MATERIAŁ ĆWICZENIOWY Z MATEMATYKI

Podobne dokumenty
MATERIAŁ ĆWICZENIOWY Z MATEMATYKI

MATERIAŁ WICZENIOWY Z MATEMATYKI

MATERIAŁ ĆWICZENIOWY Z MATEMATYKI

MATERIAŁ ĆWICZENIOWY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2010 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2010 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI 8 MAJA 2015 POZIOM ROZSZERZONY. Godzina rozpoczęcia: 9:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI 8 MAJA 2015 POZIOM ROZSZERZONY. Godzina rozpoczęcia: 9:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY 9 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50

Próbny egzamin maturalny z matematyki Poziom rozszerzony

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2013 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

MATERIAŁ ĆWICZENIOWY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2012 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2012 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2013 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY 9 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

LUBELSKA PRÓBA PRZED MATURĄ 2015 poziom rozszerzony 1

EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY 9 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50

Próbny egzamin maturalny z matematyki Poziom rozszerzony. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 4 CZERWCA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2014 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

Nazwisko i imię... PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MMA 2019 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJĄCY

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 5 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

LUBELSKA PRÓBA PRZED MATURĄ 2017 klasa 2 (pp)

EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY 3 CZERWCA Godzina rozpoczęcia: 14:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50

LUBELSKA PRÓBA PRZED MATUR 2016

UZUPEŁNIA ZDAJĄCY miejsce na naklejkę

UZUPEŁNIA ZDAJĄCY miejsce na naklejkę

Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. (dla klas trzecich liceum i klas czwartych technikum)

UZUPEŁNIA ZDAJĄCY miejsce na naklejkę

Próbny egzamin maturalny z matematyki Poziom rozszerzony

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 25 SIERPNIA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 7 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MMA 2018 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJĄCY

EGZAMIN MATURALNY Z MATEMATYKI

LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom rozszerzony klasa I

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2014 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI 9 MAJA 2016 POZIOM ROZSZERZONY. Godzina rozpoczęcia: 9:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI

Czas pracy: 170 minut. Liczba punktów do uzyskania: 50. UZUPEŁNIA UCZEŃ miejsce KOD UCZNIA PESEL na naklejkę z kodem UZUPEŁNIA ZESPÓŁ NADZORUJĄCY

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MMA 2019 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJĄCY

LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom rozszerzony klasa II

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 2 CZERWCA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom rozszerzony

EGZAMIN MATURALNY Z MATEMATYKI 2 CZERWCA 2015 POZIOM ROZSZERZONY. Godzina rozpoczęcia: 14:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI

ARKUSZ ĆWICZENIOWY Z MATEMATYKI MARZEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

UZUPEŁNIA ZDAJĄCY miejsce na naklejkę

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI. dla osób niesłyszących CZERWIEC 2013 POZIOM PODSTAWOWY. Czas pracy: do 200 minut. Liczba punktów do uzyskania: 50

UZUPEŁNIA ZDAJĄCY miejsce na naklejkę

EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY 4 CZERWCA Godzina rozpoczęcia: 14:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY CZERWIEC Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY CZERWIEC Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI 5 MAJA 2016 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

Próbny egzamin maturalny z matematyki Poziom podstawowy. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY CZERWIEC Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MMA 2019 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę

EGZAMIN MATURALNY Z MATEMATYKI

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2011 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

LUBELSKA PRÓBA PRZED MATURĄ 2018 poziom podstawowy M A T E M A T Y K A 14 MARCA Instrukcja dla zdającego Czas pracy: 170 minut

NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MMA 2019 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJĄCY

EGZAMIN MATURALNY Z MATEMATYKI

LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom rozszerzony LO

MATERIAŁ ĆWICZENIOWY Z MATEMATYKI

Transkrypt:

