BADANIE CHARAKTERYSTYK DIODY I TRANZYSTORA METODĄ OSCYLOSKOPOWĄ

Podobne dokumenty
3.4 Badanie charakterystyk tranzystora(e17)

3. ZŁĄCZE p-n 3.1. BUDOWA ZŁĄCZA

III. TRANZYSTOR BIPOLARNY

ε (1) ε, R w ε WYZNACZANIE SIŁY ELEKTROMOTOTYCZNEJ METODĄ KOMPENSACYJNĄ

Badanie charakterystyk elementów półprzewodnikowych

WYBRANE ELEMENTY I UKŁADY ELEKTRONICZNE W ZASTOSOWANIU DLA CELÓW AUTOMATYZACJI. 1.1 Model pasmowy przewodników, półprzewodników i dielektryków.

Repeta z wykładu nr 5. Detekcja światła. Plan na dzisiaj. Złącze p-n. złącze p-n

Badanie charakterystyki diody

Zjawiska zachodzące w półprzewodnikach Przewodniki samoistne i niesamoistne

Dioda półprzewodnikowa

Politechnika Białostocka

Ćwiczenie 2 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH

Rys.1. Struktura fizyczna diody epiplanarnej (a) oraz wycinek złącza p-n (b)

Ćwiczenie 1 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH

Ćwiczenie - 3. Parametry i charakterystyki tranzystorów

Rys. 1. Oznaczenia tranzystorów bipolarnych pnp oraz npn

Fizyka i technologia złącza PN. Adam Drózd r.

ĆWICZENIE 4 CHARAKTERYSTYKI STATYCZNE TRANZYSTORA BIPOLARNEGO

Instrukcja do ćwiczenia laboratoryjnego nr 5

5. Tranzystor bipolarny

Politechnika Białostocka

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 123: Półprzewodnikowe złącze p-n

Podstawy fizyki ciała stałego półprzewodniki domieszkowane

Politechnika Białostocka

POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI. Temperaturowa zależność statycznych i dynamicznych charakterystyk złącza p-n

Wzmacniacze operacyjne

Ćwiczenie E5 WYZNACZANIE CHARAKTERYSTYK TRANZYSTORA WARSTWOWEGO

Tranzystory bipolarne. Właściwości dynamiczne wzmacniaczy w układzie wspólnego emitera.

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 1. Połączenia szeregowe oraz równoległe elementów RC

Wykład X TRANZYSTOR BIPOLARNY

Budowa. Metoda wytwarzania

Zasada działania tranzystora bipolarnego

TRANZYSTORY BIPOLARNE ZŁĄCZOWE

Tranzystor bipolarny

2. Półprzewodniki. Istnieje duża jakościowa różnica między właściwościami elektrofizycznymi półprzewodników, przewodników i dielektryków.

Wykład VIII TRANZYSTOR BIPOLARNY

Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE. Badanie tranzystorów unipolarnych typu JFET i MOSFET

LABORATORIUM ELEKTRONIKI ĆWICZENIE 4 POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH

Tranzystory bipolarne. Małosygnałowe parametry tranzystorów.

Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech. Elektronika. Laboratorium nr 3. Temat: Diody półprzewodnikowe i elementy reaktancyjne

LABORATORIUM Z FIZYKI

. Diody, w których występuje przebicie Zenera, charakteryzują się małymi, poniŝej 5V, wartościami napięcia stabilizacji oraz ujemną wartością α

Złącza p-n, zastosowania. Własności złącza p-n Dioda LED Fotodioda Dioda laserowa Tranzystor MOSFET

Ćwiczenie nr 123: Dioda półprzewodnikowa

Pomiar parametrów tranzystorów

Tranzystor. C:\Program Files (x86)\cma\coach6\full.en\cma Coach Projects\PTSN Coach 6 \Elektronika\Tranzystor_cz2b.cmr

