Opis montażu, uruchomienia i regulacji wzmacniacza słuchawkowego HA2013.

Podobne dokumenty
Opis sposobu montażu, uruchomienia i regulacji wzmacniacza słuchawkowego HA2012, klona HA5000.

Opis montażu, uruchomienia i regulacji wzmacniacza słuchawkowego HA2012, klona AT - HA5000

INSTRUKCJA OBSŁUGI UWAGA!!! PODŁĄCZAĆ WZMACNIACZ DO SIECI ZASILAJĄCEJ 230 V TYLKO DO GNIAZDA WYPOSAŻONEGO W BOLEC UZIEMIAJĄCY OCHRONNY

Opis dydaktycznych stanowisk pomiarowych i przyrządów w lab. EE (paw. C-3, 302)

Zespół Szkół Technicznych w Skarżysku - Kamiennej. Projekt budowy Zasilacza regulowanego. Opracował: Krzysztof Gałka kl. 2Te

Spis treści. 1. Rozdział Rozdział Rozdział Rozdział Koniec spisu treści -

Sygnał wewnątrz jest transmitowany bez pośrednictwa kondensatorów sygnałowych oraz transformatorów.

Sterownik sieciowy. Rozszerzenie 8 portów quasi dwukierunkowych. RaT8NO RaT8OC RaT8Wg

Sterownik sieciowy. Rozszerzenie 8 portów quasi dwukierunkowych. RaT8NO RaT8OC RaT8Wg. Wersja 2F Autor Z.Czujewicz Strona 1

INSTRUKCJA MONTAŻU / OBSŁUGI

Na tej stronie zbuduję jeden z najstarszych i najprostrzych przeciwsobnych generatorów wysokiego napięcia.

MATRIX. Zasilacz DC. Podręcznik użytkownika

Gotronik. Przedwzmacniacz audio stereo opamp

U W A G I D O M O N T A ś U Z E S T A W U L A B O R A T O R Y J N E G O A B C 0 1 U S B 3, A B C 0 2

KIT ZR-01 Zasilacz stabilizowany V, 1.5A

TERMOSTAT Z WYŚWIETLACZEM LED - 50,0 do +125,0 C

SYGNALIZATOR OPTYCZNO-AKUSTYCZNY SPL-2030

DPS-3203TK-3. Zasilacz laboratoryjny 3kanałowy. Instrukcja obsługi

Nazwa kwalifikacji: Montaż układów i urządzeń elektronicznych Oznaczenie kwalifikacji: E.05 Numer zadania: 01

PRZETWORNICA NAPIĘCIA DC NA AC MOC: 100W 150W 300W 350W 400W 600W. Instrukcja obsługi

Wzmacniacz 70MHz na RD16HHF1

ZASILACZ DC AX-3003L-3 AX-3005L-3. Instrukcja obsługi

Sterownik sieciowy. Rozszerzenie 8 portów quasi dwukierunkowych. RaT8NO RaT8OC RaT8Wg. Wersja 2A. Strona 1

DWUKIERUNKOWY REGULATOR SILNIKA DC VDC 20A

PILIGRIM SMD wg SP5JPB

DPM961 / DPM962. Cyfrowy multimetr panelowy INSTRUKCJA OBSŁUGI. Nr produktu Strona 1 z 11

REGULATOR ŁADOWANIA 12V / 24V / 36V / 48V DC DO INSTALACJI ELEKTROWNI WIATROWEJ

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2018 ZASADY OCENIANIA

REGULOWANE ZASILACZE DC SERIA DPD

KIESZONKOWY MULTIMETR CYFROWY AX-MS811. Instrukcja obsługi

Podstawy użytkowania i pomiarów za pomocą MULTIMETRU

Podłączenia zasilania i sygnałów obiektowych z użyciem rozłącznych złącz zewnętrznych - suplement do instrukcji obsługi i montażu

INSTRUKCJA INSTALACJI I UŻYTKOWANIA

CENTRALA ALARMOWA CA-1A

Sygnał wewnątrz jest transmitowany bez pośrednictwa kondensatorów sygnałowych.