Materiał ćwiczeniowy zawiera informacje prawnie chronione do momentu rozpoczęcia diagnozy. Materiał ćwiczeniowy chroniony jest prawem autorskim. Materiału nie należy powielać ani udostępniać w żadnej innej formie (w tym umieszczać na stronach internetowych szkoły) poza wykorzystaniem jako ćwiczeniowego/diagnostycznego w szkole. W PISUJE ZDAJĄCY KOD PESEL MATERIAŁ ĆWICZENIOWY Z MATEMATYKI STYCZEŃ 2013 POZIOM ROZSZERZONY Instrukcja dla zdającego 1. Sprawdź, czy arkusz zawiera 16 stron (zadania 1. 11.). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym. 3. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania może spowodować, że za to rozwiązanie nie będziesz mógł dostać pełnej liczby punktów. 4. Pisz czytelnie i używaj tylko długopisu lub pióra z czarnym tuszem lub atramentem. 5. Nie używaj korektora, a błędne zapisy przekreśl. 6. Pamiętaj, że zapisy w brudnopisie nie podlegają ocenie. 7. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora. Życzymy powodzenia. Czas pracy: 180 minut Liczba punktów do uzyskania: 50

2 Okręgowa Komisja Egzaminacyjna w Poznaniu Zadanie 1. (4 pkt) 2013 2012 2011 Wyznacz resztę z dzielenia wielomianu W ( x) = x 2x + 2x 1 przez wielomian G( x) = x 3 x.

Okręgowa Komisja Egzaminacyjna w Poznaniu 3 Zadanie 2. (4 pkt) Rozwiąż równanie x 1 3 x = 2.

4 Okręgowa Komisja Egzaminacyjna w Poznaniu Zadanie 3. (6 pkt) Oblicz współrzędne środka S i skalę k jednokładności, w której obrazem odcinka PR jest odcinek 1R1 P i wiadomo, że P = ( 2, 1), R ( 3,1), SP [ 3, 9] i = [ 2,1] 1 = 1 = SR.

Okręgowa Komisja Egzaminacyjna w Poznaniu 5

6 Okręgowa Komisja Egzaminacyjna w Poznaniu Zadanie 4. (4 pkt) Długość boku rombu ABCD jest średnią geometryczną jego przekątnych. Oblicz miarę kąta ostrego tego rombu.

Okręgowa Komisja Egzaminacyjna w Poznaniu 7 Zadanie 5. (4 pkt) Udowodnij, że dla każdej liczby naturalnej n większej od 1 prawdziwa jest nierówność 2n n > 2. 2 1

8 Okręgowa Komisja Egzaminacyjna w Poznaniu Zadanie 6. (5 pkt) Rozwiąż równanie log cos x + log sin x 2 sin x cos x =.

Okręgowa Komisja Egzaminacyjna w Poznaniu 9 Zadanie 7. (4 pkt) Wykaż, że pole trójkąta ABC jest równe P = 2R 2 sinα sin β sinγ, gdzie R jest promieniem okręgu opisanego na tym trójkącie, a α, β i γ są miarami kątów wewnętrznych tego trójkąta.

10 Okręgowa Komisja Egzaminacyjna w Poznaniu Zadanie 8. (5 pkt) W ciągu arytmetycznym ( ) n największe n takie, że a a +... + a 2013. a, dla n 1, dane są a = 4 oraz różnica r = 4. Wyznacz 1 + 2 n < 1

Okręgowa Komisja Egzaminacyjna w Poznaniu 11 Zadanie 9. (4 pkt) Naszkicuj wykres i wyznacz zbiór wartości funkcji określonej wzorem ( x) 3x 6 f = 2x. x 2

12 Okręgowa Komisja Egzaminacyjna w Poznaniu Zadanie 10. (5 pkt) Długości wszystkich krawędzi ostrosłupa czworokątnego prawidłowego są równe a. Przez wierzchołek ostrosłupa i środki dwóch sąsiednich krawędzi podstawy poprowadzono płaszczyznę. Wyznacz sinus kąta nachylenia wyznaczonego przekroju do podstawy ostrosłupa.

Okręgowa Komisja Egzaminacyjna w Poznaniu 13

14 Okręgowa Komisja Egzaminacyjna w Poznaniu Zadanie 11. (5 pkt) Do koszyka włożono 12 jabłek, w tym dwa jabłka lobo. Po kilku dniach przechowywania z koszyka usunięto dwa popsute jabłka. Następnie losowo wybrano jedno jabłko. Oblicz prawdopodobieństwo, że wybrano jabłko lobo. Wynik podaj w postaci ułamka nieskracalnego.

Okręgowa Komisja Egzaminacyjna w Poznaniu 15 BRUDNOPIS

16 Okręgowa Komisja Egzaminacyjna w Poznaniu BRUDNOPIS