BADANIE TRANZYSTORA BIPOLARNEGO

BADANIE DIOD PÓŁPRZEWODNIKOWYCH

SPRAWDZENIE PRAWA OHMA POMIAR REZYSTANCJI METODĄ TECHNICZNĄ

Urządzenia półprzewodnikowe

Badanie wzmacniacza niskiej częstotliwości

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI

E104. Badanie charakterystyk diod i tranzystorów

Pomiar podstawowych parametrów liniowych układów scalonych

SYMBOLE GRAFICZNE. Tyrystory. Struktura Charakterystyka Opis

Badanie diody półprzewodnikowej

Ćwiczenie 4. Parametry statyczne tranzystorów polowych JFET i MOSFET

Instytut Systemów Inżynierii Elektrycznej Wydział Elektrotechniki, Elektroniki Informatyki i Automatyki Politechnika Łódzka

Uniwersytet Pedagogiczny im. Komisji Edukacji Narodowej w Krakowie

Przykładowe zadanie egzaminacyjne dla kwalifikacji E.20 w zawodzie technik elektronik

Cel ćwiczenia: Wyznaczenie szerokości przerwy energetycznej przez pomiar zależności oporności elektrycznej monokryształu germanu od temperatury.

Uniwersytet Pedagogiczny

ELEMENTY ELEKTRONICZNE TS1C

Diody, tranzystory, tyrystory. Materiały pomocnicze do zajęć.

Aleksandra Banaś Dagmara Zemła WPPT/OPTOMETRIA

Ćw. III. Dioda Zenera

Systemy i architektura komputerów

Teoria pasmowa. Anna Pietnoczka

Ćwiczenie 10 Temat: Własności tranzystora. Podstawowe własności tranzystora Cel ćwiczenia

Badanie własności hallotronu, wyznaczenie stałej Halla (E2)

Laboratorium Elektroniki

Ciała stałe. Literatura: Halliday, Resnick, Walker, t. 5, rozdz. 42 Orear, t. 2, rozdz. 28 Young, Friedman, rozdz

LI OLIMPIADA FIZYCZNA ETAP II Zadanie doświadczalne

IV. TRANZYSTOR POLOWY

Laboratorium Przyrządów Półprzewodnikowych test kompetencji zagadnienia

Ćwiczenie 6 WYBRANE ELEMENTY PÓŁPRZEWODNIKOWE. 1. Cel ćwiczenia. 2. Wprowadzenie

Ćwiczenie 2 BADANIE DIODY PÓŁPRZEWODNIKOWEJ I TRANZYSTORA

WYDZIAŁ.. LABORATORIUM FIZYCZNE

Instrukcja do ćwiczenia laboratoryjnego nr 9

Złącze p-n powstaje wtedy, gdy w krysztale półprzewodnika wytworzone zostaną dwa obszary o odmiennym typie przewodnictwa p i n. Nośniki większościowe

Temat i cel wykładu. Tranzystory

Tranzystory bipolarne

W1. Właściwości elektryczne ciał stałych

POMIAR NAPIĘCIA STAŁEGO PRZYRZĄDAMI ANALOGOWYMI I CYFROWYMI. Cel ćwiczenia. Program ćwiczenia

Wiadomości podstawowe

Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych Laboratorium Przyrządów Półprzewodnikowych. Ćwiczenie 2

Politechnika Białostocka

Tranzystory polowe. Klasyfikacja tranzystorów polowych

Złącze p-n: dioda. Przewodnictwo półprzewodników. Dioda: element nieliniowy

Część 2. Przewodzenie silnych prądów i blokowanie wysokich napięć przy pomocy przyrządów półprzewodnikowych

LABORATORIUM INŻYNIERII MATERIAŁOWEJ

Część 2. Przewodzenie silnych prądów i blokowanie wysokich napięć przy pomocy przyrządów półprzewodnikowych

LABORATORIUM ELEKTRONIKI ĆWICZENIE 2. ELEMENTARNE UKŁADY ELEKTRONICZNE (Wzmacniacz i inwerter na tranzystorze bipolarnym)

