Code: UBPJO-040 Module name: Materials for energy systems and aeronautics Academic year: 2016/2017 Semester: Spring, Fall ECTS credits: 5 Programme: AGH UST International Courses Course homepage: https://intcourses.agh.edu.pl/ Lecture language: English Responsible teacher: dr inż. Cempura Grzegorz (cempura@agh.edu.pl) Academic teachers: prof. zw. dr hab. inż. Czyrska-Filemonowicz Aleksandra (czyrska@agh.edu.pl) dr inż. Cempura Grzegorz (cempura@agh.edu.pl) dr inż. Ziętara Maciej (zietara@agh.edu.pl) dr inż. Rutkowski Bogdan (rutkowsk@agh.edu.pl) dr inż. Majewska-Zawadzka Kinga (kinga@agh.edu.pl) Description of learning outcomes for module MLO code Skills M_U001 Knowledge M_W001 M_W002 M_W003 Student after module completion has the knowledge/ knows how to/is able to Has an ability of selection of materials for energy systems and aeronautics Knows the issues concerning the energy and aeronautics,particularly related to thermal efficiency, economical and ecological aspects Knows the structure of the flow engines, steam and gas turbines and jet aircraft engines Has in-depth knowledge of materials used in the energy and aerospace industries, and the directions of their development Method of learning outcomes verification (form of completion) Activity during, Examination, Test, Presentation Activity during, Examination Activity during, Examination, Scientific paper, Participation in a discussion Activity during, Examination, Presentation, Participation in a discussion FLO matrix in relation to forms of 1 / 5
MLO code Student after module completion has the knowledge/ knows how to/is able to Form of Lectures Auditorium Laboratory Project Conversation seminar Seminar Practical Fieldwork Workshops Others E-learning Skills M_U001 Knowledge M_W001 M_W002 M_W003 Has an ability of selection of materials for energy systems and aeronautics Knows the issues concerning the energy and aeronautics,particularly related to thermal efficiency, economical and ecological aspects Knows the structure of the flow engines, steam and gas turbines and jet aircraft engines Has in-depth knowledge of materials used in the energy and aerospace industries, and the directions of their development Module content Lectures 1. Problems of the energy and aeronautics industries current status and development. Criteria for the selection of materials for the energy and aeronautics applications. Ecological and economical aspects of the materials selection. 2. Operation of the flow engines, steam- and gas turbines, gas turbine. Jet aircraft engines, engine types, development. 3. Materials for energy systems and aeronautics: classification, properties, microstructure and its stability during operation, life-time. 4. Materials for fossil fuel power plants: steels (bainitic, martensitic 9-12% Cr steels and austenitic) and Ni-base alloys. 5. Production of the clean energy: near zero-emission steam power plants, membranes for CO2 and oxygen separation. 6. Wrought nickel-, iron- and cobalt-base superalloys. 7. Single crystal (cast) nickel-base superalloys for turbine blades. 8. Heat-resistant coatings: diffusion coatings, MCrAlY and TBC 9. Titanium and aluminum alloys for applications in the energy and aeronautics. 10. Structural intermetallics: microstructure, properties and possibility of their application in energy industry and aeronautics. 11. Materials for fission- and fusion reactors (W-base alloys). 2 / 5
