Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Entalpia rozpuszczania elektrolitu w wodzie

Podobne dokumenty
K03 Instrukcja wykonania ćwiczenia

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Temperaturowa charakterystyka termistora typu NTC

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Wyznaczanie ciepła właściwego cieczy metodą kalorymetryczną

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ

A4.05 Instrukcja wykonania ćwiczenia

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Zależność napięcia powierzchniowego cieczy od temperatury. opracowała dr hab. Małgorzata Jóźwiak

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Adsorpcja kwasu octowego na węglu aktywnym. opracowała dr hab. Małgorzata Jóźwiak

nazywamy mostkiem zrównoważonym w przeciwieństwie do mostka niezrównoważonego, dla którego Z 1 Z 4 Z 2 Z 3. Z 5

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Izoterma rozpuszczalności w układzie trójskładnikowym

A4.04 Instrukcja wykonania ćwiczenia

A4.06 Instrukcja wykonania ćwiczenia

Wyznaczanie krzywej ładowania kondensatora

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Wyznaczanie lepkości wodnych roztworów sacharozy. opracowała dr A. Kacperska

Ćwiczenie 425. Wyznaczanie ciepła właściwego ciał stałych. Woda. Ciało stałe Masa kalorymetru z ciałem stałym m 2 Masa ciała stałego m 0

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Wpływ stężenia kwasu na szybkość hydrolizy estru

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Parachora kilku związków organicznych. opracowała dr hab. Małgorzata Jóźwiak

WYZNACZANIE CZĄSTKOWEGO MOLOWEGO CIEPŁA

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Lepkościowo średnia masa cząsteczkowa polimeru. opiekun ćwiczenia: dr A.

K05 Instrukcja wykonania ćwiczenia

13. TERMODYNAMIKA WYZNACZANIE ENTALPII REAKCJI ZOBOJĘTNIANIA MOCNEJ ZASADY MOCNYMI KWASAMI I ENTALPII PROCESU ROZPUSZCZANIA SOLI

Katedra Elektrotechniki Teoretycznej i Informatyki

Ćwiczenie 9. Mostki prądu stałego. Program ćwiczenia:

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 1. Połączenia szeregowe oraz równoległe elementów RC

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Wyznaczanie względnej przenikalności elektrycznej kilku związków organicznych

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Wyznaczanie stałej szybkości i rzędu reakcji metodą graficzną. opiekun mgr K.

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Wyznaczanie termodynamicznych funkcji aktywacji lepkiego przepływu cieczy. opracowała dr A.

LABORATORIUM TERMODYNAMIKI ĆWICZENIE NR 3 L3-1

13 K A T E D R A F I ZYKI S T O S O W AN E J

E12. Mostek Wheatstona wyznaczenie oporu właściwego

Ćwiczenie 9. Mostki prądu stałego. Zakres wymaganych wiadomości do kolokwium wstępnego: Program ćwiczenia:

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Spektrofotometryczne oznaczanie stężenia jonów żelaza(iii) opiekun mgr K. Łudzik

E 6.1. Wyznaczanie elementów LC obwodu metodą rezonansu

Sprawdzanie prawa Joule'a

ĆWICZENIE 6 POMIARY REZYSTANCJI

Wyznaczanie cieplnego współczynnika oporności właściwej metali

PRZEWODNOŚĆ ROZTWORÓW ELEKTROLITÓW

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 121: Termometr oporowy i termopara

ĆWICZENIE 3 CIEPŁO ROZPUSZCZANIA I NEUTRALIZACJI

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Wyznaczanie entalpii parowania wody na podstawie pomiaru temperaturowego współczynnika prężności pary

Katedra Energetyki. Laboratorium Podstaw Elektrotechniki i Elektroniki

POLITECHNIKA WARSZAWSKA Wydział Elektryczny Zakład Systemów Informacyjno-Pomiarowych

Zakład Metrologii i Systemów Pomiarowych Laboratorium Metrologii I. Grupa. Nr ćwicz.

ε (1) ε, R w ε WYZNACZANIE SIŁY ELEKTROMOTOTYCZNEJ METODĄ KOMPENSACYJNĄ

Pomiar podstawowych parametrów liniowych układów scalonych

POMIARY TEMPERATURY I

Pomiar wielkości nieelektrycznych: temperatury, przemieszczenia i prędkości.

