Przedmiotowy system oceniania z fizyki

Podobne dokumenty
Wymagania na poszczególne oceny z fizyki do klasy 2

Kryteria ocen z fizyki klasa II gimnazjum

WYMAGANIA EDUKACYJNE

1. Dynamika. R treści nadprogramowe. Ocena

Plan wynikowy. 1. Dynamika (8 godz. + 2 godz. (łącznie) na powtórzenie materiału (podsumowanie działu) i sprawdzian)

1. Dynamika WYMAGANIA PROGRAMOWE Z FIZYKI W KLASIE II GIMNAZJUM. Ocena dopuszczająca dostateczna dobra bardzo dobra Uczeń:

Wymagania na poszczególne oceny z fizyki w Zespole Szkół im. Jana Pawła II w Suchej Beskidzkiej.

Wymagania edukacyjne z fizyki dla klasy I (II półrocze) Ocena niedostateczna:

Zasady oceniania. Ocena dopuszczająca dostateczna dobra bardzo dobra

WYMAGANIA EDUKACYJNE KLASA II

PRZEDMIOTOWY SYSTEM OCENIANIA Fizyka klasa 2

Wymagania edukacyjne z fizyki w klasie drugiej gimnazjum rok szkolny 2016/2017

Spotkania z fizyka 2. Rozkład materiału nauczania (propozycja)

WYMAGANIA SZCZEGÓŁOWE NA POSZCZEGÓLNE OCENY Z FIZYKI

WYMAGANIA EDUKACYJNE Z FIZYKI ROK SZKOLNY KLASY II A i II B MGR. MONIKA WRONA

WYMAGANIA EDUKACYJNE KLASA II

* 1 godzina tygodniowo

WYMAGANIA SZCZEGÓŁOWE NA POSZCZEGÓLNE OCENY Z FIZYKI

Przedmiotowy system oceniania z fizyki dla klas drugich

Plan wynikowy zajęcia edukacyjne z fizyki III etap edukacyjny klasa II

Przedmiotowy system oceniania,fizyka klasa 2 Przedmiotowy system oceniania z fizyki w gimnazjum sporządzono w oparciu o : -Wewnątrzszkolny system

FIZYKA II GIMNAZJUM WYMAGANIA PODSTAWOWE

FIZYKA Gimnazjum klasa II wymagania edukacyjne

PRZEDMIOTOWY SYSTEM OCENIANIA Z FIZYKI DLA KLASY II GIMNAZJUM ROK SZKOLNY 2016/2017

Wymagania edukacyjne z fizyki dla klasy VII

KRYTERIA WYMAGAŃ NA POSZCZEGÓLNE OCENY Z FIZYKI W KLASIE II

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z FIZYKI KLASA II

Wymagania edukacyjne z fizyki dla klasy Dynamika. Ocena. dopuszczająca dostateczna dobra bardzo dobra Uczeń:

Ocena. dopuszczająca dostateczna dobra bardzo dobra Uczeń:

Kryteria wymagań z fizyki w klasie I gimnazjum na poszczególne oceny

WYMAGANIA EDUKACYJNE FIZYKA - KLASA VII. OCENA OSIĄGNIĘCIA UCZNIA Uczeń:

Szczegółowe wymagania edukacyjne na poszczególne stopnie klasa druga gimnazjum

FIZYKA KLASA 7 Rozkład materiału dla klasy 7 szkoły podstawowej (2 godz. w cyklu nauczania)

WYMAGANIA EDUKACYJNE Z FIZYKI DLA II KLASY GIMNAZJUM. Praca, moc, energia

Spełnienie wymagań poziomu oznacza, że uczeń ponadto:

DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY CELUJĄCY

Wymagania programowe na poszczególne oceny z fizyki dla klasy 2 gimnazjum

Zakres wymagań ma charakter kaskadowy to znaczy że uczeń chcąc uzyskać ocenę wyższą musi spełnić wymagania na oceny niższe.

Szczegółowe kryteria ocen z fizyki w klasie 7 Szkoły Podstawowej

Szczegółowe kryteria ocen z fizyki w klasie 7 Szkoły Podstawowej w Werbkowicach

Przedmiotowy system oceniania z fizyki rok szkolny 2017/18. Klasa 7. Czym jest fizyka?

Koło ratunkowe fizyka moduł I - IV I. Oddziaływania II. Właściwości i budowa materii.

WYMAGANIA EDUKACYJNE FIZYKA ROK SZKOLNY 2017/ ) wyodrębnia z tekstów, tabel, diagramów lub wykresów, rysunków schematycznych

Wymagania na poszczególne oceny z fizyki, klasa 7

Szczegółowe wymagania na poszczególne oceny z fizyki w klasach siódmych w roku szkolnym 2017/2018 Prowadzący: Ewa Cieśla - Gancarz

WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z FIZYKI SZCZEGÓŁOWE KRYTERIA OCENIANIA

FIZYKA I GIMNAZJUM WYMAGANIA PODSTAWOWE

Wymagania na poszczególne oceny Fizyka, kl. I, Podręcznik Spotkania z fizyką, Nowa Era

1 Oddziaływania. Stopień dopuszczający Stopień dostateczny Stopień dobry Stopień bardzo dobry

Zakres wymagań ma charakter kaskadowy to znaczy że uczeń chcąc uzyskać ocenę wyższą musi spełnić wymagania na oceny niższe.

