Dupin cyclides osculating surfaces

Podobne dokumenty
Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019

A sufficient condition of regularity for axially symmetric solutions to the Navier-Stokes equations

Aerodynamics I Compressible flow past an airfoil

y = The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Explain your answer, write in complete sentences.

Hard-Margin Support Vector Machines

Helena Boguta, klasa 8W, rok szkolny 2018/2019

Unitary representations of SL(2, R)

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

Convolution semigroups with linear Jacobi parameters

Linear Classification and Logistic Regression. Pascal Fua IC-CVLab

Some Linear Algebra. Vectors operations = =(,, ) =( 1 + 2, 1 + 2, ) λ =(λ,λ,λ ) Addition. Scalar multiplication.

Title: On the curl of singular completely continous vector fields in Banach spaces

General Certificate of Education Ordinary Level ADDITIONAL MATHEMATICS 4037/12

deep learning for NLP (5 lectures)

DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

OpenPoland.net API Documentation

Homogeneous hypersurfaces

n [2, 11] 1.5 ( G. Pick 1899).

Revenue Maximization. Sept. 25, 2018

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like

Counting quadrant walks via Tutte s invariant method

1 Wartości własne oraz wektory własne macierzy

Chapter 1: Review Exercises

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

O pewnym twierdzeniu S. Łojasiewicza, J. Wloki, Z. Zieleżnego


Date Period Find the area of each regular polygon. Round your answer to the nearest tenth if necessary. 1) 10.3 yd. 6 m 11.2 m -1-

Zarządzanie sieciami telekomunikacyjnymi

2017 R. Robert Gajewski: Mathcad Prime 4. Solution of examples Rozwiązania przykładów

RESONANCE OF TORSIONAL VIBRATION OF SHAFTS COUPLED BY MECHANISMS

ZASADY ZALICZANIA PRZEDMIOTU:

Wyk lad z Algebry Liniowej dla studentów WNE UW. Rok akademicki 2017/2018. Przyk lady zadań na ćwiczenia. 1. Które z cia

Rachunek lambda, zima

Few-fermion thermometry

Katowice, plan miasta: Skala 1: = City map = Stadtplan (Polish Edition)

Stability of Tikhonov Regularization Class 07, March 2003 Alex Rakhlin

O przecinkach i nie tylko

Mixed-integer Convex Representability

MaPlan Sp. z O.O. Click here if your download doesn"t start automatically


Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

Standardized Test Practice

Chapter 10 Test Study Guide

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

Copyright 2013 Zbigniew Płotnicki. Licence allows only a publication on arxiv.org and vixra.org. Beside it all rights reserved.

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Knovel Math: Jakość produktu

Stargard Szczecinski i okolice (Polish Edition)

Extraclass. Football Men. Season 2009/10 - Autumn round

Camspot 4.4 Camspot 4.5

Twierdzenie Hilberta o nieujemnie określonych formach ternarnych stopnia 4

Installation of EuroCert software for qualified electronic signature

DM-ML, DM-FL. Auxiliary Equipment and Accessories. Damper Drives. Dimensions. Descritpion

Miedzy legenda a historia: Szlakiem piastowskim z Poznania do Gniezna (Biblioteka Kroniki Wielkopolski) (Polish Edition)

The Lorenz System and Chaos in Nonlinear DEs

Strings on Celestial Sphere. Stephan Stieberger, MPP München

Typ VFR. Circular flow adjustment dampers for the adjustment of volume flow rates and pressures in supply air and extract air systems

(Slant delay mesoscale functions)

R E P R E S E N T A T I O N S

Steeple #3: Gödel s Silver Blaze Theorem. Selmer Bringsjord Are Humans Rational? Dec RPI Troy NY USA

Wykaz linii kolejowych, które są wyposażone w urządzenia systemu ETCS

Wykaz linii kolejowych, które są wyposażone w urzadzenia systemu ETCS

CS 6170: Computational Topology, Spring 2019 Lecture 09

harmonic functions and the chromatic polynomial


Previously on CSCI 4622

Dolny Slask 1: , mapa turystycznosamochodowa: Plan Wroclawia (Polish Edition)

Instructions for student teams

Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2

Typ VFR. Circular flow adjustment dampers for the adjustment of volume flow rates and pressures in supply air and extract air systems

Wykład 2 Układ współrzędnych, system i układ odniesienia

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2

Tychy, plan miasta: Skala 1: (Polish Edition)

Mathematics A Brief Guide for Engineers and Technologists. Chapter 2. Second. Properties. S is a vector space. Note

Roland HINNION. Introduction

Machine Learning for Data Science (CS4786) Lecture 24. Differential Privacy and Re-useable Holdout

HAPPY ANIMALS L01 HAPPY ANIMALS L03 HAPPY ANIMALS L05 HAPPY ANIMALS L07

17-18 września 2016 Spółka Limited w UK. Jako Wehikuł Inwestycyjny. Marek Niedźwiedź. InvestCamp 2016 PL

HAPPY ANIMALS L02 HAPPY ANIMALS L04 HAPPY ANIMALS L06 HAPPY ANIMALS L08

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

How to translate Polygons

Przewody do linii napowietrznych Przewody z drutów okrągłych skręconych współosiowo

Wyk lad 8: Leniwe metody klasyfikacji

ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS.