INSTRUKCJA INSTALACJI

Spis treści. Realitynet.pl - przystępnie o komputerach

Ćwiczenie 1. Sprawdzanie podstawowych praw w obwodach elektrycznych przy wymuszeniu stałym

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2017 CZĘŚĆ PRAKTYCZNA

Moduł kontroli dostępu RFID nr ref. 1052/MKD

INSTRUKCJA MONTAŻU / OBSŁUGI

SP-4004 SYGNALIZATOR OPTYCZNO-AKUSTYCZNY sp4004_pl 03/13

Miernik Cęgowy Extech EX730, CAT III 600 V

Modem radiowy MR10-GATEWAY-S

Wzmacniacz 70MHz na RD16HHF1

NUDA PHONO. Projekt przedwzmacniacza gramofonowego obsługującego wkładki MM, MC HO, MC LO. projekt: ahaja typ dokumentu: manual wersja:

PRZENOŚNY GŁOŚNIK BLUETOOTH SUPER BASS

INSTRUKCJA OBSŁUGI M-320 #02905 KIESZONKOWY MULTIMETR CYFROWY

SP-6500 SD-6000 SYGNALIZATOR OPTYCZNO-AKUSTYCZNY sp6500_pl 03/13

MULTIMETR CYFROWY AX-100

4 Adres procesora Zworkami A0, A1 i A2 umieszczonymi pod złączem Z7 ustalamy adres (numer) procesora. Na rysunku powyżej przedstawiono układ zworek dl

Falownik FP 400. IT - Informacja Techniczna

Instrukcja obsługi i montażu Modułu rezystora hamującego

PRZEDWZMACNIACZ PASYWNY Z SELEKTOREM WEJŚĆ. dokumentacja. (wersja 1.1

ZWORY ELEKTROMAGNETYCZNE - INSTRUKCJA OBSŁUGI

PRZERÓBKA ZASILACZA XBOX 203 W

Zestaw dla domu jednorodzinnego Nr ref. 1122/31

Ćwiczenie 7 PARAMETRY MAŁOSYGNAŁOWE TRANZYSTORÓW BIPOLARNYCH

Ćwiczenie 21 Temat: Komparatory ze wzmacniaczem operacyjnym. Przerzutnik Schmitta i komparator okienkowy Cel ćwiczenia

XXIX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne

Zestaw dla domu jednorodzinnego Nr ref. 1122/31

Zasilacz do zegara ( audio-clocka )

Wzmacniacz uniwersalny Nr produktu

ORVALDI ATS. Automatic Transfer Switch (ATS)

Nowy MULTIMETR z czujnikiem Halla

INSTRUKCJA MONTAŻU / OBSŁUGI

Projekt MxM przenośny wzmacniacz słuchawkowy Schemat:

Montaż i uruchomienie

GA-1. Instrukcja montażu i obsługi. Urządzenie alarmowe do separatora smaru

ZASILACZ IMPULSOWY NSP-2050/3630/6016 INSTRUKCJA OBSŁUGI

TM-508A MILIOMOMIERZ

APS Właściwości. ZASILACZ BUFOROWY aps-412_pl 04/15

INSTRUKCJA OBSŁUGI MIERNIKA GRUBOŚCI LAKIERU MGL2 AL <> FE

Interaktywnego Modułu głosowego

PX 151. DMX-RS232 Interface INSTRUKCJA OBSŁUGI

MULTIMETR CYFROWY TES 2360 #02970 INSTRUKCJA OBSŁUGI

INSTRUKCJA OBSŁUGI. MINI MULTIMETR CYFROWY M M

Manual podłączenia świateł LED do jazdy dziennej DayLight MODEL 625 HBSW z homologacją RL 00 i. E4 z automatyczny włącznikiem/wyłącznikiem by mickey11

Instrukcja do ćwiczenia laboratoryjnego nr 9

strona 1 MULTIMETR CYFROWY M840D INSTRUKCJA OBSŁUGI

Instrukcja obsługi miernika uniwersalnego MU-07L

Schemat tego urządzenia przedstawiam poniżej. Kliknij na obraz by powiększyć.