Diody półprzewodnikowe

Politechnika Białostocka

Ćwiczenie C2 Tranzystory. Wydział Fizyki UW

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7

TRANZYSTORY MOCY. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi tranzystorami i ich charakterystykami.

nazywamy mostkiem zrównoważonym w przeciwieństwie do mostka niezrównoważonego, dla którego Z 1 Z 4 Z 2 Z 3. Z 5

Diody półprzewodnikowe

Transkrypt:

Ćwiczenie -3A ADANI HAAKTYSTYK DIODY I TANZYSTOA MTODĄ OSYLOSKOPOWĄ I el ćwiczenia: wyznaczenie charakterystyki diody Zenera, charakterystyk tranzystora p-n-p oraz n-p-n w układzie W, zapoznanie się z podstawowymi właściwościami tranzystora i oscyloskopową metodą badania charakterystyk prądowonapięciowych II Przyrządy: płytka montaŝowa, transformator regulowany TP 200, zasilacz stabilizowany, dzielnik napięcia DNa-18, multimetr cyfrowy, mikroamperomierz i miliwoltomierz prądu stałego, oscyloskop STD 501XY lub HM 303 (lub inny dwukanałowy), miernik parametrów tranzystorów MTD-1 III Literatura: 1 W Marciniak Przyrządy półprzewodnikowe i układy scalone, WNT, Warszawa 1984 2 Śledziewski lektronika dla fizyków, PWN, Warszawa 1982 3 I ydzewski Oscyloskop elektroniczny, WKŁ, Warszawa 1982 4 M usek, Ćwirko, W Marciniak Przewodnik po elektronice, WNT, Warszawa 1986 IV Wprowadzenie IV1 Półprzewodnik Powszechnie stosowanym kryterium klasyfikacji pierwiastków (ciał stałych) jako przewodników, półprzewodników i izolatorów jest kryterium wynikające z modelu pasmowego ciała stałego Według tego kryterium szerokość pasma zabronionego dla półprzewodników spełnia warunek < 2eV, a dla izolatorów warunek > 2eV W przewodnikach natomiast pasma przewodnictwa i walencyjne zachodzą na siebie Podstawowym półprzewodnikiem jaki wykorzystuje o- becnie elektronika jest krzem, w mniejszym stopniu - german Krzem i german to pierwiastki naleŝące do IV grupy układu okresowego o szerokości pasma zabronionego wynoszącej odpowiednio 1,1eV i 0,7eV Idealnie czysty, bez domieszek i defektów sieci krystalicznej półprzewodnik to tzw półprzewodnik samoistny lektrony walencyjne w półprzewodniku samoistnym mogą, np dzięki energii drgań cieplnych przechodzić do pasma przewodnictwa W wyniku takiego przejścia w monokrysztale krzemu czy teŝ germanu powstaje para swobodnych nośników ładunku: elektron w paśmie przewodnictwa i dziura - czyli opuszczone przezeń miejsce w wiązaniu kowalencyjnym, posiadające właściwość swobodnego ładunku dodatniego Liczby elektronów i dziur w jednostce objętości (koncentracje) półprzewodnika samoistnego są zawsze takie same w przeciwieństwie do półprzewodników domieszkowanych Domieszki dzielimy na donorowe i akceptorowe Jako domieszek donorowych uŝywa się pierwiastków z grupy V -tej : fosforu, arsenu, antymonu posiadających elektrony na poziomach energetycznych, leŝących w paśmie zabronionym półprzewodnika samoistnego w pobliŝu granicy pasma przewodnictwa W przypadku krzemu z domieszką fosforu wystarczy dostarczyć elektronowi walencyjnemu fosforu zaledwie 0,044eV dodatkowej energii, aby stał się on elektronem przewodnictwa Powstająca wówczas w poziomie donorowym (rys1) dziura nie posiada właściwości ładunku swobodnego i w tak domieszkowanym półprzewodniku koncentracja elektronów 1 I PAOWNIA FIZYZNA

