ZAGROŻENIA ZWIĄZANE Z DZIAŁANIEM PODUSZKI POWIETRZNEJ W PRZYPADKU NIESTANDARDOWEJ POZYCJI KIEROWCY SAMOCHODU OSOBOWEGO



Podobne dokumenty
C5 II - D4EA8GP0 - Prezentacja : Poduszki powietrzne PREZENTACJA : PODUSZKI POWIETRZNE

"2" : Boczna poduszka powietrzna typu piersiowego "3" : Boczna poduszka powietrzna typu zasłonowego

BEZPIECZEŃSTWO CZYNNE i BIERNE W POJAZDACH

ANALIZA STANU BEZPIECZEŃSTWA PASAŻERÓW NA TYLNYCH SIEDZENIACH SAMOCHODU OSOBOWEGO PODCZAS WYPADKU DROGOWEGO

Instrukcja montażu - Mercedes"

(12) TŁUMACZENIE PATENTU EUROPEJSKIEGO (19) PL (11) (13) T3 (96) Data i numer zgłoszenia patentu europejskiego:

Korzystajcie Państwo z radością z modelu phoenixfix 3 i cieszcie się uczuciem, że dokonaliście najlepszego wyboru dla swojego dziecka.

Silniki dostosowane do Twoich potrzeb.

RAPID NH Schemat elektryczny nr 12 / 2

ZAMEK CENTRALNY (BLOKADA DRZWI)

Najczęściej pojawiającym się pytaniem jest: dlaczego nie grzeje??

Budowa pojazdów osobowych

ANALIZA BEZPIECZEŃSTWA UCZESTNIKÓW WYPADKU DROGOWEGO

prof. dr hab. inż. Marek Gzik, prof. zw. w Pol. Śl. Katedra Biomechatroniki Wydział Inżynierii Biomedycznej Politechnika Śląska R E C E N Z J A

W samochodzie. Radość z odkrywania świata

Modyfikacja podzespołów objętych homologacją firmy Scania

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 2(88)/2012

Człowiek najlepsza inwestycja. Do wszystkich uczestników postępowania ZMIANA TREŚCI ZAŁĄCZNIKA

SKODA FABIA I. Prezentacja wyposażenia samochodu marki: Część: 3

Twoje X6 xdrive30d

SKODA FABIA I. Prezentacja wyposażenia samochodu marki: Część: 1

BIOMECHANICZNA ANALIZA WYPADKU SAMOCHODOWEGO Z ZASTOSOWANIEM URZĄDZENIA TYPU HANS PODPIERAJĄCEGO GŁOWĘ ORAZ ODCINEK SZYJNY KRĘGOSŁUPA KIEROWCY

Wpływ prędkości samochodu w trakcie zderzenia z pieszym na obciążenia głowy oraz szyi pieszego

ANALIZA WPŁYWU PRĘDKOŚCI UDERZENIA W PRZESZKODĘ NA OBCIĄŻENIA DYNAMICZNE OSÓB W SAMOCHODZIE Z RAMOWĄ KONSTRUKCJĄ NOŚNĄ

Zespól B-D Elektrotechniki

7. Identyfikacja defektów badanego obiektu

STATYCZNA PRÓBA ROZCIĄGANIA

METODA EKSPERYMENTALNYCH BADAŃ CZASU REAKCJI NOWOCZESNYCH SYSTEMÓW WSPOMAGANIA OŚWITLENIA POJAZDU NA PRZYKŁADZIE AFL

Spis treści Zespół autorski Część I Wprowadzenie 1. Podstawowe problemy transportu miejskiego.transport zrównoważony

TECH-AGRO B ę d z i n

Sposób i układ sterowania sztywnością i zdolnością do dyssypacji energii cienkościennej belki wielomodułowej oraz cienkościenna belka wielomodułowa

CZOŁOWA PODUSZKA POWIETRZNA PASAŻERA: DEMONTAŻ - MONTAŻ

CALIBRATION OF THE NEW HUMAN THORAX MODEL FOR LOW IMPACT LOADING RATES

POLSK. Bezpieczeństwo w samochodzie - dzieci i dorośli

Wypadki samochodowe - statystyki. Przyczyny obrażeń ŹRÓDŁA ZAGROŻEŃ ZDROWIA I ŻYCIA W WYPADKACH SAMOCHODOWYCH

WYKORZYSTANIE MES DO WYZNACZANIA WPŁYWU PĘKNIĘCIA W STOPIE ZĘBA KOŁA NA ZMIANĘ SZTYWNOŚCI ZAZĘBIENIA

Instrukcja obsługi Minikid

Oferujemy możliwość zaprojektowania i wdrożenia nietypowego czujnika lub systemu pomiarowego dedykowanego do Państwa potrzeb.