OBWIESZCZENIE MINISTRA INFRASTRUKTURY. z dnia 18 kwietnia 2005 r.

[assumption]theorem [assumption]corollary [assumption]lemma [assumption]definition. Andrzej Sitarz

KINEMATYKA (punkt materialny)

Sargent Opens Sonairte Farmers' Market

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

Wybrzeze Baltyku, mapa turystyczna 1: (Polish Edition)

Jak zasada Pareto może pomóc Ci w nauce języków obcych?

Fragment darmowy udostępniony przez Wydawnictwo w celach promocyjnych. EGZEMPLARZ NIE DO SPRZEDAŻY!

EGZAMIN MATURALNY Z JĘZYKA ANGIELSKIEGO POZIOM ROZSZERZONY MAJ 2010 CZĘŚĆ I. Czas pracy: 120 minut. Liczba punktów do uzyskania: 23 WPISUJE ZDAJĄCY

Lecture 18 Review for Exam 1

ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL

Transkrypt:

Paweł Walczak, Uniwersytet Łódzki, Dijon, 25 stycznia 2012 Colaborators: Remi Langevin (UdeB), Adam Bartoszek, Szymon Walczak (UŁ)

What is extrinsic conformal geometry? Conformal transformations = transformations preserving angles. Conformal group = group of conformal transformations; in R 3 (S 3 or H 3 ) = Möbius group Möb 3 = the group generated by all isometries and inversions Conformal geometry= theory of invariants of the Möbius group Extrinsic geometry (of surfaces) = theory of invariants of the second fundamental form (principal curvatures, principal directions and foliations, lines of curvature) etc. = extrinsic conformal geometry = (extrinsic geometry) (conformal geometry)

Conformal change of the metric 1 If two surfaces S ans S are conformally equivalent, then their first fundamental forms g and g are related by: g = exp(2φ) g for some function φ. If so, (1) their second fundamental forms b and b satisfy b = exp(φ) b + ψ g, (2) their shape (Weingarten) operators A and à satisfy à = exp( φ) A + ψ I,

Conformal change of the metric 2 (3) their principal directions are the same while unit principal vectors X i and X i (i = 1, 2) satisfy X i = exp( φ) X i, (4) their principal curvatures k i and k i satisfy k i = exp( φ) k i + ψ, therefore k 1 k 2 = exp( φ) (k 1 k 2 ).

First conformal invariants Consequently, the vector fields ξ i = X i /µ, i = 1, 2, where µ = (k 1 k 2 )/2 are conformally invariant. Conformally invariant is also their Lie bracket: [ξ 1, ξ 2 ] = 1 2 θ 2 ξ 1 1 2 θ 1 ξ 2 and the coefficients θ 1, θ 2 (called principal conformal curvatures) in the above (Darboux, Tresse, 189*).

Canonical position Problem Are the invariants we described above sufficient to determine a surface up to a Möbius transformation? Answer: NO. Proof. Any surface (at a non-umbilical point) can be mapped by a unique Möbius transformation to the one given locally by z = 1 2 (x 2 y 2 ) + 1 6 (θ 1x 3 + θ 2 y 3 ) + 1 24 (ax 4 + bx 3 y + Ψx 2 y 2 + cx 3 y + dy 4 ) + H.O.T.

Canal surfaces Canal surfaces = envelopes of 1-parameter families of spheres. Proposition (A. B., R. L., P. W.,20**) Canal surfaces can be characterized by vanishing of one of their conformal principal curvatures: θ i = 0 for some i {1, 2}. The invariant Ψ is constant along the characteristic circles.

Special canals A canal surface is special if its nontrivial conformal principal curvature is constant along its characteristic circles. Proposition (A. B., R. L., P. W., 20**) Special canal surfaces are conformal images of surfaces of revolution, cylinders and cones over planar (spherical) curves. These three classes are characterized, respectively, by Ψ < 2, Ψ = 2, Ψ > 2.

Dupin cyclides Dupin cyclides = canal surfaces in two ways (there are two 1-parameter families of spheres enveloped by such a surface). = On Dupin cyclides θ 1 = θ 2 = 0. = Dupin cyclides are special canals. = Dupin cyclides are conformal images of tori, cylinders and cones of revolution. = On Dupin cyclides Ψ = const.