Pomiar oporu elektrycznego za pomocą mostka Wheatstone a

Pomiar rezystancji metodą techniczną

WYZNACZANIE ZMIAN ENTROPII

OZNACZANIE MASY MOLOWEJ SUBSTANCJI NIELOTNYCH METODĄ KRIOMETRYCZNĄ

POLITECHNIKA OPOLSKA

Podstawy Badań Eksperymentalnych

NAGRZEWANIE ELEKTRODOWE

Badanie transformatora

WAT - WYDZIAŁ ELEKTRONIKI INSTYTUT SYSTEMÓW ELEKTRONICZNYCH. Przedmiot: CZUJNIKI I PRZETWORNIKI Ćwiczenie nr 1 PROTOKÓŁ / SPRAWOZDANIE

Laboratorium Podstaw Pomiarów

Ćwiczenie: "Pomiary rezystancji przy prądzie stałym"

SPRAWDZANIE SŁUSZNOŚCI PRAWA OHMA DLA PRĄDU STAŁEGO

LI OLIMPIADA FIZYCZNA ETAP II Zadanie doświadczalne

Ćw. 27. Wyznaczenie elementów L C metoda rezonansu

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Wyznaczanie przewodnictwa granicznego mocnego elektrolitu

Opracował dr inż. Tadeusz Janiak

Piezorezystancyjny czujnik ciśnienia: pomiar i wyznaczenie parametrów metrologicznych czujnika i przetwornika ciśnienia

Wyznaczanie stałej dysocjacji pk a słabego kwasu metodą konduktometryczną CZĘŚĆ DOŚWIADCZALNA. Tabela wyników pomiaru

Ćwiczenie nr 3 Sprawdzenie prawa Ohma.

Wyznaczanie ciepła topnienia lodu za pomocą kalorymetru

Ćwiczenie 1. Wyznaczanie molowego ciepła rozpuszczenia i ciepła reakcji zobojętnienia

Badanie transformatora

1 Ćwiczenia wprowadzające

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W TARNOWIE INSTYTUT POLITECHNICZNY LABORATORIUM METROLOGII. Instrukcja do wykonania ćwiczenia laboratoryjnego:

TRANSPORT NIEELEKTROLITÓW PRZEZ BŁONY WYZNACZANIE WSPÓŁCZYNNIKA PRZEPUSZCZALNOŚCI

Badanie transformatora

CHARAKTERYSTYKA PIROMETRÓW I METODYKA PRZEPROWADZANIA POMIARÓW

Wyznaczanie wielkości oporu elektrycznego różnymi metodami

Katedra Elektrotechniki Teoretycznej i Informatyki

Badanie charakterystyki prądowo-napięciowej opornika, żarówki i diody półprzewodnikowej z wykorzystaniem zestawu SONDa

Badanie kinetyki inwersji sacharozy

Pomiar indukcji pola magnetycznego w szczelinie elektromagnesu

Wyznaczanie sprawności grzejnika elektrycznego i ciepła właściwego cieczy za pomocą kalorymetru z grzejnikiem elektrycznym

Ćwiczenie 1. Wyznaczanie molowego ciepła rozpuszczenia i ciepła reakcji zobojętnienia

WYZNACZANIE CIEPŁA TOPNIENIA LODU METODĄ BILANSU CIEPLNEGO

KATALITYCZNE OZNACZANIE ŚLADÓW MIEDZI

Ćwiczenie 2 Mostek pojemnościowy Ćwiczenie wraz z instrukcją i konspektem opracowali P.Wisniowski, M.Dąbek

E1. OBWODY PRĄDU STAŁEGO WYZNACZANIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁA

Ile wynosi całkowite natężenie prądu i całkowita oporność przy połączeniu równoległym?

Energia promieniowania termicznego sprawdzenie zależności temperaturowej

ĆWICZENIE 22 WYZNACZANIE CIEPŁA PAROWANIA WODY W TEMPERETATURZE WRZENIA

LVI OLIMPIADA FIZYCZNA (2006/2007). Stopień III, zadanie doświadczalne D

NIEZBĘDNY SPRZĘT LABORATORYJNY

pobrano z serwisu Fizyka Dla Każdego - - zadania fizyka, wzory fizyka, matura fizyka

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ

Ćw. 10: Mostki prądu przemiennego Podpis prowadzącego: Uwagi:

Ćwiczenie 1. Sprawdzanie podstawowych praw w obwodach elektrycznych przy wymuszeniu stałym

Odporny na korozję czujnik ciśnienia dla mikroreaktorów chemicznych

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Wyznaczanie momentu dipolowego cieczy polarnych. opracował dr P. Góralski

Ćwiczenie nr 9. Pomiar rezystancji metodą porównawczą.