Oferta firmy Invenco dla przemysłu motoryzacyjnego. Piotr Bartkowski. Marian Ostrowski Warszawa, 2016

Laboratorium techniki światłowodowej. Ćwiczenie 3. Światłowodowy, odbiciowy sensor przesunięcia

Wstęp do analizy odkształceń fotelika samochodowego do przewozu dziecka w trakcie kolizji na podstawie wykonanych symulacji

ZMIANA TREŚCI SPECYFIKACJI ISTOTNYCH WARUNKÓW ZAMÓWIENIA, NUMER POSTĘPOWANIA: D/92/2017

Sprawozdanie z przedsięwzięcia "Budowa ekologicznego pojazdu zasilanego ogniwem paliwowym." WFOŚ/D/201/54/2015

RISK OF EXPERIMENT FAILURE ANALYSIS OF CRASH TEST RELIABILITY RYZYKO NIEPOWODZENIA EKSPERYMENTU ANALIZA NIEZAWODNOŚCI PRÓB ZDERZENIOWYCH

Funkcjonalność urządzeń pomiarowych w PyroSim. Jakich danych nam dostarczają?

STANOWISKO DO MODELOWANIA PRÓB ZDERZENIOWYCH WYBRANYCH ELEMENTÓW DECYDUJĄCYCH O BEZPIECZEŃSTWIE BIERNYM POJAZDU

KAMERA AKUSTYCZNA NOISE INSPECTOR DLA SZYBKIEJ LOKALIZACJI ŹRÓDEŁ HAŁASU

Przekaźnik sygnalizacyjny PS-1 DTR_2011_11_PS-1

ZADBAJ O OPTYMALNĄ TEMPERATURĘ W SWOIM DOMU!

Podsumowanie konfiguracji Twojego

SZKOLENIE Z ZAKRESU RATOWNICTWA TECHNICZNEGO DLA STRAŻAKÓW RATOWNIKÓW OSP. TEMAT 4: Organizacja akcji ratownictwa technicznego na drogach

WZORU UŻYTKOWEGO (19) PL (11) 67536

Zdalna aktywacja funkcji układu zapewnienia widoczności

Test powtórzeniowy nr 1

STEROWNIK ŚWIATEŁ i SZLABANÓW SWS-4/485K/UK

Obliczenia obciążenia osi. Informacje ogólne na temat obliczeń obciążenia osi

DROGA ROZWOJU OD PROJEKTOWANIA 2D DO 3D Z WYKORZYSTANIEM SYSTEMÓW CAD NA POTRZEBY PRZEMYSŁU SAMOCHODOWEGO

Obszar niewłaściwej widoczności wokół pojazdu zagrożeniem bezpieczeństwa ruchu drogowego

prezentuje: Poradnik mądrego rodzica: Jak wybrać i dopasować dobry fotelik dla dziecka?

PL B1. ADAPTRONICA SPÓŁKA Z OGRANICZONĄ ODPOWIEDZIALNOŚCIĄ, Łomianki, PL BUP 16/11

SPIS TREŚCI do książki pt. Metody badań czynników szkodliwych w środowisku pracy

MODELOWANIE HAMULCA TARCZOWEGO SAMOCHODU OSOBOWEGO Z WYKORZYSTANIEM ZINTEGROWANYCH SYSTEMÓW KOMPUTEROWYCH CAD/CAE

SZKOLENIE Z ZAKRESU RATOWNICTWA TECHNICZNEGO DLA STRAŻAKÓW RATOWNIKÓW OSP. TEMAT 4: Organizacja akcji ratownictwa technicznego na drogach