Przyrządy i Układy Półprzewodnikowe

INSTRUKCJA OBSŁUGI. Zasilaczy serii MDR. Instrukcja obsługi MDR Strona 1/6

CYFROWY SYSTEM DOMOFONOWY. Unifon 1132/520

Instrukcja obsługi. Nr produktu: Miernik Cęgowy Extech EX710, CAT III 600 V

SYSTEM PIROTECHNICZNY PYROBOX. CZĘŚĆ 12. Wersja nr 2 / Amatorski system pirotechniczny.

Laboratorium Metrologii

Tester miernik elementów RLC i półprzewodników

System Informacji Technicznej SIT MTC mini

Napięcie zasilania 3000, 1500, 1000 obr/min do wyboru od 110 do 690 Volt, 50 lub 60 Hz

PODSTAWOWE ELEMENTY ELEKTRONICZNE DIODA PROSTOWNICZA. W diodach dla prądu elektrycznego istnieje kierunek przewodzenia i kierunek zaporowy.

Ile wynosi całkowite natężenie prądu i całkowita oporność przy połączeniu równoległym?

Warsztatowo/ samochodowy wzmacniacz audio

URZĄDZENIE ROZRUCHOWE BAT 250. Instrukcja obsługi

Zasilacz Buforowy ZB IT - Informacja Techniczna

PANELE DOMOFONOWE MODUŁY ROZMÓWNE

Zasilacz Stabilizowany LZS60 model 1202

SK Instrukcja instalacji regulatora węzła cieplnego CO i CWU. Lazurowa 6/55, Warszawa

URZĄDZENIE ROZRUCHOWE BAT 251. Instrukcja obsługi

Transkrypt:

Opis montażu, uruchomienia i regulacji wzmacniacza słuchawkowego HA2013. Prace nad powyższym zaczynamy od weryfikacji wielkości otworów w padach lutowniczych na pcb, może się zdarzyć, że jakiś otwór, lub ich grupa będą zbyt małe, by przewlec nogę danego elementu. Tak się dzieje zapewne w przypadku otworów pod dedykowane słupki pomiarowe, ale inne otwory też mogą być podlane np. lakierem soldermaski. Zbyt małe otwory należy rozwiercić za pośrednictwem właściwej grubości wiertła. Ja zastosowałem wiertło średnicy 1,0mm do rozwiercenia wszystkich, zbyt małych otworków. Były to otwory pod kołki pomiarowe TP1 do TP4, otwory rezystorów R1, R2, R8, R14, R23, R24 i R25, otwory dla diod Zenera D1 i D2, jak i otwory dla kondensatorów C8, C9, C10 oraz C11. Te ostatnie (C8 do C11) można zostawić takie, jak są, ale ich średnica jest nieco na styk. Pracując nad płytką warto też nieco stępić jej krawędzie. Fazowanie krawędzi można wykonać pilnikiem, lub kawałkiem papieru ściernego umieszczonym na niewielkim klocku. Najważniejsze jest, by stępić krawędź dolną, przylegającą do radiatora, podczas tej czynności jednocześnie nieco zetniemy krawędzie padów tranzystora Q7 nie dopuszczając do zwarcia ich z radiatorem. Mając powyższe za sobą przechodzimy do następnego etapu. Przygotowanie radiatora. Oczywiście każdy zastosuje tu coś innego, może to być jeden wspólny dla obu kanałów element, lub dwa oddzielne radiatory. Może być umieszczony w obudowie, lub stanowiąc element konstrukcyjny obudowy żebrami wystawać na zewnątrz. Z racji dużej swobody wykonania wspomnianego coolera ograniczę się tylko do wskazówek dotyczących rozmieszczenia otworów mocujących tranzystory i sam radiator do płytek wzmacniaczy. Poniższy rysunek przedstawia proponowane odległości nawierceń wiertłem o średnicy 2,4-2,5mm. Takie otwory następnie nagwintujemy gwintownikiem M3/0,5. Podczas wykonywania gwintów pamiętajmy o obfitym zwilżaniu gwintownika np. denaturatem, lub innym spirytusem, a najlepiej naftą. Samą czynność gwintowania proponuję wykonywać z dużym wyczuciem, bardzo łatwo jest wyłamać gwintownik, niszcząc tym samym też radiator.