Ćwiczenie -3A swobodnych jest większa od koncentracji swobodnych dziur - półprzewodnik taki nazywamy półprzewodnikiem typu n Wprowadzając w siatkę krystaliczną krzemu atomy pierwiastków z III grupy, np boru czy glinu o poziomie akceptorowym w pobliŝu granicy pasma walencyjnego i zabronionego otrzymujemy półprzewodnik typu p o większej w porównaniu z elektronami przewodnictwa koncentracji swobodnych dziur lektrony przewodnictwa w takim półprzewodniku nazywamy nośnikami mniejszościowymi, zaś dziury nośnikami większościowymi W temperaturze pokojowej energia drgań cieplnych jest wystarczająca, aby większość elektronów przeszła z poziomów donorowych do pasma przewodnictwa, a poziom akceptorowy został częściowo zapełniony przez elektrony walencyjne półprzewodnika podstawowego Przepływ prądu przez półprzewodnik polegać moŝe zarówno na unoszeniu elektronów i dziur w polu elektrycznym (prąd unoszenia) jak i na dyfuzji nośników ładunku wywołanej nierównomiernym rozkładem ich koncentracji (prąd dyfuzyjny) Występuje równieŝ zjawisko rekombinacji elektronów i dziur czyli zanikania swobodnych nośników ładunku energia elektr Pasma: przewodnictwa zabronione walencyjne 293 K energia elektr półprzew typu n Poziomy: donorowy akceptorowy półprzew typu p 0 K ys1 Poziomy donorowe i akceptorowe w temperaturze zera bezwzlędnego i w temperaturze pokojowej IV2 Złącze p-n Monokrystaliczną próbkę półprzewodnika utworzoną przez dwie warstwy półprzewodników typu p i n nazywamy złączem p-n Złącze takie wraz z wyprowadzeniami elektrycznymi i obudową tworzy diodę półprzewodnikową MoŜemy wyróŝnić trzy podstawowe stany elektryczne złącza p-n IV21 Złącze niespolaryzowane JeŜeli do złącza nie jest przyłoŝone napięcie zewnętrzne, to przez złącze płynie prąd dyfuzyjny - elektrony z warstwy n przechodzą do warstwy p, a dziury dyfundują z warstwy p do n Gdyby e- lektrony i dziury były cząstkami obojętnymi elektrycznie, to proces ten musiałby doprowadzić do wyrównania się koncentracji w półprzewodniku W rzeczywistości nieskompensowane ładunki przestrzenne, powstające wskutek dyfuzji powodują wytworzenie róŝnicy potencjałów, nazwanej napięciem dyfuzyjnym lub barierą potencjału (rys2a) Napięcie dyfuzyjne zapobiega wyrównaniu się koncentracji - przez złącze płynie prąd unoszenia o takim samym natęŝeniu, jak natęŝenie prądu 2 I PAOWNIA FIZYZNA

Ćwiczenie -3A dyfuzyjnego, ale przeciwnym kierunku ałkowite natęŝenie prądu płynącego przez złącze jest równe zeru p bariera potencjału n U + U d p n b ) ρ 0 obszar neutralny _ + x U - U + U d V p n c) 0 a) U d x +U ys2 Złącze niespolaryzowane a): ρ - gęstość ładunków nieskompensowanych, V - potencjał, U d - napięcie dyfuzyjne; złącze spolaryzowane zaporowo b); złącze spolaryzowane w kierunku przewodzenia c) IV22 Złącze spolaryzowane w kierunku zaporowym W tym przypadku napięcie zewnętrzne jest zgodne co do znaku z napięciem dyfuzyjnym, a róŝnica potencjałów obu warstw jest równa sumie obu napięć (rys 2b) Przez złącze płynie prąd u- noszenia nośników mniejszościowych w przybliŝeniu niezaleŝny od przyłoŝonego napięcia (prąd nasycenia rys 3) p n I U z 0 U kierunek zaporowy kierunek przewodzenia U ys3 harakterystyka prądowo - napięciowa złącza p-n; U z - napięcie Zenera dla diody Zenera IV23 Złącze spolaryzowane w kierunku przewodzenia JeŜeli wartość bezwzględna zewnętrznej róŝnicy potencjałów jest większa od wartości bezwzględnej napięcia dyfuzyjnego, a znaki obu napięć są przeciwne, to przez złącze płynie prąd 3 I PAOWNIA FIZYZNA