Integrability condition Given a surface S, one has the unique map g : S Möb 3 such that g(p), p S, maps S to the canonical position (at p). Let ω = g 1 dg. ω is the 1-form on S with values in the Lie algebra of the Möbius group Möb 3. Using a matrix representation of Möb 3, one can write ω = A 1 (θ 1, θ 2, Ψ) ω 1 + A 2 (θ 1, θ 2, Ψ) ω 2, where (ω 1, ω 2 ) is the frame of 1-forms dual to (ξ 1, ξ 2 ). Integrability condition: dω + 1 [ω, ω] = 0. 2

Fialkov Theorem Theorem (Fialkov, 194*) Given 1-forms ω 1, ω 2 and functions θ 1, θ 2, Ψ defined on a simply-connected domain U R 2 and satisfying the above integrability condition there, there exists unique up to a Möbius transformation immersion F : U R 3, S 3, H 3 such that the above data appear us the local conformal invariants of the surface S = F (U).

Dupin necklace Theorem (A. B., R. L., P. W.) The osculating spheres Σ 2 (t) for the principal curvature k 2 along a characteristic circle C (which is a parameterized by t line of principal curvature for k 1 ) of a canal surface K have an envelope which is a Dupin cyclide D.

A problem The above privides motivation for the following Problem Given a generic point p of a surface S, find a Dupin cyclide D osculating S at p and determine the direction of highest order of tangency of D and S at p.

Osculating cyclide 1 Recall the equation of S in the canonical form: S : z = 1 2 (x 2 y 2 ) + 1 6 (θ 1x 3 + θ 2 y 3 ) + 1 24 (ax 4 + bx 3 y + Ψx 2 y 2 + cx 3 y + dy 4 ) + H.O.T. Put a cyclide D in the canonical position. Its equation reads as D : z = 1 2 (x 2 y 2 ) + + 1 24 (3x 4 + Ψ D x 2 y 2 3y 4 ) + H.O.T.

Osculating cyclide 2 = S and D are tangent of order 3 in the direction y = tx, where t = 3 θ 1 /θ 2. For a suitable (unique) value of Ψ D, S and D are tangent of order 4 in this direction. In this case, D is called the osculating cyclide of S at p.

Dupin foliation Here, we will use the following terminology: (1) the direction in T p S making the angle α such that tg α = 3 θ 1 /θ 2 = Dupin direction, (2) the distribution (line field) on S built of straight lines in Dupin directions = Dupin line field, (3) the foliation determined by the Dupin line field = Dupin foliation, (4) leaves of the Dupin foliation = Dupin lines (and, perhaps, so on).

An example Example On canal surfaces (different from Dupin cyclides), the Dupin foliation coincides with one of the foliations by lines of curvature. Problem Do there exist surfaces for which the Dupin direction is constant ( 0, π/2)?

Main Theorem (of today) Theorem (A. B., P. W., Sz. W., 201*) Given a foliation F on a convex planar domain U making non-zero angle with the direction of one of the coordinate lines, there exist surfaces S on which the coordinate lines correspond to the lines of curvature while the leaves of F correspond to the Dupin lines; the family of such surfaces is parametrized (up to Möbius transformations) by pairs of two functions: one of two variables and another one of one variable. Proof....

Helcats 1 Example There exists a natural 1-parameter family of minimal surfaces connecting the helicoid to the catenoid. They are called helcats

A helcat

Helcats 2 and are given by the equations x 1 = cosα sinh s sin t + sin α cosh s cos t, x 2 = cos α sinh s cos t + sin α cosh s sin t, x 3 = sin α s + cos α t, For them, we have: θ 1 = 2(1 sin α) sinh s, θ 2 = κ := θ 1 /θ 2 = 2(1 + sin α) sinh s, cos α 1 + sin α = const. In particular, κ = 1 on the helicoid and κ = 0 on the catenoid.

Bibliography 1 A. Bartoszek, R. Langevin, P. Walczak, Special canal surfaces of S 3, Bull. Braz. Math. Soc. 42 (2011), 301 320. A. Bartoszek, P. Walczak, Foliations by surfaces of a peculiar class, Ann. Polon. Math., 94 (2008), 89 95. A. Bartoszek, P. Walczak, Sz. Walczak, Dupin cyclides osculating surfaces, in preparation. G. Cairns, R. W. Sharpe and L. Webb. Conformal invariants for curves in three dimensional space forms, Rocky Mountain J. Math. 24 (1994), 933 959. G. Darboux, Leçons sur la théorie générale des surfaces, Guthier-Villars, Paris 1897.

Bibliography 2 A. Fialkov, Conformal differential geometry of a subspace, Trans. Amer. Math. Soc. 56 (1944), 309 433. R. Garcia, R. Langevin, P. Walczak, Dynamical behaviour of Darboux curves, preprint, arxiv.0912.3749. (2009). R. Langevin, P. Walczak, Conformal geometry of foliations, Geom. Dedicata 132 (2008), 135 178. A. Tresse, Sur les invariants différentiels d une surface par rapport aux transformations conformes de l espace, C.R. Acad. Sci. Paris 114 (1892), 948 950.