Kanałowa nagrzewnica elektryczna z modułem regulacji temperatury

Bezpieczeństwo użytkowników wojskowych pojadów mechanicznych w zdarzeniach drogowych

PL B1. ADAPTRONICA SPÓŁKA Z OGRANICZONĄ ODPOWIEDZIALNOŚCIĄ, Łomianki k. Warszawy, PL BUP 20/10

CRN Profesjonalny czujnik ruchu 12V. Elementy czujnika

Twój samochód 30 sierpnia GLE: GLE 300 d 4MATIC. GLE 300 d 4MATIC Cena całkowita PLN. wydajności energetycznej

Bezpieczeństwo osób jadących w pojeździe uderzonym w bok w kontekście zapięcia/niezapięcia pasów bezpieczeństwa

ANALIZA RUCHU KIEROWCY W PŁASZCZYŹNIE CZOŁOWEJ ORAZ ODDZIAŁYWAŃ WEWNĘTRZNYCH W KRĘGOSŁUPIE SZYJNYM PODCZAS WYPADKÓW SAMOCHODOWYCH

BADANIA EKSPERYMENTALNE DYNAMIKI KLATKI PIERSIOWEJ

WARIATORY WYPRZEDZENIA ZAPŁONU

Zintegrowany System Kontroli VACIS IP6500 Technologia obrazowania dla przemysłu paliwowego

Karta charakterystyki online FFUS10-1G1IO FFU CZUJNIKI PRZEPŁYWU

Reflektory: sprawdzanie ustawienia, ewentualna regulacja

'MAPOSTAW' Praca zespołowa: Sylwester Adamczyk Krzysztof Radzikowski. Promotor: prof. dr hab. inż. Bogdan Branowski

Ćwicz. 4 Elementy wykonawcze EWA/PP

Zespół B-D Elektrotechniki

Drogi Rodzicu, Opiekunie!

WYMIARY NAGRZEWNIC: Wymiary (mm) ØD B H L L1. Waga (kg) Nr rys. Typ

Ważne informacje. Instrukcja obsługi Rekid

PRACA PRZEJŚCIOWA SYMULACYJNA. Zadania projektowe

ANALIZA WPŁYWU DŁUGOŚCI SEGMENTU BETONOWEJ BARIERY OCHRONNEJ NA BEZPIECZEŃSTWO RUCHU DROGOWEGO

DOKUMENTACJA POJAZDU. Dane Dealera: URSYN CAR ul. Romera Warszawa. Kontakt do sprzedawcy:

Politechnika Łódzka. Instytut Systemów Inżynierii Elektrycznej

OKREŚLENIE WPŁYWU WYŁĄCZANIA CYLINDRÓW SILNIKA ZI NA ZMIANY SYGNAŁU WIBROAKUSTYCZNEGO SILNIKA

Mechanika i Budowa Maszyn II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Czy regulamin R43 zapewnia wystarczająco wysoką jakość na rynku części samochodowych?

LEON PROCHOWSKI 1, MICHAŁ FITAS 2, KAROL ZIELONKA 3 Wojskowa Akademia Techniczna, Przemysłowy Instytut Motoryzacji. Streszczenie

ECOSPORT Ecosport_17.5MY_MAIN_V3_Master.indd BC66-BC68 Ecosport_17.5MY_MAIN_V3_POL_PL.indd BC66-FC67 11/01/ :00:49 01/02/ :56:07

Systemy zabezpieczeń

Karta charakterystyki online FFUS20-1C1IO FFU CZUJNIKI PRZEPŁYWU

HELSINKI Przepływomierz Elektroniczny Stardex FM 0102

PROCEDURA USTAWIANIA CZUJNIKÓW

MÓJ CITROËN C4 GRAND PICASSO Skonfigurowany w

1. Dane techniczne analizatorów CAT 3

Ćwiczenie: "Symulacja zderzeń sprężystych i niesprężystych"

TECH-AGRO B ę d z i n

Ćwiczenie 2 WSPÓŁPRACA JEDNAKOWYCH OGNIW FOTOWOLTAICZNYCH W RÓŻNYCH KONFIGURACJACH POŁĄCZEŃ. Opis stanowiska pomiarowego. Przebieg ćwiczenia