Narzędzie po trochu wkręcamy i cofamy zwilżając jednocześnie wspomnianym płynem, zapobiegnie on klejeniu się aluminium do obrabiającego ostrza i zacieraniu go w materiale radiatora. Rysunek po prawej stronie przedstawia wymiary rozmieszczenia punktów mocowania tranzystorów. Celowo jako punkt odniesienia przyjęto pozycję w poziomie jednego z otworów na pcb i powierzchnię laminatu tegoż dla określenia wysokości. Taki opis pozwoli wyznaczyć otwory na radiatorze o dowolnym kształcie i wielkości. Po zakończeniu wierceń i gwintowania radiator można wyszlifować papierem wodnym na klocku, polecam granulację około 400-500, oczywiście czynność do wykonania na mokro. Następnie chętni radiator mogą poanodować (operacja do zlecenia w zakładzie). Dla solidnego połączenia radiatora z płytką warto dorobić metalowe kątowniczki z nagwintowanymi otworami M3 do przykręcenia płytki, oraz z otworami fi-3 do przykręcenia do radiatora. To mój pomysł, ale duża dowolność pozwala tu na utworzenie własnej koncepcji. Radiator przygotowany, pora więc na dalsze czynności. Kolejny krok to montaż części na płytce. Cały proces opiszę na przykładzie jednego kanału. Zaczynamy od zworek, następnie inna drobnica: małe rezystory, następnie większe rezystory, diody i kołki pomiarowe. Po wlutowaniu drobnych elementów lutujemy scalak upc1237, tranzystory (na razie pomijamy pary końcowe mocy one będą montowane na końcu, razem z radiatorem), helitrimy (potencjometr wieloobrotowy), małe kondensatory MKP, MKT i elektrolityczne (z pominięciem 10000uF/35V), następnie złącza, rezystory ceramiczne i przekaźnik. Proszę pamiętać, że stosowanie tranzystorów końcowych mocy 2SK2955 2SJ554 wymaga w miejscu R17zastosowania rezystora o oporności 2,7KOhm, natomiast parom końcowym 2SK1529 2SJ200 powinien towarzyszyć rezystor R17 o oporności 2 KOhm. W układzie dobrze jest zastosować pewne tranzystory sparowane ze sobą, oto ich wykaz dla jednego kanału: - Q1 i Q4 (2SA970GR) - Q2 i Q3 (2SC2240GR) - Q8 i Q9 (2SC3423Y i 2SA1360Y) tu parowanie nie jest konieczne, ale można je wykonać.