Kryteria ocen Spotkania z fizyką, część 1"

Stopień dopuszczający Stopień dostateczny Stopień dobry Stopień bardzo dobry

Plan wynikowy z podziałem na działy dla fizyki w roku szkolnym 2011/2012 Gimnazjum Nr 3 w Grodzisku Mazowieckim

Wymagania edukacyjne z fizyki w gimnazjum

SZCZEGÓŁOWE WYMAGANIA NA POSZCZEGÓLNE OCENY Z FIZYKI W KL. I GIMNAZJUM

selekcjonuje informacje uzyskane z różnych źródeł, np. na lekcji, z podręcznika, z literatury popularnonaukowej, opisuje różne rodzaje oddziaływań

planuje doświadczenie lub pomiar X X wskazuje czynniki istotne i nieistotne dla wyniku pomiaru lub doświadczenia

mgr Anna Hulboj Treści nauczania

WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z FIZYKI

Wymagania na poszczególne oceny z fizyki w Zespole Szkół im. Jana Pawła II w Suchej Beskidzkiej.

Plan wynikowy. I Oddziaływania (5 godzin + 2 (łącznie) godziny na powtórzenie materiału (podsumowanie działu) i sprawdzian) Wymagania edukacyjne

Wymagania. Konieczne Podstawowe Rozszerzające Dopełniające

Wymagania programowe na poszczególne oceny z fizyki w klasie pierwszej gimnazjum

Plan wynikowy z fizyki w klasie Ig

Ogólne wymagania na poszczególne stopnie:

Szczegółowe wymagania na poszczególne oceny: I. PIERWSZE SPOTKANIE Z FIZYKĄ:

wymagania na poszczególne stopnie:

Wymagania szczegółowe na poszczególne oceny z fizyki w klasie I

PRZEDMIOTOWE ZASADY OCENIANIA Z FIZYKI

Wymagania edukacyjne z fizyki. Klasa I

Wymagania edukacyjne. Wymagania przekładają się na ocenę w następujący sposób: 1. K konieczne ocena dopuszczająca. 2. P podstawowe ocena dostateczna

WYMAGANIA EDUKACYJNE - FIZYKA KLASA 7

Cele kształcenia wymagania ogólne. 1) Wykorzystanie wielkości fizycznych do opisu poznanych zjawisk lub rozwiązania prostych zadań obliczeniowych.

Anna Nagórna Wrocław, r. nauczycielka chemii i fizyki

PRZEDMIOTOWE ZASADY OCENIANIA Z FIZYKI W GIMNAZJUM nr 1 w Bydgoszczy

FIZYKA klasa VII

WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z FIZYKI SZCZEGÓŁOWE KRYTERIA OCENIANIA

WYMAGANIA NA POSZCZEGÓLNE OCENY DLA KLASY DRUGIEJ GIMNAZJUM. KINEMATYKA dopuszczający dostateczny dobry bardzo dobry

Szczegółowe wymagania na poszczególne oceny klasa I

Wymagania edukacyjne z fizyki dla klasy 7

Szczegółowe wymagania na poszczególne stopnie (oceny)

WYMAGANIA SZCZEGÓŁOWE Z FIZYKI KLAS 7. Cele operacyjne Uczeń: rozróżnia pojęcia: ciało fizyczne i substancja oraz podaje odpowiednie przykłady

FIZYKA KLASA VII. Stopień dopuszczający Stopień dostateczny Stopień dobry Stopień bardzo dobry I. PIERWSZE SPOTKANIE Z FIZYKĄ

WYMAGANIA EDUKACYJNE Z FIZYKI. rok szkolny 2014/2015

Publiczne Gimnazjum im. Marszałka Józefa Piłsudskiego w Miastkowie Fizyka klasa I-III Wymagania edukacyjne

Szczegółowe wymagania na poszczególne stopnie (oceny) z fizyki w klasie siódmej szkoły podstawowej (Program nauczania fizyki Spotkanie z fizyką)

Kryteria osiągnięć na poszczególne oceny z fizyki w klasie 2 gimnazjum. Nauczyciel prowadzący: mgr Andrzej Pruchnik

PRZEDMIOTOWE ZASADY OCENIANIA Z FIZYKI W GIMNAZJUM nr 1 w Bydgoszczy

Ogólne wymagania na poszczególne oceny z fizyki - klasa VII

WYMAGANIA EDUKACYJNE Z FIZYKI DO KLASY 7-ROK SZKOLNY 2017/2018

SPOTKANIA Z FIZYKĄ 7 SP

PRZEDMIOTOWE ZASADY OCENIANIA Z FIZYKI W SZKOLE PODSTAWOWEJ nr 27 w Bydgoszczy

I. PIERWSZE SPOTKANIE Z FIZYKĄ (6 godzin + 2 godziny łącznie na powtórzenie i sprawdzian)

PRZEDMIOTOWY SYSTEM OCENIANIA Z FIZYKI

Fizyka - przedmiotowy system oceniania

I. PIERWSZE SPOTKANIE Z FIZYKĄ

PZO Fizyka 2. ZSM nr 4 w Kędzierzynie- Koźlu 2016/2017. Monika Potter

5 Plan wynikowy (propozycja)

Wymagania na poszczególne oceny przy realizacji programu i podręcznika Spotkania z fizyką cz. 1

7 Plan wynikowy (propozycja)

Transkrypt:

Przedmiotowy system oceniania z fizyki Klasa II semestr I Szczegółowe wymagania na poszczególne stopnie (oceny) 1. Kinematyka wskazuje w otaczającej rzeczywistości przykłady ruchu odróżnia pojęcia: tor, droga i wykorzystuje je do opisu ruchu odróżnia ruch prostoliniowy od ruchu krzywoliniowego, podaje przykłady wykorzystuje wielkości fizyczne: droga, prędkość, czas do opisu ruchu jednostajne go prostoliniowego, wskazuje w otaczającej rzeczywistości przykłady tego ruchu posługuje się pojęciem prędkości do opisu ruchu, interpretuje wartość prędkości jako drogę przebytą przez poruszające się ciało w jednostce czasu, np. 1 s posługuje się jednostką prędkości w Układzie SI, przelicza jednostki prędkości (przelicza wielokrotności i podwielokrotności) odczytuje dane z tabeli oraz prędkość i przebytą odległość z wykresów zależności drogi i prędkości od czasu w ruchu jednostajnym prostoliniowym wykorzystuje wielkości fizyczne: droga, Ocena wyjaśnia na przykładach, kiedy ciało wyjaśnia, na czym polega względność jest w spoczynku, ruchów, a kiedy w ruchu względem ciał podaje przykłady układów odniesienia przyjętych za układy i przykłady względności ruchu we odniesienia Wszechświecie mierzy długość drogi (dokonuje posługuje się pojęciem kilkakrotnego pomiaru, przemieszczenia oblicza średnią i podaje wynik do 2-3 i wyjaśnia na przykładzie różnicę cyfr znaczących, między drogą a przemieszczeniem krytycznie ocenia wynik) analizuje wykres zależności położenia posługuje się jednostką drogi w ciała od Układzie SI, przelicza czasu i odczytuje z wykresu przebytą jednostki drogi odległość przeprowadza przedstawione sporządza wykresy zależności drogi i doświadczenie związane prędkości z wyznaczeniem prędkości ruchu od czasu dla ruchu jednostajnego pęcherzyka powietrza w zamkniętej prostoliniowego rurce wypełnionej wodą: mierzy na podstawie danych z tabeli czas, zapisuje wyniki pomiaru w (oznacza tabeli, opisuje przebieg wielkości i skale na osiach) i wynik doświadczenia, posługuje się planuje doświadczenie związane z pojęciem wyznaczeniem niepewności pomiarowej, zapisuje prędkości przemieszczania się (np. w wynik obliczenia czasie jako przybliżony (z dokładnością do marszu, biegu, jazdy rowerem), 2 3 liczb znaczących) i wyciąga szacuje rząd wnioski z otrzymanych wyników wielkości spodziewanego wyniku, na podstawie danych liczbowych lub wskazuje na podstawie czynniki istotne i nieistotne, wyznacza wykresu rozpoznaje, że w ruchu prędkość, jednostajnym krytycznie ocenia wyniki prostoliniowym droga jest wprost doświadczenia proporcjonalna do rozwiązuje zadania z zastosowaniem czasu oraz posługuje się zależności proporcjonalnością prostą między drogą, prędkością i czasem w na podstawie opisu słownego ruchu rysuje wykresy jednostajnym prostoliniowym R treści nadprogramowe projektuje doświadczenie obrazujące względność ruchu, teoretycznie uzasadnia przewidywane wyniki, analizuje je i wyciąga wnioski rysuje wykres zależności położenia ciała od czasu wyjaśnia, dlaczego w ruchu prostoliniowym kierunki i zwroty prędkości oraz przemieszczenia są zgodne posługuje się informacjami pochodzącymi z analizy przeczytanych tekstów (w tym popularnonaukowych) dotyczących sposobów pomiaru czasu sporządza wykres zależności prędkości od czasu na podstawie danych w tabeli (oznacza wielkości i skale na osiach, zaznacza punkty i rysuje wykres) oraz analizuje te dane i wykres, formułuje wnioski planuje doświadczenie związane z badaniem ruchu jednostajnie zmiennego (formułuje pytania badawcze, stawia hipotezy oraz proponuje sposób ich weryfikacji, przewiduje wyniki i uzasadnia je teoretycznie,