Stair Lighting Driver. Sterownik oświetlenia schodowego Instrukcja użytkowania

Transkrypt:

Andrzej DOLNY, Donata GIERCZYCKA-ZBROŻEK, Karol JAŚKIEWICZ ZAGROŻENIA ZWIĄZANE Z DZIAŁANIEM PODUSZKI POWIETRZNEJ W PRZYPADKU NIESTANDARDOWEJ POZYCJI KIEROWCY SAMOCHODU OSOBOWEGO Streszczenie Poduszki powietrzne stosowane w samochodach osobowych mają na celu zredukowanie przeciążeń działających na ludzki organizm w czasie zderzenia a przez to zwiększenie szans na minimalizację obrażeń czy w krańcowym przypadku przeżycie. Stosowane niezgodnie z założeniami projektantów mogą jednak stanowić zagrożenie dla użytkownika. Niestandardowa pozycja w samochodzie, nietypowy ze względu na charakterystyki antropometryczne pasażer, mogą spowodować nieprzewidziane przez konstruktora zadziałanie poduszki. Konstruktorzy starają się uwzględnić możliwe źródła zagrożeń, rozbudowując zakres testów o konfiguracje nietypowe (OoP Out of Position) oraz próbując zminimalizować negatywny ich wpływ na działanie poduszki. WSTĘP Jednym z najważniejszych elementów poprawy bezpieczeństwa biernego są poduszki powietrzne. Ich zadaniem jest odebranie energii kinetycznej pasażera podczas zderzenia, a przez to zminimalizowanie obrażeń. Konstrukcja wykorzystuje energię procesu chemicznego do uruchomienia i napełnienia poduszki gazem. Na rys. 1 przedstawiono rozmieszczenie części składowych poduszki powietrznej kierowcy, natomiast na rys. 1b. widoczny jest przekrój modułu poduszki powietrznej. a) b) Rys. 1. Widok poduszki powietrznej; a) części składowe poduszki powietrznej kierowcy, b) Przekrój modułu poduszki powietrznej wraz z inflatorem dwustopniowym. Autoliv. AUTOBUSY 1

W skład układu poduszki powietrznej wchodzą: moduł poduszki powietrznej (generator gazu z pastylkami paliwa stałego i zapalnikiem, tekstylna komora poduszki, obudowa, złącze), układ aktywujący (czujniki przyspieszeń) oraz elektroniczne urządzenia sterujące. Zadaniem generatora gazu jest napełnienie poduszki gazem. Umieszczona jest w nim odpowiednia ilość paliwa stałego w postaci tabletek (granulatu). Uruchomienie poduszki powietrznej następuje poprzez zapalnik ze spłonką, który umieszczony jest w środku komory spalania. Spłonka, detonowana przez zapalnik mostkowy, uruchomiona impulsem elektrycznym z urządzenia sterującego, powoduje zapłon substancji zapalającej, od której zapala się paliwo stałe. Powstający w wyniku spalania gaz przepływa pod ciśnieniem przez metalowy filtr, gdzie jest oczyszczany i schładzany, a następnie dostaje się do wnętrza komory poduszki (rys. 2). 5 ms 15 ms 30 ms Rys. 2. Kolejne fazy napełniania poduszki powietrznej kierowcy. Autoliv. Poduszka powietrzna wyzwalana jest przez elektroniczne urządzenie sterujące na podstawie sygnałów z czujników przyspieszeń umieszczonych w punkcie centralnym i w przedniej części samochodu. Liczba i rodzaj czujników układu poduszek gazowych zależy od rodzaju i typu samochodu. Po zderzeniu czołowym urządzenie sterujące uruchamia odpowiedni program, który umożliwia porównanie wartości zarejestrowanego przez czujniki opóźnienia z zapisanymi w pamięci urządzenia sterującego wartościami wzorcowymi, ustalonymi na podstawie testów zderzeniowych. Od wyniku obliczeń zależy, czy przednie poduszki gazowe zostaną uruchomione. Algorytmy obliczeń uwzględniają budowę i zachowanie się stref zgniotu nadwozia danego samochodu. W procesie konstruowania poduszki wykorzystuje się symulacje numeryczne oraz testy mechaniczne. Podstawą do nich jest zastosowanie manekinów do testów zderzeniowych przede wszystkim Hybrid III 5-centylowej kobiety i 50-centylowego mężczyzny. Oznacza to, że ustawienia i kształt poduszki dostosowane są do konkretnych sytuacji oraz konkretnej wagi i wzrostu pasażera. Poduszki spełnią swoją funkcję poprawnie wyłącznie wtedy, gdy uruchomione zostaną w sytuacji przypominającej konfigurację testową. 1. OUT-OF-POSITION Szybko zauważono potencjalne zagrożenia wiążące się z uruchomieniem poduszki w sytuacji niestandardowej, gdy kierowca lub pasażer przyjmują nieprzewidzianą przez producenta systemów zabezpieczeń biernych pozycję w pojeździe. Sytuacja taka nosi nazwę Out-of- Position, w skrócie OoP. Współczesne regulacje bezpieczeństwa wymagają od producentów samochodów testowania poduszek powietrznych również w takich niestandardowych konfiguracjach, w celu zapewnienia pasażerom możliwie dużego bezpieczeństwa. Dla testów po stronie kierowcy wykorzystuje się manekina Hybrid III 5-centylowej kobiety, jako że mniejsze osoby siadają bliżej kierownicy, będąc przez to bardziej narażone na obrażenia spowodowane wystrzeleniem poduszki. Sprawdzanymi pozycjami są chin-on-rim gdy podbródek manekina oparty jest o górną część koła kierownicy oraz chin-on-module gdy podbródek manekina oparty jest o górną część modułu poduszki powietrznej (rys. 3). 2 AUTOBUSY