Tranzystory 2SA970 i 2SC2240 umieszczone parami obok siebie na płytce warto połączyć termicznie. Można to zrobić obkurczając na nich koszulkę termokurczliwą, ja zastosowałem klejenie. Doskonale sprawdza się tu klej cyjanoakrylowy, lub zwykła żywica epoksydowa. W omawianej wersji wzmacniacza został dodany układ kaskody, każdy może sam zdecydować, czy montować go w układzie, czy pominąć. Jeśli ma być pominięty wystarczy nie montować rezystora R35, oraz tranzystora Q12. W pady przeznaczone dla wyprowadzenia C i E tranzystora Q12 lutujemy natomiast zworę. Przedstawia to widoczny obok rysunek. Zamiast termistora TH1 można ostatecznie wlutować rezystor smd o wartości 180 do 240 Ohm. Spowoduje to znaczne spowolnienie nagrzewania się układu do optymalnej temperatury, a tym samym dłuższy czas oczekiwania na ustabilizowanie się założonych parametrów układu. Czas na wlutowanie kondensatorów 10000uF/35V. Teraz można do radiatora przykręcić tranzystory. Tranzystory mocy wymagają izolacji podkładkami silikonowymi lub mikowymi, natomiast małe (2SC3423) nie mają odkrytych części metalowych obudowy, ale dla lepszego połączenia termicznego z radiatorem trzeba je posmarować pastą silikonową, lub również umieścić na podkładkach silikonowych, które w tym wypadku spełnią rolę medium do lepszego kontaktu termicznego z płytą radiatora. UWAGA! tranzystory 2SC3423 (Q7) na radiatorze montujemy stroną z symbolami do zewnątrz, do radiatora skierowana jest więc zupełnie gładka, bez symboli strona tego elementu. Pozostałe tranzystory w tych samych obudowach (sterujące Q8 i Q9) montujemy stroną z symbolami zwróconą w kierunku przekaźnika.

Mając równo przykręcone do radiatora tranzystory zestawiamy całość z pcb, pilnując jednocześnie by nogi wszystkich tranzystorów bez zbędnych naprężeń znalazły się w swoich otworach. Przykręcamy radiator za pośrednictwem wykonanych wcześniej metalowych kątowniczków do płytki, teraz możemy zalutować nogi umieszczonych na radiatorze tranzystorów w ich padach na pcb. Zakładam, że na tym etapie mamy już na płytce wszystkie części, teraz możemy umyć całość z kalafonii i ewentualnie innych zanieczyszczeń w alkoholu izopropylowym (np. IPA), polecam kuwetę i miękki pędzelek. Obok zdjęcie zmontowanej - z małymi wyjątkami - płyty wzmacniacza, oraz zamontowanym na próbę radiatorem. Foto Jeremy. Teraz czas na ważną część pracy oglądamy wszystko dokładnie zwracając szczególną uwagę na polaryzację diod, kondensatorów elektrolitycznych, układ tranzystorów i czy nie ma zwarć zarówno od strony druku, jak i elementów. Omomierzem sprawdźmy również czy blaszka któregoś z tranzystorów mocy nie ma połączenia galwanicznego z radiatorem. Jak już wszystko sprawdzimy to znowu sprawdzamy, ale teraz dwa razy! Kolejny etap to okablowanie. Proponuję nie tyle zaciskać odizolowane części przewodów w konektorkach, co je lutować. Zacisnąć jak najbardziej można, ale tę część, gdzie jest jeszcze izolacja. Ci, co takie czynności już wykonywali wiedzą ile to wymaga precyzji. Warto jednak zrobić to solidnie, by uniknąć przerw i nietrwałości połączenia. Proszę zwrócić szczególną uwagę na układ połączeń, schemat i jego analiza z płytkami w rękach są tu nieodzowne. Każdy może użyć innych złącz, a niektórzy pewnie nie będąc przekonanymi do tych ostatnich zechcą wszystko lutować.