prędkość, czas do opisu ruchu niejednostajnego prostoliniowego, wskazuje w otaczającej rzeczywistości przykłady tego ruchu i odróżnia go od ruchu jednostajnego prostoliniowego wskazuje w otaczającej rzeczywistości przykłady ruchu jednostajnie przyspieszone go prostoliniowego posługuje się pojęciem przyspieszenia do opisu ruchu prostoliniowego jednostajnie zmiennego odczytuje prędkość i przyspieszenie z wykresów zależności prędkości oraz przyspieszenia od czasu w ruchu jednostajnie przyspieszonym prostoliniowym wyodrębnia ruch jednostajny prostoliniowy i ruch jednostajnie przyspieszony prostoli niowy z kontekstu Ocena zależności drogi i prędkości od analizuje wykres zależności prędkości czasu w ruchu od czasu, jednostajnym prostoliniowym odczytuje dane z tego wykresu, rozpoznaje zależność rosnącą i wskazuje malejącą na podstawie wielkości maksymalną i minimalną danych z tabeli lub na podstawie rozpoznaje zależność proporcjonalną wykresu zależności na położenia ciała od czasu w ruchu podstawie wyników pomiarów prostoliniowym oraz zapisanych wskazuje wielkości maksymalną i w tabeli lub na podstawie minimalną sporządzonego wykorzystuje wielkości fizyczne: wykresu zależności drogi od kwadratu droga, prędkość, czas do czasu rozwiązywania prostych zadań oraz posługuje się proporcjonalnością obliczeniowych związanych z prostą ruchem jednostajnym prostoliniowym na podstawie danych liczbowych lub rozróżnia wielkości dane i szukane na podstawie wykresu wyjaśnia, że odróżnia prędkości średnią i w ruchu jednostajnie chwilową w ruch niejednostajnym przyspieszonym prostoliniowym wykorzystuje pojęcie prędkości prędkość jest wprost średniej do rozwiązywania prostych proporcjonalna do czasu, a droga - zadań obliczeniowych, rozróżnia wprost proporcjonalna do kwadratu wielkości dane i szukane, przelicza czasu (wskazuje przykłady) wielokrotności i podwielokrotności, na podstawie wartości zastosowaniem przelicza jednostki czasu przyspieszenia określa, o ile zmienia 2 wzorów at przeprowadza przedstawione się wartość prędkości w s = i v a = 2 doświadczenie związane z badaniem jednostkowym czasie, interpretuje t ruchu kulki swobodnie staczającej się jednostkę przyspieszenia w Układzie po metalowych prętach (mierzy: czas, SI, przelicza jednostki drogę, zapisuje wyniki pomiaru w przyspieszenia tabeli i zaokrągla je), opisuje odczytuje przebytą odległość z przebieg i wynik doświadczenia, wykresu zależności drogi od czasu w oblicza wartości średniej prędkości w ruchu jednostajnie przyspieszonym kolejnych sekundach ruchu, wyciąga prostoliniowym wnioski z otrzymanych wyników wykorzystuje wzory: rozpoznaje zależność rosnącą na 2 podstawie danych z tabeli lub na at s = i v a = do rozwiązywania podstawie wykresu (zależności drogi 2 t od kwadratu czasu lub prędkości od prostych zadań obliczeniowych, czasu w ruchu jednostajnie rozróżnia wielkości dane i szukane, przyspieszonym) oraz wskazuje wielkości maksymalną i minimalną zapisuje wynik obliczenia fizycznego określa wartość przyspieszenia jako jako przybliżony (z dokładnością do przyrost wartości przyspieszenia w 2 3 liczb znaczących) jednostce czasu analizuje wykresy zależności drogi, rysuje wykresy zależności prędkości i przyspieszenia od czasu w ruchu prędkości i przyspieszenia od czasu jednostajnie przyspieszonym dla ruchu prostoliniowego prostoliniowym na podstawie opisu (jednostajnego i jednostajnie wskazując czynniki istotne i nieistotne), dokonuje pomiarów, analizuje wyniki i wyciąga wnioski, krytycznie ocenia wyniki pomiarów, posługując się pojęciem niepewności pomiarowej sporządza wykres zależności drogi od czasu w ruchu jednostajnie przyspieszonym prostoliniowym na podstawie danych z tabeli wyjaśnia, dlaczego w ruchu jednostajnie przyspieszonym prostoliniowym kierunki i zwroty prędkości oraz przyspieszenia są zgodne rozwiązuje złożone zadania z sporządza wykresy zależności drogi, prędkości i przyspieszenia od czasu rozwiązuje zadania złożone, wykorzystując zależność drogi i prędkości od czasu dla ruchu jednostajnego prostoliniowego i ruchu prostoliniowego jednostajnie przyspieszonego

Ocena słownego zmiennego) porównuje ruch jednostajny rozwiązuje typowe zadania prostoliniowy i ruch jednostajnie dotyczące ruchu jednostajnego przyspieszony prostoliniowy (wskazuje podobieństwa i różnice) prostoliniowego i ruchu wykorzystuje prędkość i prostoliniowego jednostajnie przyspieszenie do rozwiązania przyspieszonego prostych zadań obliczeniowych, rozróżnia wielkości dane i szukane