12. Metal- and ceramic matrix composites. Oxide dispersion strengthened (ODS) alloys. 13. Materials for renewable energy productions. 14. Materials for energy conversion and storage (solid oxide fuel cells, Li-ion batteries). Laboratory 1. Steels (martensitic and austenitic) for steam power plants. 2. Nickel-base superalloys for industrial gas turbines and jet engines. 3. Heat resistant coatings: diffusion coatings, MCrAlY and TBC. 4. Titanium alloys and Ti-Al intermetallics for energy and aeronautics. 5. Aircraft and jet engines; Polish Aviation Museum. Method of calculating the final grade 0.5 examination grade + 0.5 laboratory grade Prerequisites and additional requirements Basic knowledge of materials science, physics and chemistry Recommended literature and teaching resources Ashby M., Jones D.: Materiały inżynierskie, WNT, Warszawa, 1996. Blicharski M.: Inżynieria Materiałowa Stal, WNT, Warszawa 2004. Blicharski M.: Wstęp do inżynierii materiałowej, WNT, Warszawa, 2003. Cahn R. W., Haasen P., Kramer E.J.: Materials Science and Technology, VCH, New York, tom 8, 1992. Cempura G.: Low cycle fatigue behavior of a Ti-Al based intermetallic alloy at high temperaturę, PhD Thesis, AGH Kraków, 2012. Czyrska-Filemonowicz A., Dubiel B., Wasilkowska A.: Żaroodporne i żarowytrzymałe stopy ODS umocnione nanocząstkami tlenków, Fotobit, Kraków, 2004. Czyrska-Filemonowicz A., Ennis P.J., Zielińska-Lipiec A.: High Chromium Creep Resistant Steels for Modern Steam Power Plant, rozdział w Metallurgy on the Turn of the 20th Century, Komitet Metalurgii PAN, K. Swiątkowski (ed.), Wydawnictwo Naukowe AKAPIT, Kraków, 2002, 193-217. Dubiel B.: Zmiany mikrostruktury podczas pełzania monokrystalicznych nadstopów niklu, habilitation thesis, AGH Kraków, 2011. Hernas A. (ed.): Materiały i technologie do budowy kotłów nadkrytycznych i spalarni odpadów, Wyd. SITPH, Katowice, 2009. Hernas A., Dobrzański J.: Trwałość i niszczenie elementów kotłów i turbin parowych, Wydawnictwo Politechniki Śląskiej, 2003. Luque A., Hegedus S., (ed.): Handbook of Photovoltaic Science and Engineering. John Wiley & Sons, Ltd, 2003. Proceedings Int. Charles Parsons Turbine Conference on Advanced Materials for 21st Century Turbines and Power Plant, published by The Institute of Materials, London, UK, A. Strang et al. (ed.): 7th Conference in Glasgow, 11-13.09.2007, 8th Conference in Portsmouth, 5-8.09.2011. Proceedings Int. Conference on Materials for Advanced Power Engineering in Liege, Belgium, published as the Reports of Forschungszentrum Jülich, J. Lecomte-Beckers et al. (ed.): 8th Conference 17-21.09.2006; 9th Conference, 27-29.09.2010., 10th Conference 14 17.09.2014 Nelson J.: The Physics of Solar Cells. Imperial College Press, 2003. Reed R. C.: The Superalloys. Fundamental and applications, Cambridge University Press, 2006. Rębiasz B., Orchel-Szeląg A., Czyrska-Filemonowicz A.: NewMat project the answer to challenges related to the energy market development, Wydawnictwo Naukowe AKAPIT, Kraków 2014. Rutkowski B.: Mechanical properties and microstructure of dense ceramic membranes for oxygen separation in zero-emission power plants, PhD thesis, AGH Kraków-RWTH Aachen, 2012. Wenham S., Green M. (ed): Applied Photovoltaics. 2nd ed. Routledge, 2006. Wosik J.: Evaluation of the long-term microstructural stability of selected Ni-base superalloys, PhD thesis, AGH Kraków, 2002. Zielińska-Lipiec A.: Analiza stabilności mikrostruktury modyfikowanych stali martenzytycznych 9% Cr w procesie wyżarzania i pełzania, habilitation thesis, AGH Kraków, 2005. 3 / 5