UWAGA! cały proces uruchamiania i regulacji wzmacniacza przeprowadzamy BEZ PODŁĄCZONYCH słuchawek! Do złącza X1 podłączamy dwukolorową diodę LED ze wspólną katodą patrz schemat. Natomiast złącze JP1 możemy zewrzeć jumperkiem. Złącze JP1 - jeśli jest rozwarte wzmacniacz będzie wymagał wyłączenia i ponownego włączenia zasilania po zadziałaniu zabezpieczenia słuchawek. Natomiast złącze JP1 zwarte jumperem spowoduje samoczynne powtórne aktywowanie wyjścia słuchawkowego po ustaniu przyczyny jego rozłączenia. Można więc dowolnie tę funkcję skonfigurować. Mając gotowe, w pełni poskładane moduły spróbujmy je zasilić. Weźmy jeden z nich i do złącza AC podłączmy wtórne uzwojenia transformatora. Transformator sieciowy podłączony powinien być następująco: Dwa jednobarwne przewody stanowiące wyprowadzenie skrajnych końców uzwojenia wtórnego muszą być połączone ze skrajnymi przyłączami gniazda AC, natomiast środkowy przewód, stanowiący odczep uzwojenia wtórnego transformatora łączymy ze środkowym przyłączem gniazda AC. W przypadku dedykowanych transformatorów z firmy Toroidy.pl ich okablowanie jest dokładnie opisane na etykietach. Zdjęcie przedstawia okablowanie wtórne transformatora z zamocowaną kostką złącza AC. Graficznie połączenia uzwojeń transformatora można przedstawić następująco: ---^^^^^^---^^^^^^--- 15V 0 15V pomarańczowy biały pomarańczowy - kolory są przykładowe. skrajny środkowy skrajny - pad złącza AC Generalnie mamy dwie różne dedykowane wartości napięć zasilania: 1 2x15V/20VA na kanał w przypadku użycia wzmacniacza do napędzania słuchawek 2 2x20V/40VA na kanał w przypadku użycia wzmacniacza również do napędzania głośników. Przechodzimy do następnego etapu pracy pod napięciem. Przyjmijmy, że wersja podstawowa wzmacniacza zasilana jest napięciem zmiennym o wartości 2x15V na kanał.

Czas na pomiary napięć zasilających. Zakładam, że mamy podłączony transformator zasilający wyposażony w przewód sieciowy 230V-AC z wtyczką. Włączamy wtyczkę do gniazda sieci 230V-AC i Stajemy woltomierzem cyfrowym ustawionym na zakres pomiaru napięcia stałego (DMM-VDC) jednym biegunem na masie (np. jedna z 5 zworek pomiędzy elektrolitami 10000uF, przy krawędzi płytki), drugim zaś najpierw na środkowej nodze tranzystora mocy FET3 odczytujemy wartość napięcia, następnie na środkowej nodze FET4 tu również dokonujemy odczytu. Wskazane przez DMM napięcia powinny się zawierać w granicy około + i 19V (dla zasilania trafem 2x20V około + i 27V), są to wartości czysto teoretyczne i mogą nieco odbiegać od tych założeń, tu ważna jest nie tyle sama wartość napięcia, co różnica między napięciem dodatnim, a ujemnym, ta różnica nie powinna być większa niż 1V. UWAGA! Jeśli te napięcia są mocno zaniżone lub bliskie zeru mogło się zdarzyć, że mimo zasilenia niewyregulowanego jeszcze wzmacniacza gwałtownie wzrosła temperatura bezpieczników polimerowych F1 i F2, co spowoduje zwiększenie ich oporności i znaczny spadek napięcia za nimi. W tej sytuacji należy wyłączyć zasilanie i przeregulować o kilka obrotów helitrim VR1 np. w prawo. Jeśli po włączeniu zasilania problem występuje nadal należy ponownie wzmacniacz wyłączyć, a helitrim pokręcić tym razem w lewo tak, by go cofnąć do pozycji pierwotnej i dołożyć jeszcze kilka obrotów. Ponownie włączamy zasilanie i dokonujemy pomiaru napięć. Jeśli napięcia zasilania są prawidłowe przechodzimy do kolejnych pomiarów. Czas na pomiar napięć stabilizowanych. Tu jedną sondę DMM-VDC stawiamy na masie wzmacniacza (jak poprzednio), a drugą na umieszczoną bliżej krawędzi płytki nogę rezystora R3 dokonujemy odczytu i przenosimy sondę pomiarową na punkt pomiarowym TP2 tu również wykonujemy pomiar. Wskazane wartości powinny wynosić około + i 14 do 15V (dla zasilania z trafa 2x20V te napięcia są takie same jak dla zasilania z trafa 2x15V). Jeśli napięcia są w normie i nic nie dymi wyłączamy zasilanie i przechodzimy do kolejnego etapu. Regulacja. Czynności te wymagają by dokonać zwarcia wejścia sygnału do masy, łączymy więc ze sobą oba piny złącza IN. Stajemy sondami DMM-VDC na punktach pomiarowych TP1 i TP2 (jedna sonda miernika do TP1, a druga sonda do TP2). Włączamy zasilanie i obserwując wskazanie napięcia doprowadzamy kręcąc helitrimem VR2 do wartości 0,7V (dla zasilania trafem 2x20V wartość ta jest taka sama i również wynosi 0,7V). Wyłączamy wzmacniacz i przekładamy sondy na punkty pomiarowe TP3 i TP4. Kręcąc helitrimem VR3 doprowadzamy do wskazania 0,020V do 0,023V (20mV do 23mV) co odpowiada prądowi spoczynkowemu na poziomie 200 do 230mA (dla trafa 2x20V te wartości mogą być nieco większe, np. 25 do 27mV czyli 250 270mA prądu spoczynkowego). Kolejna czynność to regulacja wartości tzw. DC 0, czyli sprowadzenie wzmacniacza do pracy z minimalnym napięciem stałym na wyjściu sygnału (Out). W tym celu podłączamy jedną sondę DMM-VDC do masy wzmacniacza (jak poprzednio np. zworki przy kondensatorach 10000uF/35V), a drugą stawiamy na punkcie pomiarowym TP3, teraz kręcąc helitrimem VR1 doprowadzamy do wskazań minimalnej wartości napięcia stałego. To napięcie nie powinno być wyższe niż +/- 10mV.