Przedmiotowy system oceniania z fizyki Klasa II semestr II Szczegółowe wymagania na poszczególne stopnie (oceny) 3. Praca, moc, energia Ocena posługuje się pojęciem energii, podaje przykłady różnych jej form odróżnia pracę w sensie fizycznym od pracy w języku potocznym, wskazuje w otoczeniu przykłady wykonania pracy mechanicznej rozróżnia pojęcia: praca i moc porównuje moc różnych urządzeń posługuje się pojęciem energii mechanicznej, wyjaśnia na przykładach, kiedy ciało ma energię mechaniczną posługuje się pojęciem energii potencjalnej grawitacji (ciężkości) posługuje się pojęciem energii kinetycznej, wskazuje przykłady ciał mających energię kinetyczną, odróżnia energię kinetyczną od innych form energii podaje przykłady przemian energii (przekształcania i przekazywania) wymienia rodzaje maszyn prostych, wskazuje odpowiednie przykłady bada doświadczalnie, kiedy blok nieruchomy jest w równowadze opisuje przebieg i wynik przeprowadzonego (prostego) doświadczenia, wyjaśnia rolę użytych przyrządów i wykonuje schematyczny rysunek obrazujący prosty układ doświadczalny posługuje się pojęciami pracy i mocy oraz ich jednostkami w układzie SI interpretuje moc urządzenia o wartości 1 W R rozpoznaje zależność proporcjonalną (rosnącą) na podstawie danych z tabeli lub na podstawie wykresu, wskazuje wielkość maksymalną i minimalną, posługuje się proporcjonalnością prostą R zapisuje wynik pomiaru lub obliczenia jako przybliżony (z dokładnością do 2 3 cyfr znaczących), posługuje się pojęciem niepewności pomiarowej rozwiązuje proste zadania obliczeniowe dotyczące pracy mechanicznej i mocy, rozróżnia wielkości dane i szukane, przelicza wielokrotności i podwielokrotności (przedrostki: mili-, centy-, kilo-, mega-), szacuje rząd wielkości spodziewanego wyniku i na tej podstawie ocenia wynik obliczeń planuje i wykonuje doświadczenia związane z badaniem, od czego zależy energia potencjalna ciężkości, przewiduje wyniki i teoretycznie je uzasadnia, wyciąga wnioski z doświadczeń stosuje zależność między energią potencjalną ciężkości, masą i wysokością, na której ciało się znajduje, do porównywania energii potencjalnej ciał wykorzystuje związek między przyrostem wyjaśnia na przykładach, kiedy mimo działania na ciało siły praca jest równa zeru R opisuje przebieg i wynik doświadczenia (wyznaczenie pracy), wyjaśnia rolę użytych przyrządów i wykonuje schematyczny rysunek obrazujący układ doświadczalny R sporządza wykres na podstawie wyników pomiarów zapisanych w tabeli (oznaczenie wielkości i skali na osiach), odczytuje dane z wykresu posługuje się informacjami pochodzącymi z analizy przeczytanych tekstów (w tym popularnonaukowych, z Internetu), dotyczących mocy różnych urządzeń oraz życia i dorobku Jamesa Prescotta Joule'a opisuje związek pracy wykonanej podczas podnoszenia ciała na określoną wysokość (zmiany wysokości) ze zmianą energii potencjalnej ciała stosuje zależność między energią kinetyczną ciała, jego masą i prędkością do porównania energii kinetycznej ciał opisuje związek pracy wykonanej podczas zmiany prędkości ciała ze zmianą energii kinetycznej ciała formułuje zasadę zachowania energii mechanicznej, posługując się pojęciem układu izolowanego wykorzystuje zasadę zachowania energii R treści nadprogramowe R planuje doświadczenie związane z badaniem zależności wartości siły powodującej przemieszczenie obciążnika na sprężynie od wartości jego przemieszczenia, szacuje rząd wielkości spodziewanego wyniku pomiaru siły grawitacji działającej na obciążnik, wybiera właściwe narzędzia pomiaru; mierzy: długość i siłę grawitacji R rozwiązuje złożone zadania obliczeniowe dotyczące pracy i mocy, wykorzystując geometryczną interpretację pracy posługuje się pojęciem energii potencjalnej sprężystości wykorzystuje związek między przyrostem energii i pracą oraz zależność opisującą energię potencjalną ciężkości i zależność opisującą energię kinetyczną do rozwiązywania zadań złożonych i nietypowych, szacuje rząd wielkości spodziewanego wyniku i ocenia na tej podstawie wartości obliczanych wielkości fizycznych, zapisuje wynik obliczenia fizycznego jako przybliżony (z dokładnością do 2 3 cyfr znaczących) posługuje się informacjami pochodzącymi z analizy przeczytanych tekstów (w tym popularnonaukowych, z Internetu), dotyczących praktycznego wykorzystania wzajemnej zamiany energii potencjalnej

Ocena energii i pracą i zależnością opisującą energię potencjalną ciężkości oraz związek między przyrostem energii kinetycznej i pracą do rozwiązywania prostych zadań obliczeniowych bada doświadczalnie, od czego zależy energia kinetyczna ciała, przewiduje wyniki i teoretycznie je uzasadnia, wykonuje pomiary, wyciąga wnioski, wykonuje schematyczny rysunek obrazujący układ doświadczalny opisuje na przykładach przemiany energii, stosując zasadę zachowania energii posługuje się pojęciem energii mechanicznej jako sumy energii kinetycznej i potencjalnej stosuje zasadę zachowania energii mechanicznej do opisu jej przemian, np. analizując przemiany energii podczas swobodnego spadania ciała bada doświadczalnie, kiedy dźwignia dwustronna jest w równowadze: wykonuje pomiary, wyciąga wniosek, wykonuje schematyczny rysunek obrazujący układ doświadczalny formułuje warunek równowagi dźwigni dwustronnej wyjaśnia zasadę działania dźwigni dwustronnej, wykonując odpowiedni schematyczny rysunek wyznacza masę ciała za pomocą dźwigni dwustronnej, innego ciała o znanej masie i linijki: mierzy długość, zapisuje wyniki pomiarów stosuje warunek równowagi dźwigni dwustronnej do bloku nieruchomego i kołowrotu wykorzystuje warunek równowagi dźwigni dwustronnej do rozwiązywania prostych zadań obliczeniowych mechanicznej do rozwiązywania prostych zadań obliczeniowych, rozróżnia wielkości dane i szukane, przelicza wielokrotności i podwielokrotności, szacuje rząd wielkości spodziewanego wyniku, zapisuje wynik obliczenia fizycznego jako przybliżony (z dokładnością do 2 3 cyfr znaczących) planuje doświadczenie związane z wyznaczeniem masy ciała za pomocą dźwigni dwustronnej: wybiera właściwe narzędzia pomiaru, przewiduje wyniki i teoretycznie je uzasadnia, szacuje rząd wielkości spodziewanego wyniku pomiaru masy danego ciała wyjaśnia zasadę działania bloku nieruchomego i kołowrotu, wykonuje odpowiedni schematyczny rysunek wykorzystuje warunek równowagi dźwigni dwustronnej do rozwiązywania zadań złożonych i nietypowych wskazuje maszyny proste w różnych urządzeniach, posługuje się informacjami pochodzącymi z analizy przeczytanych tekstów (w tym popularnonaukowych, z Internetu), dotyczących praktycznego wykorzystania dźwigni dwustronnych jako elementów konstrukcyjnych różnych narzędzi i jako części maszyn i kinetycznej wykorzystuje zasadę zachowania energii mechanicznej do rozwiązywania złożonych zadań, np. dotyczących przemian energii ciała rzuconego pionowo R wyjaśnia i demonstruje zasadę działania dźwigni jednostronnej, bloku ruchomego i równi pochyłej, formułuje warunki równowagi i wskazuje przykłady wykorzystania R projektuje i wykonuje model maszyny prostej R posługuje się pojęciem sprawności urządzeń (maszyn), rozwiązuje zadania z zastosowaniem wzoru na sprawność