Ćw. 8 Weryfikacja praw Kirchhoffa

Laboratorium Podstaw Biofizyki

Transkrypt:

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Entalpia rozpuszczania elektrolitu w wodzie ćwiczenie nr 36 opracowanie ćwiczenia: prof. dr hab. B. Pałecz, dr S. Belica Zakres zagadnień obowiązujących do ćwiczenia 1. Kalorymetria jako metoda pomiarowa. 2. Klasyfikacja kalorymetrów. 3. Ciepło właściwe i molowe w stałych warunkach ciśnienia i objętości. 4. I i II zasada termodynamiki. 5. Prawa Hessa i Kirchhoffa. 6. Entalpia rozpuszczania, mieszania i rozcieńczania. Literatura 1. Praca zbiorowa pod red. Woźnickiej J. i Piekarskiego H., Ćwiczenia laboratoryjne z chemii fizycznej, Wydawnictwo UŁ, Łódź 2005. 2. Sobczyk L., Kisza A., Gatner K., Koll A., Eksperymentalna chemia fizyczna, PWN, Warszawa 1982. 3. Szarawara J., Termodynamika chemiczna, WNT, Warszawa 1997. 4. Praca zbiorowa pod redakcją Bielańskiego A., Chemia fizyczna, PWN, Warszawa 1980. 5. Buchowski H., Ufnalski W., Podstawy termodynamiki, WNT, Warszawa 1994.

Celem ćwiczenia jest wyznaczenie całkowitej molowej entalpii rozpuszczania KNO 3 w wodzie w temperaturze 25 o C. Układ pomiarowy Układ do pomiaru entalpii rozpuszczania soli w wodzie (Rys. 1) składa się z kalorymetru nieizotermiczno nieadiabatycznego (A), układu mostkowego (B) i (Ba) oraz zespołu pomiarowego prądu grzałki (C). 11 U n A R 2 R d Z U Z D C R 1 R T B Ba Rys. 1. Schemat układu kalorymetrycznego Kalorymetr (A) składa się z naczynia teflonowego (1) o pojemności 300 cm 3, zakrywanego teflonowym korkiem (2) i połączoną z nim pokrywą (3). W korku umieszczony jest termistor w osłonie metalowej (4) o oporze około 40 kω, grzałka (5) z drutu oporowego o oporności 8,1Ω w szklanej osłonie oraz zbijak z uchwytem (6) do podtrzymywania szklanej ampułki (7) z substancją badaną. W środku pokrywy znajduje się szklane mieszadło (8), które napędzane jest silnikiem elektrycznym. Naczynie kalorymetryczne umieszczone jest w termostacie wodnym (9) utrzymującym stałą temperaturę z dokładnością ±0,02 o C. Zmiany temperatury wewnątrz kalorymetru w czasie przebiegu badanego procesu (powodujące zmiany oporności termistora), mierzone są za pomocą układu mostkowego (B). Układ ten wyposażony jest w klasyczny mostek Wheatstone'a (10), (którego bardziej szczegółowy schemat przedstawia rysunek 3 Ba) oraz woltomierz cyfrowy V628 (11), służący do bezpośredniej obserwacji zmian napięcia niezrównoważenia mostka U n.. Napięcie to jest liniową funkcją zmian temperatury w 2