unoszenia nośników większościowych o natęŝeniu znacznie większym od natęŝenia prądu unoszenia nośników mniejszościowych w przypadku polaryzacji złącza w kierunku zaporowym (rys 3) IV24 Zjawisko Zenera i przebicie lawinowe Przebiciem złącza nazywamy zjawisko gwałtownego wzrostu natęŝenia prądu po przekroczeniu pewnej wartości napięcia polaryzującego złącza w kierunku zaporowym Przebicie złącza moŝe mieć charakter lawinowy, gdy wzrost natęŝenia jest spowodowany lawinową generacją par elektron-dziura przez dostatecznie szybko poruszające się nośniki ładunku lub teŝ moŝe być następstwem zjawiska Zenera polegającego na wyrywaniu elektronów z wiązań kowalencyjnych w polu elektrycznym o dostatecznie wysokim natęŝeniu Przebicie złącza moŝe prowadzić do jego zniszczenia, o ile ilość wydzielonego w złączu ciepła jest zbyt duŝa Oba rodzaje przebicia - Zenera i lawinowe znalazły powszechne zastosowanie w elektronice PoniewaŜ zjawisko Zenera występuje w diodzie o odpowiedniej konstrukcji przy ściśle określonym napięciu (dla danej temperatury), dlatego diody Zenera stosowane są jako wzorce napięcia, jako elementy zabezpieczające układy elektroniczne przed uszkodzeniami, mogącymi wyniknąć z powodu przekroczenia dopuszczalnego dla nich napięcia oraz jako elementy stabilizujące napięcie IV3 Tranzystor bipolarny Najpowszechniej stosowanym dziś tranzystorem jest tranzystor bipolarny o dwuzłączowej strukturze p-n-p lub n-p-n, w którym poszczególne obszary, róŝniące się stopniem i rodzajem domieszkowania noszą nazwę emitera, bazy i kolektora (rys4) Zasadniczym przeznaczeniem tranzystora jest wzmacnianie sygnałów zarówno prądu stałego jak i zmiennego, przy czym tzw normalny zakres aktywny pracy tranzystora, jako wzmacniacza polega na spolaryzowaniu złącza emiter-baza w kierunku przewodzenia, a złącza baza-kolektor w kierunku zaporowym Większościowe nośniki ładunku pod wpływem pola elektrycznego przechodzą z emitera do bazy, by następnie wskutek dyfuzji przejść do kolektora NatęŜenie prądu płynącego przez złącze baza - kolektor praktycznie nie zaleŝy od róŝnicy potencjałów między bazą a kolektorem ( U ), natomiast jest w pierwszym przybliŝeniu wprost proporcjonalne do liczby nośników ładunków większościowych (dla emitera) dopływających do bazy Włączenie w obwód kolektora duŝej oporności daje moŝliwość uzyskania b duŝego wzmocnienia napięciowego, gdyŝ małe zmiany prądu sterującego powodują wówczas b duŝe zmiany napięcia wyjściowego p n p n p n ys 4 Schematyczne przedstawienie tranzystora p-n-p i n-p-n: - emiter, - baza, - kolektor IV31 Sposoby włączania tranzystora Tranzystor bipolarny posiada trzy podstawowe wyprowadzenia elektryczne, niemniej włączony w dwuprzewodową linię przekazującą sygnały staje się czwórnikiem czyli układem o dwóch parach wyprowadzeń - parze wyprowadzeń wejściowych i parze wyprowadzeń wyjściowych (rys5) Ćwiczenie -3A 4 I PAOWNIA FIZYZNA

