., Jendrysik S.: Control and Identification Systems in the Mining Industry. Proceedings of 22 nd World Mining Congress & Expo, vol. 2, Istanbul, 11-16 September 2011, p. 243 250.

56 D. Jasiulek, J. Rogala-Rojek 15. Świder J., Jasiulek D.: Zastosowanie sztucznych sieci neuronowych w układzie sterowania kombajnu chodnikowego (in Polish). Prace Naukowe Monografie KOMAG, nr 35, Instytut Techniki Górniczej KOMAG, Gliwice 2011, p. 1 70. 16. Winkler T., Bartoszek S., Jaszczyk Ł., Latos M., Polnik B., Prostański D., Rogala- Rojek J., Rozmus M.: Badania eksploatacyjne wybranych podsystemów kombajnu KSW-800NE (in Polish). KOMTECH, Innowacyjne techniki i technologie dla górnictwa, Bezpieczeństwo - Efektywność - Niezawodność, Instytut Techniki Górniczej KOMAG, Gliwice 2014, p. 373 391. 17. Winkler T., Pieczora E., Marcińczyk M., Kozłowski J.: Innowacyjne rozwiązanie kombajnu KSW-800NE efektem współpracy KOMAG-u i KOPEX-u (in Polish). Maszyny Górnicze, no. 3, 2015 p. 22 28. 18. http://www.elektronika.elsta.pl, last access 12/2016 Omówienie Możliwości rozwoju systemów mechatronicznych są obecnie coraz większe ze względu na fakt, że większość projektowanych maszyn i urządzeń wymaga innowacyjnych układów sterowania, monitorowania i diagnostyki. Wytwarzane urządzenia i maszyny muszą być zgodne z wymogami przepisów. Stąd już na etapie ich projektowania należy integrować rozwiązania mechaniczne z systemami bezpieczeństwa i nadzoru. Realizacja prac rozwojowych przy ścisłej współpracy z przedstawicielami przemysłu pozwala na podniesienie poziomu innowacyjności. W artykule przedstawiono wyniki projektów badawczych zrealizowanych w Instytucie Techniki Górniczej KOMAG z zakresu mechatroniki i technologii informacyjnych. Przedstawione rozwiązania: system identyfikacji elementów ścianowej obudowy zmechanizowanej, inteligentny system sterowania kombajnu chodnikowego oraz system wibrodiagnostki podzespołów kombajnu ścianowego, stanowią przykłady innowacyjnych rozwiązań oprogramowania zrealizowanego na potrzeby górnictwa węgla kamiennego. Addresses Dariusz JASIULEK: KOMAG Institute of Mining Technology, ul. Pszczyńska 37, 44-101 Gliwice, Poland, djasiulek@komag.eu Joanna ROGALA-ROJEK: KOMAG Institute of Mining Technology, ul. Pszczyńska 37, 44-101 Gliwice, Poland, jrogala@komag.eu