kalorymetrze U n = f(t), zarówno w czasie kalibracji układu, jak i w czasie pomiaru entalpii rozpuszczania soli w wodzie. Z uwagi na to, że w obecnie stosowanych układach kalorymetrycznych pomiaru temperatury dokonuje się przy użyciu termistorów zasada działania takiego mostka jest opisana poniżej(rys. 3 Ba). Mostek składa się z dwóch oporników wzorcowych R 1 i R 2, termistora jako zmiennego elementu w gałęzi mostka o oporze R T oraz pięciodekadowego opornika nastawczego R d, służącego do równoważenia mostka. W obudowie znajduje się zasilacz Z wbudowany do jednej z przekątnych mostka AB, który służy do przekazania gałęziom mostka napięcia o wartości U Z 6 V. W drugą przekątną mostka CD wbudowany jest woltomierz cyfrowy (11), służący jako wskaźnik równowagi mostka. Opory wzorcowe oraz opornik dekadowy zostały w ćwiczeniu umieszczone we wspólnej obudowie (10), natomiast termistor jest poza nią. Woltomierz cyfrowy (11) znajduje się również na zewnątrz układu mostkowego. Jest to powszechnie stosowany sposób konstrukcji tego typu mostków. W momencie zrównoważenia mostka pomiędzy wartościami oporów zachodzi relacja: R 1 R d = R 2 R T i woltomierz nie wykazuje przepływu prądu. (Wyprowadzenie powyższego wzoru można znaleźć w podręcznikach fizyki i chemii fizycznej, m. in. w Eksperymentalnej chemii fizycznej 2 ). Po ustaleniu się temperatury w układzie, a więc ustaleniu wartości oporu termistora R T, doprowadza się układ mostkowy do stanu równowagi (wskazania woltomierza równe 0). W ćwiczeniu układ mostkowy został tak skonstruowany, że wartości oporów wzorcowych są sobie równe; R 1 = R 2, stąd R d = R T. Wobec tego, na mostku pomiarowym (10) zwanym również dekadą, można odczytać bezpośrednio wartość oporu termistora R T. Stan mostka, przy którym prąd jest równy zeru nazywamy stanem równowagi mostka, a mostek służący do pomiaru metodą zerową nazywamy mostkiem zrównoważonym, w przeciwieństwie do mostków niezrównoważonych, w których stan równowagi jest stanem wyjściowym. Podział taki ma wyłącznie formalny charakter, ponieważ każdy z mostków może pracować jako zrównoważony lub niezrównoważony. W ćwiczeniu stosowana jest tzw. metoda odchyłowa, zaś użyty mostek działa jako mostek niezrównoważony. W momencie równowagi mostka woltomierz nie wykazuje przepływu prądu, a taki stan mostka jest stanem wyjściowym w pomiarze kalorymetrycznym. Wszelkie zmiany temperatury w procesie kalorymetrycznym (odchylenia od stanu 3

równowagi mostka) mogą być obserwowane na woltomierzu cyfrowym (11), którego napięcie niezrównoważenia U n jest liniową funkcją oporności termistora, a ta z kolei zależy liniowo od temperatury w kalorymetrze. Zespół pomiarowy prądu grzałki (C) składa się z zasilacza (12), opornika wzorcowego (13) o oporze 1Ω oraz miernika prądu grzałki (14) typu V540. Konstrukcja układu pomiarowego prądu grzałki umożliwia bezpośredni odczyt natężenia prądu i na mierniku (14), ponieważ w zestawie pomiarowym znajduje się opór wzorcowy. W czasie przepływu prądu przez grzałkę zmienia się napięcie na oporniku wzorcowym o oporze 1Ω i dlatego wskazywane przez miernik wartości napięcia [V], odpowiadają natężeniu prądu grzałki [A]. Przełącznik do uruchamiania grzałki stop start" (15) oraz licznik czasu pracy grzałki (16) znajdują się w jednej obudowie. Zespół ten służy do kalibracji kalorymetru tj. wyznaczania całkowitej pojemności cieplnej kalorymetru K. Odczynniki chemiczne i sprzęt laboratoryjny: woda destylowana, KNO 3, zlewka (300 cm 3 ), stoper, szklana ampułka. Wykonanie ćwiczenia i przedstawienie wyników pomiarów 1. Uruchomić termostat i nastawić jego temperaturę na 25 o C. 2. Na wadze analitycznej zważyć z dokładnością ±0,0002 g szklaną ampułkę, napełnić ją suchym KNO 3 w ilości około 0,4 g, zatopić ampułkę przy użyciu palnika gazowego oraz powtórnie zważyć na wadze analitycznej w celu wyznaczenia masy substancji m x. 3. Naczynie kalorymetryczne zważyć na wadze technicznej z dokładnością ±0,05 g, napełnić 300 cm 3 wody destylowanej z butli umieszczonej w twrmostacie i ponownie zważyć w celu dokładnego określenia masy wody m w. 4. Zważoną ampułkę z badanym elektrolitem umieścić w uchwycie zbijaka, naczynie kalorymetryczne połączyć z teflonową pokrywą i wstawić do komory termostatu. 5. Uruchomić: mieszadło, układ mostkowy, woltomierz cyfrowy V628, miernik prądu grzałki V540, zasilacz grzałki oraz licznik czasu pracy grzałki. Miernik czasu wyzerować przyciskiem kasowanie". 4