a) b) Rys. 3. Konfiguracje testowe do Out-of-position. a) chin-on-module, b) chin-on-rim [1]. Otrzymane w wyniku testów wartości przyspieszeń, sił i momentów nie mogą przekroczyć limitów ustalonych podczas eksperymentów biomechanicznych (na zwłokach, zwierzętach). 2. WYNIKI PRZYKŁADOWYCH SYMULACJI W celu zilustrowania niekorzystnych mechanizmów związanych z sytuacjami out-ofposition, przeprowadzono trzy proste symulacje w komercyjnym pakiecie LS-Dyna. Konfiguracją wyjściową był udostępniany przez LSTC model szkoleniowy, składający się z uproszczonego wnętrza samochodu, z poduszką powietrzną i pasami bezpieczeństwa. We wnętrzu pojazdu umieszczono manekina Hybrid III 5-centylowej kobiety, dostosowano ustawienie fotela oraz zlikwidowano pasy bezpieczeństwa, niepotrzebne w konfiguracji statycznej. W układzie referencyjnym (rys. 4a) manekin został usadzony w pozycji jak najbardziej przypominającej naturalnie przyjmowaną przez kierowcę w samochodzie, z opuszczonymi rękami. W pozycji chin-on-module (rys.4b) starano się dostosować pozycję manekina do rekomendowanej w Regulacji 208 NHTSA, w której podbródek manekina oparty jest o moduł poduszki powietrznej w centralnej części kierownicy. Ze względu na ograniczenia modelu (brak możliwości regulacji pochylenia klatki piersiowej względem miednicy), nie udało się tego położenia dokładnie odwzorować. W pozycji chin-on-rim (rys.4c) podbródek manekina oparty jest o górną część koła kierownicy. W każdym z przypadków, w warunkach statycznych uruchamiana jest poduszka powietrzna. Rejestrowane są przyspieszenia głowy oraz siły i momenty w szyi. Ze względu na duże uproszczenia w modelu oraz brak możliwości jego walidacji, otrzymane wyniki służą bardziej określeniu mechanizmów zjawisk na podstawie analizy jakościowej, nie ilościowej. a) b) c) Rys. 4. a) Pozycja referencyjna, b) pozycja zbliżona do chin-on-module, c) pozycja chin-on-rim. AUTOBUSY 3