Ćwiczenie -3A Wynika stąd wniosek, iŝ jedno z podstawowych wyprowadzeń elektrycznych tranzystora musi być wyprowadzeniem wspólnym dla wejścia i wyjścia tranzystora pełniącego funkcję czwórnika 1 I we I wy 3 U we ZWÓNIK U wy 2 Wejście Wyjście 4 ys5 zwórnik: U we - napięcie wejściowe, U wy - napięcie wyjściowe, K u = U wy - współczynnik U we wzmocnienia napięciowego, K i = I wy - współczynnik wzmocnienia prądowego, we - o- I we porność wejściowa (między zaciskami 1, 2), wy - oporność wyjściowa (pomiędzy zaciskami 3, 4) W W a) W b) c) + U (zasilanie) źródło sygnału 1 1 c 2 Wejście 2 Wyjście o opór obciąŝenia ys6 Układ wspólnego emitera a), wspólnej bazy b) i wspólnego kolektora c), schemat najprostszego wzmacniacza zbudowanego na tranzystorze pracującym w układzie W d) d) 5 I PAOWNIA FIZYZNA

W zaleŝności od tego, czy jest to wyprowadzenie emitera, bazy lub kolektora układ nosi nazwę układu wspólnego emitera (W rys6a), wspólnej bazy (W rys6b), lub wspólnego kolektora (W rys6c) Schemat wzmacniacza napięciowego z tranzystorem n-p-n w układzie wspólnego emitera jest przedstawiony na rys6d Właściwości poszczególnych układów są przedstawione w tabeli I Tabela I Właściwości podstawowych układów tranzystora bipolarnego Ćwiczenie -3A Układ Wzmocnienie prądowe K i Wzmocnienie napięciowe K u Impedancja wejściowa we Impedancja wyjściowa W duŝe duŝe mała duŝa W największe małe największa najmniejsza W małe największe najmniejsza największa IV32 harakterystyki statyczne tranzystora w układzie W Najbardziej istotnymi charakterystykami są : charakterystyka przejściowa I c = f(i ) U = const czyli zaleŝność natęŝenia prądu kolektora od prądu bazy przy stałym napięciu kolektor - emiter oraz charakterystyka wyjściowa I = f(u ) I = const w postaci zaleŝności prądu kolektora od napięcia kolektor - emiter przy stałym natęŝeniu bazy odzina charakterystyk wyjściowych przedstawiona jest na rys7 W tabeli II przedstawiono klasyfikację zakresów pracy tranzystora w zaleŝności od rodzaju polaryzacji jego złącz Tabela II Polaryzacja złącza - - Zakres pracy P Z aktywny normalny P P nasycenia Z Z zatkania Z P aktywny inwersyjny Symbole w tabeli oznaczają: P - polaryzację w kierunku przewodzenia, a Z - polaryzację w kierunku zaporowym W normalnym zakresie pracy potencjały emitera, bazy i kolektora powinny spełniać warunek : V > V > V dla tranzystora n-p-n i V < V < V dla tranzystora p-n-p adanie charakterystyk za pomocą mierników i źródeł prądu stałego jest metodą pracochłonną (o ile nie korzysta się ze specjalnych mierników przeznaczonych wyłącznie do tego celu), a w dodatku moŝe być mało dokładne ze względu na wzrost temperatury badanego tranzystora podczas długotrwałego pomiaru Znacznie szybszą metodą jest pomiar specjalnym oscyloskopem, zwanym charakterografem lub teŝ zwykłym oscyloskopem wyposaŝonym dodatkowo w odpowiedni układ pomocniczy 6 I PAOWNIA FIZYZNA