6. Odczekać około 45 minut w celu wytermostatowania układu kalorymetrycznego. Sygnałem, że układ osiągnął stan równowagi termicznej, będą nieznaczne zmiany (rzędu kilku mv) napięcia na woltomierzu cyfrowym V628 ( nr 11 rys. 3). 7. Pokrętłami dekady sprowadzić na woltomierzu cyfrowym napięcie niezrównoważenia mostka U n do wartości 0 mv. 8. Rozpocząć pomiar zmian temperatury w kalorymetrze, notując co 30 sekund wartości napięcia U nk odczytane na woltomierzu cyfrowym. Czas odmierzać stoperem. Dokonać 15 odczytów wartości napięcia. Jest to okres początkowy pomiaru pierwszej pojemności cieplnej kalorymetru. 9. W celu kalibracji kalorymetru przyciskiem start" włączyć prąd grzałki na około 90 sekund. W czasie pracy grzałki (o oporze r = 8,1 Ω) odczytać na mierniku V540 dokładną wartość natężenia prądu i 1 płynącego przez grzałkę. Czas pracy grzałki τ 1 odczytać na liczniku czasu z dokładnością ±0,01 s, sumując w pionowych rzędach cyfry przy świecących się diodach, a następnie czasomierz wyzerować. Uwaga! W czasie kalibracji kalorymetru nie przerywać odczytów napięcia (co 30 s) na woltomierzu V 628. 10. Po zakończeniu kalibracji kalorymetru dokonać 15 (co 30 s) odczytów wartości napięcia U nk. Jest to okres końcowy pomiaru pojemności cieplnej kalorymetru K 1, który jest jednocześnie okresem początkowym procesu rozpuszczania substancji badanej w wodzie. 11. Rozbić ampułkę, wciskając zbijak do oporu. Ze względu na dobrą rozpuszczalność soli w wodzie okres główny pomiaru ciepła rozpuszczania zawiera się w czasie ok. 30 s. 12. Dokonać 15 odczytów napięcia U nx po zbiciu ampułki. Będzie to okres końcowy procesu rozpuszczania soli i początkowy drugiej kalibracji. 13. Ponownie włączyć grzałkę przyciskiem start" na około 90 sekund (jak w punkcie 9). W trakcie grzania zanotować wartość natężenia prądu i 2 płynącego przez grzałkę w czasie τ 2. 14. Po wyłączeniu grzałki przyciskiem stop", zanotować 15 kolejnych odczytów zmian napięcia U nk w kalorymetrze. Jest to okres końcowy drugiego pomiaru pojemności cieplnej kalorymetru K 2. 5

Zmiana temperatury kalorymetru T związana z wydzieleniem lub pobraniem ciepła może być mierzona bezpośrednio przy użyciu termometru lub poprzez wielkość proporcjonalną do tej różnicy. W przypadku stosowania jako mierników temperatury termistorów w układach mostkowych, obserwuje się zmiany napięcia niezrównoważenia mostka U n. Są one liniową funkcją zmian temperatury w kalorymetrze U n = f( T). Zarówno w czasie pomiaru pojemności cieplnej kalorymetru, jak i ciepła rozpuszczania soli w wodzie, bezpośrednio odczytuje się wartości napięcia niezrównoważenia mostka wyrażone w [mv]. Nie zachodzi konieczność przeliczania [mv] na stopnie [K], ponieważ. uzyskana jednostka pojemności cieplnej [J mv -1 ] w obliczeniach entalpii rozpuszczania H s, ulega uproszczeniu. 6