Jeśli wcześniej nie słyszeliśmy klikania przekaźnika, to po tych regulacjach, w kilka sekund po włączeniu zasilania powinien być słyszalny jego stuk, natomiast jeśli mamy podłączoną podwójną diodę LED powinna ona zmienić kolor świecenia - świadczy to o prawidłowej pracy układu opóźniającego załączenie wyjścia słuchawkowego. Ostatnim punktem do regulacji jest helitrim VR4, ustawiamy nim czas zwłoki załączenia przekaźnika. W położeniu środkowym ślizgacza helitrimu zwłoka wynosi ok. 4 sekund. Wymaga to trochę cierpliwości, ale warto tak wyregulować VR4, by oba kanały były załączane z podobnym opóźnieniem. Teraz poczekajmy aż wzmacniacz porządnie się nagrzeje min. 40 minut i powtórzmy wszystkie regulacje jeszcze raz. W zasadzie można by już podłączyć źródło sygnału audio oraz słuchawki i słuchać muzyki, ale. Ale lepiej sprawdźmy jeszcze reakcję układu zabezpieczającego słuchawki na pojawienie się napięcia stałego na wyjściu wzmacniacza. W tym celu należy usunąć zworę na złączu wejściowym IN i podłączyć do niego układ jak na rys.2. Rys.2 polaryzacja dodatnia. Rys.3 polaryzacja ujemna. Jest to klasyczny potencjometr do regulacji głośności, za pomocą którego będziemy pompować coraz to wyższe / niższe napięcie stałe na wejście wzmacniacza, aż do zadziałania zabezpieczenia. Zakładam, że do złącza X1 cały czas mamy podłączoną dwukolorową diodę LED ułatwi nam ona obserwację stanu zabezpieczenia. Teraz podłączamy baterię 1,5V biegunem dodatnim do złącza BAT-1, a ujemnym do BAT-2 (patrz rys.1). Następnie podłączamy DMM-VDC do masy i punktu pomiarowego TP3. Włączamy zasilanie wzmacniacza i powoli podkręcając potencjometr obserwujemy rosnące wskazania DMM. W pewnym momencie powinien zareagować układ zabezpieczeń i wyłączyć przekaźnik, a dioda LED zmienić kolor świecenia na czerwony, dla napięcia dodatniego wartość pomiaru nie powinna wtedy przekraczać 1,4V. Po zaliczeniu tego testu odwracamy biegunowość baterii 1,5V, czyli teraz jej minus łączymy z BAT-1, a plus z BAT-2 (obrazuje to rys.3). Po takim połączeniu powtarzamy pomiar napięcia na wyjściu ponownie powoli kręcąc potencjometrem, tym razem mamy do czynienia z napięciem ujemnym. Przekaźnik powinien się wyłączyć, a dioda LED zmienić kolor świecenia na czerwony kiedy wartość tego napięcia nie spadnie niżej niż -1,2V. Koniecznie wykonajmy ten pomiar dla obu kanałów.