Klasa II semestr II Szczegółowe wymagania na poszczególne stopnie (oceny) 4 Termodynamika Ocena dopuszczająca dostateczna dobra Bardzo dobra wykorzystuje pojęcie energii i wymienia różne formy energii wskazuje w otoczeniu przykłady zmiany energii wewnętrznej spowodowane wykonaniem pracy rozróżnia pojęcia: ciepło i temperatura planuje pomiar temperatury, wybiera właściwy termometr, mierzy temperaturę wskazuje w otoczeniu przykłady zmiany energii wewnętrznej spowodowanej przekazaniem (wymianą) ciepła, podaje warunek przepływu ciepła rozróżnia przewodniki ciepła i izolatory, wskazuje przykłady ich wykorzystania w życiu codziennym R odczytuje dane z tabeli porównuje przyrosty długości ciał stałych wykonanych z różnych substancji i przyrosty objętości różnych cieczy przy jednakowym wzroście temperatury R wymienia termometr cieczowy jako przykład praktycznego zastosowania zjawiska rozszerzalności cieplnej cieczy opisuje przebieg i wynik doświadczenia, wyjaśnia rolę użytych przyrządów, posługuje się proporcjonalnością prostą posługuje się tabelami wielkości fizycznych w celu odszukania ciepła właściwego, porównuje wartości ciepła właściwego różnych substancji rozróżnia zjawiska: topnienia, krzepnięcia, parowania, skraplania, posługuje się pojęciami pracy, ciepła i energii wewnętrznej, podaje ich jednostki w układzie SI opisuje wyniki obserwacji i doświadczeń związanych ze zmianą energii wewnętrznej spowodowaną wykonaniem pracy lub przekazaniem ciepła, wyciąga wnioski analizuje jakościowo zmiany energii wewnętrznej spowodowane wykonaniem pracy i przepływem ciepła wyjaśnia, czym różnią się ciepło i temperatura wyjaśnia przepływ ciepła w zjawisku przewodnictwa cieplnego oraz rolę izolacji cieplnej formułuje I zasadę termodynamiki wymienia sposoby przekazywania energii wewnętrznej, podaje przykłady R planuje i przeprowadza doświadczenia związane z badaniem zjawiska rozszerzalności cieplnej ciał stałych, cieczy i gazów, opisuje wyniki obserwacji i wyciąga wnioski R na podstawie obserwacji i wyników doświadczeń opisuje zmiany objętości ciał stałych, cieczy i gazów pod wpływem ogrzewania R rozróżnia rozszerzalność liniową ciał stałych i rozszerzalność objętościową R wyjaśnia na przykładach, w jakim celu stosuje się przerwy dylatacyjne wskazuje inne niż poznane na lekcji przykłady z życia codziennego, w których wykonywaniu pracy towarzyszy efekt cieplny planuje i przeprowadza doświadczenie związane z badaniem zmiany energii wewnętrznej spowodowanej wykonaniem pracy lub przepływem ciepła, wskazuje czynniki istotne i nieistotne dla wyniku doświadczenia wyjaśnia związek między energią kinetyczną cząsteczek a temperaturą odróżnia skale temperatur: Celsjusza i Kelvina, posługuje się nimi wykorzystuje związki E w = W i E w = Q oraz I zasadę termodynamiki do rozwiązywania prostych zadań związanych ze zmianą energii wewnętrznej opisuje ruch cieczy i gazów w zjawisku konwekcji R wyjaśnia, dlaczego ciała zwiększają objętość ze wzrostem temperatury R opisuje znaczenie zjawiska rozszerzalności cieplnej ciał w przyrodzie i technice R przedstawia budowę i zasadę działania różnych rodzajów termometrów planuje doświadczenie związane z badaniem zależności ilości ciepła potrzebnego do ogrzania ciała od przyrostu temperatury i masy R treści nadprogramowe R przedstawia zasadę działania silnika wysokoprężnego, demonstruje to na modelu tego silnika, opisuje działanie innych silników cieplnych i podaje przykłady ich zastosowania posługuje się informacjami pochodzącymi z analizy przeczytanych tekstów (w tym popularnonaukowych), dotyczących historii udoskonalania (ewolucji) silników cieplnych i tzw. perpetuum mobile (R) oraz na temat wykorzystania (w przyrodzie i w życiu codziennym) przewodnictwa cieplnego (przewodników i izolatorów ciepła), zjawiska konwekcji (np. prądy konwekcyjne) oraz promieniowania słonecznego (np. kolektory słoneczne) R opisuje zjawisko anomalnej rozszerzalności wody R wyjaśnia znaczenie zjawiska anomalnej rozszerzalności wody w przyrodzie R projektuje i przeprowadza doświadczenia prowadzące do wyznaczenia ciepła właściwego danej substancji, opisuje doświadczenie Joule'a wykorzystuje wzory na ciepło właściwe Q c = m T i R bilans cieplny do rozwiązywania złożonych zadań obliczeniowych wyjaśnia, co dzieje się z energią pobieraną (lub oddawaną) przez mieszaninę