Na rys. 5 przedstawiono krzywą zależności zagrożenia poważnym obrażeniem szyi ze względu na czas działania siły rozciągających kręgosłup szyjny. Ze wzrostem długości trwania impulsu siły o danej wartości, maleje odporność biomechaniczna organizmu ludzkiego i zwiększa się prawdopodobieństwo odniesienia obrażeń [2]. Na rys. 6 zaprezentowano przebieg sił rozciągających kręgosłup szyjny z przeprowadzonych symulacji. Zaobserwować można wydłużenie czasu trwania obciążenia ze zmianą konfiguracji testu. Najkrótszy czas (20-42 ms) dla układu referencyjnego, najdłuższy (18-50 ms) dla chin-on-rim. Wydłużenie czasu trwania impulsu przy podobnej wartości siły pozwala przypuszczać, że poziom obrażeń będzie większy (rys. 5). Rys. 5. Prawdopodobieństwo odniesienia poważnych obrażeń kręgosłupa szyjnego. Zależność między czasem trwania impulsu a wartością siły. [2] Rys. 6. Przebiegi sił rozciągających kręgosłup szyjny. A pozycja referencyjna, B zbliżona do chin-on-module, C chin-on-rim. Siły rejestrowane w górnej części kręgosłupa (C0). Na rysunku 7 przedstawiono przebieg momentu gnącego (przeprost) kręgosłup szyjny. Widoczne wydłużenie czasu trwania obciążenia ze zmianą konfiguracji testu. Najkrótszy czas (25-42 ms) zaobserwować można dla układu referencyjnego, najdłuższy (23-65 ms) dla chinon-rim. Wydłużenie czasu trwania impulsu przy podobnej wartości momentu gnącego pozwala przypuszczać, że poziom obrażeń będzie większy [2]. 4 AUTOBUSY

Rys. 7. Przebiegi momentów gnących (przeprost) kręgosłup szyjny dla układu referencyjnego (A), chin-on-module (B) oraz chin-on-rim (C). Siły rejestrowane w górnej części kręgosłupa (C0). Przedstawione wyniki symulacji, przebiegu sił i momentu gnącego w szyi, pozwalają nawet przy tak uproszczonym modelu potwierdzić niebezpieczeństwo związane z przyjmowaniem przez pasażera niestandardowej pozycji w aucie. Czas ekspozycji na przeciążenia wydłuża się, a przez to rośnie ryzyko odniesienia obrażeń. 3. SYSTEMY KLASYFIKUJĄCE PASAŻERA W nowoczesnych systemach bezpieczeństwa panuje nowa tendencja przechwytywania informacji o budowie anatomicznej pasażera w celu zoptymalizowania sposobu jego ochrony. Najpopularniejszy sposób to odpowiednio rozmieszczone czujniki masy ukryte wewnątrz samochodowych foteli. Tutaj prekursorem tego typu rozwiązań jest firma Siemens, która jest wiodącym na rynku producentem systemów automatyki. Inżynierowie z Siemensa opracowali system czujników AWS (ang. Advanced Weight Sensor zaawansowany czujnik masy), który pod koniec 2004 roku doczekał się swojej nowej wersji: AWS II. Na podstawie sygnałów pochodzących z czterech czujników (o czułości 150 g) rozmieszczonych w fotelu auta system dzięki odpowiednim algorytmom jest w stanie określić budowę ciała, masę, a także zajmowaną na fotelu pozycję pasażera. Rys. 8. Wizualizacja systemu AWS firmy Siemens Czujniki te działają na zasadzie metalowej sprężyny uginającej się maksymalnie do 0,2 mm, w zależności od nacisku wywieranego przez pasażera. Ugięcie jest rejestrowane i już jako sygnał elektryczny wysyłane do głównego sterownika, gdzie następuje analiza danych i klasyfikacja ich do jednej z pięciu kategorii wagowych pasażerów. Podczas zderzenia po- AUTOBUSY 5