Ćwiczenie -3A U 20V [ma] I [ma] 30 20 I 10V 10 I [ ] 0 1 5 U [V] 30 I 10V U 20V U [V] ys 7 harakterystyki tranzystora bipolarnego w układzie wspólnego emitera V Pomiary V1 Sprawdzanie układu do wyznaczania charakterystyk prądowo-napięciowych Metoda oscyloskopowa wyznaczania charakterystyk prądowo-napięciowych polega na zasilaniu obwodu napięciem okresowo zmiennym (dodatnim, ujemnym, przemiennym), przy czym napięcie powstające na badanym elemencie doprowadzane jest do toru odchylania poziomego oscyloskopu, natomiast napięcie na oporniku włączonym w szereg z badanym elementem - do toru odchylania pionowego (rys8 i 11) PoniewaŜ to ostatnie napięcie jest proporcjonalne do natęŝenia prądu płynącego przez badany element, a ponadto posiada tą samą fazę co prąd - na ekranie oscyloskopu powstaje liniowe odwzorowanie wykresu I = f(u) w skali jednoznacznie określonej przez wartości współczynników odchylania torów X i Y oraz oporność opornika szeregowego Y Gdy badamy elementy półprzewodnikowe, to zawsze włączamy w obwód opór obciąŝenia o, ograniczając moc strat cieplnych w badanej diodzie czy tranzystorze Dla typowych elementów o- raz napięć nie przekraczających 24 V wartość oporu obciąŝenia nie powinna być mniejsza od 2 kω Podczas badania charakterystyki powinien być spełniony jeszcze jeden warunek OtóŜ faza sygnału elektrycznego, doprowadzonego do wejścia Y oscyloskopu nie moŝe ulec zmianie podczas przejścia przez tor odchylania ( w stosunku do sygnału, doprowadzonego do wejścia X ) Innymi słowy oba tory odchylania nie mogą wprowadzać dodatkowych przesunięć fazowych Dlatego teŝ podczas pomiarów oba wejścia oscyloskopu powinny być wejściami stałoprądowymi (" = ", "D ") a jeśli oscyloskop wyposaŝony jest w ograniczniki pasma przenoszenia - to ograniczenia powinny być takie same dla wejść X i Y W celu sprawdzenia układu pomocniczego naleŝy w pierwszej kolejności wyznaczyć (multimetrem cyfrowym - omomierzem) oporność opornika szeregowego Y, dołączonego do zacisku przeznaczonego dla emitera tranzystora (rys9) 7 I PAOWNIA FIZYZNA

Ćwiczenie -3A A V Z x a) ~ Y ZX b) o We "=X" ~ ZX Y c) We "=Y" o We "=X" ~ ZX Y d) We "=Y" ys8 Wyznaczanie charakterystyki prądowo-napięciowej elementu Z X metodą "punkt po punkcie" (a), metodą oscyloskopową napięciem przemiennym (b), napięciem dodatnim (c) i napięciem ujemnym (d) Następnie ustalamy określoną wartość oporu obciąŝenia o pamiętając, iŝ nie moŝe być ona mniejsza od 2kΩ Kolejną czynnością jest sprawdzenie, czy oscyloskop nie wprowadza dodatkowych przesunięć fazowych W tym celu do zacisków i (rys 9) dołączamy opornik o wyznaczonej poprzednio oporności i budujemy obwód, przedstawiony schematycznie na rys9b Na podstawie obrazu otrzymanego na ekranie oscyloskopu naleŝy ocenić, czy oscyloskop nie wprowadza przesunięć fazowych (w przypadku braku przesunięcia fazowego na ekranie pojawia się odcinek linii prostej; jeśli przesunięcie fazowe istnieje, pojawia się elipsa - rys10), jaki jest kierunek włączenia diody prostowniczej, a ponadto obliczyć oporność badanego opornika i porównać ją z wartością wyznaczoną za pomocą omomierza cyfrowego 8 I PAOWNIA FIZYZNA