Ocena dopuszczająca dostateczna dobra Bardzo dobra wrzenia, sublimacji, resublimacji, wskazuje przykłady tych zjawisk w otoczeniu wyznacza temperaturę topnienia i wrzenia wybranej substancji; mierzy czas, masę i temperaturę, zapisuje wyniki pomiarów w formie tabeli jako przybliżone (z dokładnością do 2 3 cyfr znaczących) analizuje tabele temperatury topnienia i wrzenia substancji, posługuje się tabelami wielkości fizycznych w celu odszukania ciepła topnienia i ciepła parowania, porównuje te wartości dla różnych substancji R rozróżnia rodzaje termometrów, wskazuje przykłady ich zastosowania przeprowadza doświadczenie związane z badaniem zależności ilości ciepła potrzebnego do ogrzania wody od przyrostu temperatury i masy ogrzewanej wody, wyznacza ciepło właściwe wody za pomocą czajnika elektrycznego lub grzałki o znanej mocy (przy założeniu braku strat), odczytuje moc czajnika lub grzałki, mierzy czas, masę i temperaturę, zapisuje wyniki i dane w formie tabeli zapisuje wynik pomiaru lub obliczenia jako przybliżony (z dokładnością do 2 3 cyfr znaczących), posługuje się niepewnością pomiarową posługuje się pojęciem ciepła właściwego, interpretuje jego jednostkę w układzie SI posługuje się kalorymetrem, przedstawia jego budowę, wskazuje analogię do termosu i wyjaśnia rolę izolacji cieplnej opisuje na przykładach zjawiska topnienia, krzepnięcia, parowania (wrzenia), skraplania, sublimacji i resublimacji opisuje przebieg i wynik doświadczenia, wyjaśnia rolę użytych przyrządów, posługuje się pojęciem niepewności pomiarowej posługuje się pojęciami: ciepło topnienia i ciepło krzepnięcia oraz ciepło parowania i ciepło skraplania, interpretuje ich jednostki w układzie SI rozwiązuje proste zadania obliczeniowe związane ze zmianami stanu skupienia ciał, rozróżnia wielkości dane i szukane, przelicza wielokrotności i podwielokrotności, podaje wynik obliczenia jako przybliżony ogrzewanego ciała oraz z wyznaczeniem ciepła właściwego wody za pomocą czajnika elektrycznego lub grzałki o znanej mocy (przy założeniu braku strat), wybiera właściwe narzędzia pomiaru, wskazuje czynniki istotne i nieistotne dla wyniku doświadczenia, szacuje rząd wielkości spodziewanego wyniku analizuje dane w tabeli porównuje wartości ciepła właściwego wybranych substancji, interpretuje te wartości, w szczególności dla wody wykorzystuje zależność Q = c m T do rozwiązywania prostych zadań obliczeniowych, rozróżnia wielkości dane i szukane, przelicza wielokrotności i podwielokrotności wyszukuje informacje dotyczące wykorzystania w przyrodzie dużej wartości ciepła właściwego wody (związek z klimatem) i korzysta z nich planuje doświadczenie związane z badaniem zjawisk topnienia, krzepnięcia, parowania i skraplania, wybiera właściwe narzędzia pomiaru, wskazuje czynniki istotne i nieistotne dla wyniku doświadczenia, szacuje rząd wielkości spodziewanego wyniku pomiaru sporządza wykres zależności temperatury od czasu ogrzewania (oziębiania) dla zjawisk: topnienia, krzepnięcia, na podstawie danych z tabeli (oznaczenie wielkości i skali na osiach); odczytuje dane z wykresu posługuje się informacjami pochodzącymi z analizy przeczytanych tekstów (w tym popularnonaukowych), dotyczących zmian stanu skupienia wody w przyrodzie (związek z klimatem) substancji w stanie stałym i ciekłym (np. wody i lodu) podczas topnienia (lub krzepnięcia) w stałej temperaturze, analizuje zmiany energii wewnętrznej R wykorzystuje wzór na ciepło przemiany Q Q fazowej ct = i c p = m m do rozwiązywania zadań obliczeniowych wymagających zastosowania bilansu cieplnego