Tabela wyników pomiarów L.p. Czas [min] U n [mv] L.p. Czas [min] U n [mv] 1. 0 34. 17,0 2. 0,5 35. 17,5 3. 1,0 36. 18,0 4. 1,5 37. 18,5 5. 2,0 38. 19,0 6. 2,5 39. 19,5 7. 3,0 40. 20,0 8. 3,5 41. 20,5 9. 4,0 42. 21,0 10. 4,5 43. 21,5 11. 5,0 44. 22,0 12. 5,5 45. 22,5 13. 6,0 46. 23,0 14. 6,5 47. 23,5 15. 7,0 48. 24,0 16. 7,5 i 1 49. 24,5 i 2 17. 8,0 τ 1 50. 25,0 τ 2 18. 8,5 51. 25,5 19. 9,0 52. 26,0 20. 9,5 53. 26,5 21. 10,0 54. 27,0 22. 10,5 55. 27,5 23. 11,0 56. 28,0 24. 11,5 57. 28,5 25. 12,0 58. 29,0 26. 12,5 59. 29,5 27. 13,0 60. 30,0 28. 13,5 61. 30,5 29. 14,0 62. 31,0 30. 14,5 63. 31,5 31. 15,0 64. 32,0 32. 15,5 65. 32,5 33. 16,0 (zbicie ampułki) 66. 33,0 7

Tabela wyników pomiarów m w [g] m x [g] r [Ω] i 1 [A] τ 1 [s] i 2 [A] τ 2 [s] Opracowanie i dyskusja wyników pomiarów 1. Na papierze milimetrowym sporządzić wykres zmian napięcia niezrównoważenia mostka od czasu U n = f(min), które odpowiadają zmianom temperatury w kalorymetrze podczas wykonywania pomiaru. Krzywe dotyczące wyznaczania pojemności cieplnej kalorymetru (obie serie) oraz pomiaru efektu rozpuszczania KNO 3 w wodzie umieścić na wspólnym wykresie, jak pokazuje to poniższy rysunek. Rys. 2. Zależność napięcia niezrównoważenia mostka od czasu U n = f(min). Uwaga: a) W obliczeniach efektu cieplnego H związanego z rozpuszczaniem soli w wodzie, zmianę temperatury T można zastąpić U nx (patrz: str.4). 8

b) Ciepło wydzielone w procesie zachodzącym w kalorymetrze powoduje wzrost temperatury kalorymetru o T. Energia wewnętrzna, a w konsekwencji entalpia układu H w takim procesie maleje. Oznacza to, że w procesie egzotermicznym H < 0 i T > 0. Jeżeli układ pobiera ciepło (proces endotermiczny), to wówczas H > 0 i T < 0. 2. Metodą graficzną wyznaczyć skorygowane wartości napięcia niezrównoważenia mostka, odzwierciedlające przyrosty temperatury wywołane efektami pracy grzałki U nk (1) i U nk (2) oraz efektem rozpuszczania substancji badanej U nx (Rys. 2). 3. Korzystając z równania (1) obliczyć pojemność cieplną kalorymetru K 1 i K 2 na podstawie dwóch serii pomiarów: K = ri 2 τ U nk [J mv -1 ] (1) gdzie: r opór grzałki [Ω], i natężenie prądu [A] τ czas [s] przepływu prądu. 4. Wyznaczyć pojemność średnią K. Wartość tę należy stosować do obliczenia entalpii rozpuszczania. 5. Obliczyć efekt cieplny rozpuszczania soli H z zależności: H = K T = K U nx (2) 5. Obliczyć całkowitą molową entalpię rozpuszczania H s badanej soli (KNO 3 ): H s = H n x = HM m gdzie: m x masa badanego elektrolitu, M x jego masa cząsteczkowa. 6. Na podstawie wzoru (4), obliczyć stężenie molalne m roztworu w molach KNO 3 na 1 kilogram wody: m m x 1000 = M m 7. Otrzymane wyniki obliczeń przedstawić w poniższej tabeli. Do sprawozdania dołączyć wykres. 8. Przeprowadzić analizę uzyskanych wyników pomiarów. x w x x (3) (4) 9

Tabela wyników obliczeń U nk (1) [mv] U nk (2) [mv] K 1 [J mv -1 ] K 2 [J mv -1 ] K [J mv -1 ] U nx [mv] H [J] M x [g mol -1 ] H s [J mol -1 ] m [mol kg -1 ] 10