o Ćwiczenie -3A UWAGA! Dołączenie elementu znajdującego się pod napięciem do wejścia omomierza grozi jego uszkodzeniem Podczas pomiaru oporności elementu wchodzącego w skład układu, układ ten musi być odłączony od zewnętrznych źródeł napięcia, a badany element nie moŝe wchodzić w skład obwodu zamkniętego o a) Y TP 200 o We"=X" ~ 220V b) Y We"=Y" ys9 Schemat połączeń wewnętrznych płytki montaŝowej (a) schemat obwodu przeznaczonego do sprawdzania układu pomiarowego metodą wyznaczania charakterystyki prądowo-napięciowej opornika o : - gniazdka radiowe izolowane, - gniazdka radiowe, - zaciski Wartości elementów płytki montaŝowej: o = 2kΩ (w obwodzie kolektora), połączony z nim szeregowo potencjometr - 0-4 kω; = 5,4 kω (w obwodzie bazy), połączony z nim szeregowo 10- cio obrotowy potencjometr 10 kω; y = 210 Ω, (w obwodzie emitera) Y h ϕ = arcsin h H H X ys 10 Sposób określania róŝnicy faz (przesunięcia fazowego) dwóch sinusoidalnie zmiennych w czasie sygnałów elektrycznych doprowadzonych do układów odchylania poziomego i pionowego lampy oscyloskopowej 9 I PAOWNIA FIZYZNA

o Ćwiczenie -3A V2 Wyznaczanie charakterystyki diody Zenera i tranzystora 1 Wyznaczyć charakterystykę diody Zenera w kierunku przewodzenia, w kierunku zaporowym o- raz w obu kierunkach jednocześnie Zmierzyć dokładnie wartość napięcia Zenera 2 Sprawdzić za pomocą omomierza, które z zacisków dzielnika napięć są połączone bezpośrednio ze sobą (opornością bliską zera) niezaleŝnie od stopnia podziału napięcia wejściowego Zaciski te powinny być uziemione podczas zasilania obwodu bazy z zasilacza stabilizowanego przez dzielnik (rys11) TP 200 o o = 2kΩ ~ 220V a) Y We X "=" o We + Y "=" We X "=" ~ 220V U mv µa Y b) We + Y "=" Zasil stabil DN U ys 11 Schemat układu do badania: a ) charakterystyki diody Zenera w kierunku przewodzenia, b) tranzystora p-n-p 3 Za pomocą miernika MTD określić typ badanego tranzystora i sprawdzić, czy nie jest on uszkodzony zynności te wykonać według osobnej instrukcji, dostępnej na pracowni 4 Wyznaczyć charakterystyki wyjściowe I = f(u ) tranzystora p-n-p, a następnie n-p-n dla minimum pięciu wartości natęŝenia prądu bazy i tego samego, znanego oporu obciąŝenia o 5 Po zakończeniu pomiarów sprawdzić, jaki wpływ na charakterystyki wywiera zmiana oporu obciąŝenia 10 I PAOWNIA FIZYZNA

Ćwiczenie -3A o We + X "=" ~ 220V + U mv µa Zasil stabil + DN + U Y _ We Y "=" c) ys11c Schemat układu do badania charakterystyki tranzystora n-p-n VIOpracowanie wyników 1 Wykreślić otrzymane charakterystyki prądowo-napięciowe z podaniem typu elementu i wartości oporu obciąŝenia, a w przypadku diody Zenera podać wartość napięcia Zenera wraz z oceną błędu Oszacować wartość oporności dynamicznej diody d = du/di oraz oporności statycznej s = U/I, gdzie U jest spadkiem potencjału na diodzie, natomiast I natęŝeniem płynącego przez nią prądu 2 Dla kaŝdego z badanych tranzystorów wykreślić charakterystykę I = f(i ) =const (przejściową) i obliczyć wartość współczynnika wzmocnienia prądowego β = I /I U = const 3 Przeprowadzić dyskusję wyników 11 I PAOWNIA FIZYZNA