Pozytywny wynik całego sprawdzianu oznacza możliwość 100% bezpiecznego podłączenia słuchawek. Podłączmy więc do płytek gniazdo słuchawkowe, do wejścia natomiast ekranowany kabelek doprowadzający sygnał audio (z regulowanego źródła lub przez potencjometr regulacji głośności. Podłączmy słuchawki (może na pierwszy raz jakieś, z którymi nie jesteśmy zbyt mocno emocjonalnie związani). Jeżeli po podaniu sygnału audio na wejście wzmacniacza włącza się zabezpieczenie (słychać kliknięcie przekaźnika a dioda LED zmienia kolor świecenia) oznacza to najprawdopodobniej, że nasze źródło sygnału nie posiada na wyjściu kondensatora separującego, lub jego konstrukcja w inny sposób nie zapobiega pojawianiu się na wyjściu sygnału składowej stałej. Ta sytuacja wymaga zastosowania przed potencjometrem regulacji głośności naszego wzmacniacza włączonego szeregowo kondensatora separującego ową składową stałą. Może to być bipolarny kondensator elektrolityczny lub lepiej typu MKP o wartości ok. 10uF (chociaż w protoplaście HA-5000 zastosowano aż 100uF - Nichicon ES, ale tego ostatniego nie polecam). Najlepiej w tym miejscu zastosować dobry, dedykowany do audio kondensator z dielektrykiem z folii polipropylenowej (MKP). Jeśli już uporaliśmy się z prawidłowym zasileniem wejścia, czas na odsłuchy. Naciskamy PLAY lub ENTER i podkręcamy nieco głośność! Czy muzyka gra? Mam nadzieję, że tak! Dla prawidłowej, optymalnej pracy wzmacniacza dobrze jest wyposażyć go w najlepiej metalową obudowę, która będzie połączona z masą układu zastosowanie tu mają ogólne standardy dotyczące łączenia mas. Można np. spróbować ustanowić punkt centralny masy na gnieździe słuchawkowym, lub przyjąć w tym celu jakiś, wybrany eksperymentalnie punkt na obudowie. Analiza prowadzenia mas na pcb skłania do wniosku, że pociągnięcie do gniazda słuchawkowego przewodu masowego zarówno z pinu masy złącza OUT, jak i z oczka centralnego znajdującego się pomiędzy kondensatorami CA i CB nie spowoduje żadnego zapętlenia. Pamiętajmy też, że połączenia z masą, np. z metalową obudową, lub - jeśli to jest niemożliwe kabelkiem z punktem centralnym masy wymaga metalowa obudowa potencjometru regulacji głośności. Niestety, trzeba mieś świadomość, że w sytuacji wykorzystywania przez użytkowników różnych obudów trudno jest doradzić konkretne prowadzenie mas. Niestety, ale na tym polu indywidualne eksperymenty mogą okazać się nieodzowne. Życzę zadowolenia z odsłuchów! Robertinus