duszki powietrzne są wystrzeliwane w charakterystyczny dla każdej z tych kategorii sposób, aby zoptymalizować poziom ochrony biernej i obniżyć ryzyko wystąpienia bądź zminimalizować obrażenia ofiar wypadku. Rys. 9. Czujniki masy i pozycji na fotelu system firmy Siemens Firma Continental zmodyfikowała to rozwiązanie stosując w swoim systemie OCS (ang. Occupant Classification System) specjalne maty, na których umieszczonych jest 96 czujników. Mierzą one dokładny rozkład nacisków wywieranych na fotel, przez co z większą precyzją można określić parametry wagowo-gabarytowe osób wewnątrz pojazdu. Dodatkowo, jeżeli czujniki wykryją usadowienie fotelika dziecięcego, poduszka powietrzna jest dezaktywowana. Rys. 10. Maty czujnikowe stosowane w OCS firmy Continental Firmy takie jak Bosch i Autoliv rozwijają zespoły czujników ultradźwiękowych i podczerwieni które pozwalają na ocenę budowy i położenia pasażera oraz sposób zamontowania fotelika dla dziecka. Zebrane informacje wykorzystywane są przez sterowniki do podjęcia decyzji które poduszki odpalić w razie wypadku i jak je napełnić. Na rys.11 pokazano zespół czujników połączonych w moduł kontroli wnętrza samochodu zintegrowany z lampką oświetlenia pojazdu. Nowoczesne systemy OCS nie tylko klasyfikują pasażerów ze względu na wagę i odczytują miejsce w którym się znajdują ale pozwalają również określić czy pasy bezpieczeństwa są zapięte i jakie jest ich napięcie. Innymi słowy system czujników pozwala stwierdzić czy siedzi dziecko lub przymocowany jest fotelik, czy przewożony przedmiot. Światła lub znaki na desce rozdzielczej informują kierowcę o włączeniu lub wyłączeniu poduszek powietrznych pasażera. Systemy związane z OCS są doskonałym przykładem tzw. inteligentnej technologii która coraz częściej znajduje zastosowanie w pojazdach samochodowych. 6 AUTOBUSY

Rys. 11. Moduł kontroli wnętrza samochodu system firmy Bosch 4. DYSKUSJA Przeprowadzenie prostych symulacji pozwoliło zaobserwować zwiększone prawdopodobieństwo odniesienia obrażeń przy przyjęciu innej niż standardowa pozycji w pojeździe. Problematyka została zauważona przez instytucje odpowiedzialne za ustalanie standardów bezpieczeństwa w samochodach. Do zestawu testów dołączono również Out-of-Position. W połączeniu z systemem klasyfikacji użytkownika, który pozwoli na dopasowanie ustawień poduszki do indywidualnych potrzeb pasażera oraz jego aktualnej pozycji w pojeździe, procedury te powinny dać szansę zredukowania obrażeń pochodzących od systemów bezpieczeństwa biernego. Kwestią wymagającą obszernych badań jest obecnie sposób identyfikacji pasażera, dostępny dla użytkowników samochodów przeciętnej klasy (koszt metody pomiarowej, czujników). BIBLIOGRAFIA 1. Air bag technology in light passenger vehicles. Office of Research and Development, National Highway Traffic Safety Administration, 2001. 2. Mertz H.J., Injury assesment values used to evaluate Hybrid III response measurements. General Motors Corporation, NHTSA Docket Submission, VSG 2284 Part III, Attachment I, Enslosure 2, 1984. POSSIBLE THREATS RELATED TO AIRBAG ACTIVATION IN CASE OF OUT-OF-POSITION CONFIGURATION AT DRIVER SIDE Abstract Air bags are meant to reduce excessive loads acting on occupant s body during the crash, decreasing injury risk. Used in configuration other than designed they may not provide its proper functionality to the occupant. Untypical position in car (called Out-of-Position) or non-standard occupant (away from a 50-percentile occupant) may cause abnormal operation of the air bag. The developers try to take possible sources of risk into account, adding Out-of-Position to the standard testing procedure and focusing on minimizing its negative influence on airbag functionality. Recenzent: dr hab. inż. Grzegorz Koralewski, prof. WSEI Autorzy: dr inż. Andrzej DOLNY - Politechnika Wrocławska mgr inż. Donata GIERCZYCKA-ZBROŻEK - Politechnika Wrocławska dr inż. Karol JAŚKIEWICZ - Politechnika Wrocławska AUTOBUSY 7