Zielińska-Lipiec A.: Stale stosowane w energetyce konwencjonalnej i jądrowej wybrane zagadnienia, in Press Ziętara M.: Evaluation of the long-term microstructural stability of selected Ni-base superalloys, PhD thesis, AGH Kraków, 2011. Scientific publications of module course instructors related to the topic of the module Rozprawy doktorskie i monografie: 1. K. Bryła Zmiany mikrostruktury podczas pełzania nowej stali martenzytycznej na wirniki turbin parowych, rozprawa doktorska (promotor: prof. A. Czyrska-Filemonowicz), AGH Kraków, 2004 2. B. Rutkowski Mechanical properties and microstructure of dense ceramic membranes for oxygen separation in zero-emission power plants, (promotorzy: prof. T. Beck i prof. A. Czyrska-Filemonowicz i prof. T. Beck), AGH i RWTH Aachen, 2012 3. A. Czyrska-Filemonowicz, P.J. Ennis, A. Zielińska-Lipiec High Chromium Creep Resistant Steels for Modern Steam Power Plant, rozdział w książce Metallurgy on the Turn of the 20th Century, Komitet Metalurgii Polskiej Akademii Nauk, K. Swiątkowski (red.), AKAPIT, Kraków, 2002, s. 193-217 4. A. Czyrska-Filemonowicz, B. Dubiel, A. Wasilkowska monografia p.t. Żaroodporne i żarowytrzymałe stopy ODS umocnione nanocząstkami tlenków, Wyd. Fotobit, 2004, s.1-124 5. B. Rębiasz, A. Orchel-Szeląg, A. Czyrska-Filemonowicz monografia p.t. NewMat project- the answer to challenges related to the energy market development, Wydawnictwo Naukowe Akapit, Kraków 2014, s. 1-107 6. G. Cempura, Low cycle fatigue behavior of a Ti-Al based intermetallic alloy at high temperature, rozprawa doktorska (promotor: prof. A. Czyrska-Filemonowicz), AGH Kraków, 2012. 7. M. Ziętara Microstructure stability of second and fourth generation single crystal nickel-base superalloys during high temperature creep deformation, rozprawa doktorska (promotor: prof. A. Czyrska-Filemonowicz), AGH Kraków, 2011 8. J. Wosik Evaluation of the long-term microstructural stability of selected Ni-base superalloys, rozprawa doktorska (promotor: prof. A. Czyrska-Filemonowicz), AGH Kraków, 2002. Artykuły: 1. 4. J. Wosik, H. J. Penkalla, A. Czyrska-Filemonowicz Waspaloy stop na wirniki nowoczesnych turbin parowych, Inżynieria Materiałowa, 4 (2002)163-167 2. G. Cempura, A. Kruk, C. Thomser, M. Wirtz, A. Czyrska-Filemonowicz Microstructure characterization of tungsten based alloys for fusion application, Archives of Metallurgy and Materials, 58(2013)473-476 3. B. Rutkowski, J. Malzender, T. Beck, A Czyrska-Filemonowicz- Membrany dla nowoczesnych elektrowni węglowych wytwarzających czystą energię, Hutnik- Wiadomosci Hutnicze, 80(2013)274-279 1. A. Czyrska-Filemonowicz, B. Dubiel, M. Ziętara, A. Cetel Development of single crystal Ni-based superalloys for advanced aircraft turbine blades, Inżynieria Materiałowa, 3-4(2007)128-133. 2. G. Cempura, H. J. Penkalla, F. Schubert, A. Czyrska-Filemonowicz Low Cycle Fatigue behavior and microstructure of 3rd generation TiAl based alloy, Inżynieria Materiałowa,175/3(2010)658-661. 3. M. Ziętara, A. Kruk, A. Gruszczyński, A. Czyrska-Filemonowicz FIB-SEM tomography of 4th generation PWA 1497 superalloy, Materials Characterisation, 87(2014)143-148; JCR. 4. M. Zietara, A. Cetel, A. Czyrska-Filemonowicz: Microstructure Stability of 4th Generation Single Crystal Superalloy, PWA 1497, during High Temperature Creep Deformation, Materials Transactions, Vol. 52, No.03, 2011, s.336-339. Additional information None 4 / 5
Student workload (ECTS credits balance) Student activity form Examination or Final test Realization of independently performed tasks Contact hours Participation in lectures Participation in laboratory Preparation of a report, presentation, written work, etc. Preparation for Summary student workload Module ECTS credits Student workload 2 h 40 h 4 h 28 h 14 h 23 h 15 h 126 h 5 ECTS 5 / 5