Przedmiotowy system oceniania z fizyki Klasa II semestr I Szczegółowe wymagania na poszczególne stopnie (oceny) 2. Dynamika Ocena dokonuje pomiaru siły za pomocą siłomierza posługuje się symbolem siły i jej jednostką w układzie SI odróżnia statyczne i dynamiczne skutki oddziaływań, podaje przykłady skutków oddziaływań w życiu codziennym bada doświadczalnie dynamiczne skutki oddziaływań ciał posługuje się pojęciami: tarcia, oporu powietrza przelicza wielokrotności i podwielokrotności (przedrostki: mili-, centy-, kilo-, mega-); przelicza jednostki czasu (sekunda, minuta, godzina) rozpoznaje zależność rosnącą i malejącą na podstawie danych z tabeli; wskazuje wielkość maksymalną i minimalną rozróżnia siły akcji i siły reakcji wyjaśnia pojęcie siły wypadkowej, podaje przykłady wyznacza doświadczalnie wypadkową dwóch sił działających wzdłuż tej samej prostej podaje cechy wypadkowej sił działających wzdłuż tej samej prostej posługuje się pojęciem niepewności pomiarowej zapisuje wynik pomiaru jako przybliżony (z dokładnością do 2 3 cyfr znaczących) wnioskuje na podstawie obserwacji, że zmiana prędkości ciała może nastąpić wskutek jego oddziaływania z innymi ciałami opisuje przebieg i wynik doświadczenia (badanie dynamicznych skutków oddziaływań, badanie, od czego zależy tarcie, badanie zależności wartości przyspieszenia ruchu ciała pod działaniem niezrównoważonej siły od wartości działającej siły i masy ciała, badanie swobodnego spadania ciał, badanie sił akcji i reakcji), wyciąga wnioski, wyjaśnia rolę użytych przyrządów i wykonuje schematyczny rysunek obrazujący układ doświadczalny opisuje wpływ oporów ruchu na poruszające się ciała wymienia sposoby zmniejszania lub zwiększania tarcia szacuje rząd wielkości spodziewanego wyniku pomiaru siły przedstawia graficznie wypadkową sił działających wzdłuż tej samej prostej przewiduje i nazywa skutki opisanych oddziaływań planuje i przeprowadza doświadczenia związane z badaniem, od czego zależy tarcie, i obrazujące sposoby zmniejszania lub zwiększania tarcia rozróżnia tarcie statyczne i kinetyczne, wskazuje odpowiednie przykłady rysuje siły działające na klocek wprawiany w ruch (lub poruszający się) wykazuje doświadczalnie istnienie bezwładności ciała, opisuje przebieg i wynik przeprowadzonego doświadczenia, wyciąga wniosek i wykonuje schematyczny rysunek obrazujący układ doświadczalny przeprowadza doświadczenia związane z badaniem zależności wartości przyspieszenia ruchu ciała pod działaniem niezrównoważonej siły od wartości działającej siły i masy ciała (m.in. wybiera właściwe narzędzia pomiaru; mierzy: czas, długość i siłę grawitacji, zapisuje wyniki pomiarów w formie tabeli, analizuje wyniki, wyciąga wnioski) oraz związane z badaniem swobodnego spadania ciał wskazuje przyczyny niepewności R treści nadprogramowe wyznacza kierunek i zwrot wypadkowej sił działających wzdłuż różnych prostych przewiduje i wyjaśnia skutki oddziaływań na przykładach innych niż poznane na lekcji wyjaśnia na przykładach, kiedy tarcie i inne opory ruchu są pożyteczne, a kiedy niepożądane przedstawia i analizuje siły działające na opadającego spadochroniarza planuje doświadczenia związane z badaniem zależności wartości przyspieszenia ruchu ciała pod działaniem niezrównoważonej siły od wartości działającej siły i masy ciała (m.in. formułuje pytania badawcze i przewiduje wyniki doświadczenia, wskazuje czynniki istotne i nieistotne, szacuje rząd wielkości spodziewanego wyniku pomiaru czasu i siły) oraz związane z badaniem swobodnego spadania ciał R wykorzystuje wiedzę naukową do przedstawienia i uzasadnienia różnic ciężaru ciała w różnych punktach kuli ziemskiej rozwiązuje złożone zadania obliczeniowe, stosując do obliczeń związek między masą ciała, przyspieszeniem i siłą oraz wzór na przyspieszenie i odczytuje dane z wykresu prędkości od czasu

Ocena formułuje I zasadę dynamiki Newtona opisuje zachowanie się ciał na podstawie I zasady dynamiki Newtona posługuje się pojęciem przyspieszenia do opisu ruchu prostoliniowego jednostajnie przyspieszonego oraz pojęciami siły ciężkości i przyspieszenia ziemskiego rozpoznaje zależność proporcjonalną na podstawie wyników pomiarów zapisanych w tabeli, posługuje się proporcjonalnością prostą formułuje treść II zasady dynamiki Newtona; definiuje jednostki siły w układzie SI (1 N) rozwiązuje proste zadania obliczeniowe, stosując do obliczeń związek między masą ciała, przyspieszeniem i siłą; rozróżnia wielkości dane i szukane podaje przykłady sił akcji i sił reakcji formułuje treść III zasady dynamiki Newtona pomiarowych, posługuje się pojęciem niepewności pomiarowej opisuje zachowanie się ciał na podstawie II zasady dynamiki Newtona rozwiązuje umiarkowanie trudne zadania obliczeniowe, stosując do obliczeń związek między masą ciała, przyspieszeniem i siłą oraz posługując się pojęciem przyspieszenia planuje i przeprowadza doświadczenie wykazujące istnienie sił akcji i reakcji; zapisuje wyniki pomiarów, analizuje je i wyciąga wniosek opisuje wzajemne oddziaływanie ciał, posługując się III zasadą dynamiki Newtona opisuje zjawisko odrzutu i jego zastosowanie w technice R posługuje się pojęciem pędu i jego jednostką w układzie SI R formułuje treść zasady zachowania pędu R stosuje zasadę zachowania pędu w prostych przykładach demonstruje zjawisko odrzutu poszukuje, selekcjonuje i wykorzystuje wiedzę naukową do przedstawienia przykładów wykorzystania zasady odrzutu w przyrodzie i w technice R rozwiązuje zadania obliczeniowe z zastosowaniem zasady zachowania pędu