Plan wynikowy. Klasa III Technikum ekonomiczne. Kształcenie ogólne w zakresie rozszerzonym

Podobne dokumenty
Plan wynikowy. Klasa III Technik pojazdów samochodowych/ Technik urządzeń i systemów energetyki odnawialnej. Kształcenie ogólne w zakresie podstawowym

Uczeń: -podaje przykłady ciągów liczbowych skończonych i nieskończonych oraz rysuje wykresy ciągów

Poziom wymagań K P K R K R. 2. Permutacje definicja permutacji definicja n! liczba permutacji zbioru n-elementowego K K K P D

MATeMAtyka 3. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Zakres podstawowy i rozszerzony

Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Plan wynikowy. Zakres podstawowy i rozszerzony

Liczba godzin. Uczeń: wykres ciągu. K P 1 wyraz ciągu. wyznacza kolejne wyrazy ciągu, gdy danych jest kilka jego. początkowych wyrazów K P

Wymagania kl. 3. Zakres podstawowy i rozszerzony

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres rozszerzony)

Wymagania egzaminacyjne z matematyki. Klasa 3C. MATeMATyka. Nowa Era. Klasa 3

MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony

Wymagania edukacyjne z matematyki klasa IV technikum

Wymagania edukacyjne z matematyki

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI

POZIOMY WYMAGAŃ EDUKACYJNYCH: K ocena dopuszczająca (2) P ocena dostateczna (3) R ocena dobra (4) D ocena bardzo dobra (5) W ocena celująca (6)

Wymagania edukacyjne

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III budownictwo ZAKRES ROZSZERZONY (105 godz.)

podaje granicę ciągu an oraz ciągu an

str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk

str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk

Plan wynikowy klasa 3. Zakres podstawowy

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/ ZAKRES PODSTAWOWY

Wymagania edukacyjne z matematyki w klasie II A i II B Liceum Plastycznego Zakres podstawowy Przygotowane w oparciu o propozycję wydawnictwa Nowa Era

Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Plan wynikowy. Zakres podstawowy

Wymagania edukacyjne z matematyki dla klasy III a,b liceum (poziom podstawowy) rok szkolny 2018/2019

Wymagania edukacyjne z matematyki i zasady oceniania

83 Przekształcanie wykresów funkcji (cd.) 3

1.. FUNKCJE TRYGONOMETRYCZNE Poziom (K) lub (P)

MATeMAtyka 4 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h)

ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Szczegółowe wymagania edukacyjne z matematyki w klasie trzeciej.

Wymagania edukacyjne zakres podstawowy klasa 3A

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Matematyka. Wymagania edukacyjne na poszczególne oceny

K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA 4iB ZAKRES ROZSZERZONY (160 godz.)

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA IV geodezja ZAKRES ROZSZERZONY (224 godz.)

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA IV geodezja ZAKRES ROZSZERZONY (224 godz.)

Przedmiot Klasa Poziom Imię i Nazwisko nauczyciela Matematyka kl. 4 ga ZAKRES PODSTAWOWY I ROZSZERZONY Mirosława Jursza

Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych

Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy)

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy. Klasa I (60 h)

MATeMAtyka zakres rozszerzony

Wymagania programowe z matematyki na poszczególne oceny w klasie III A i III B LP. Kryteria oceny

ZAKRES PODSTAWOWY. Proponowany rozkład materiału kl. I (100 h)

Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE

V. WYMAGANIA EGZAMINACYJNE

MATeMAtyka zakres podstawowy

Temat lekcji Zakres treści Wymagania podstawowe Wymagania ponadpodstawowe

Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum

Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste

ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY:

ZESPÓŁ SZKÓŁ W OBRZYCKU

KRYTERIA OCENIANIA Z MATEMATYKI w klasie 2a w roku szkolnym 2017/18. realizowany program nauczania: Matematyka na czasie, 4 godziny tygodniowo

wymagania programowe z matematyki kl. II gimnazjum

Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga.

Wymagania edukacyjne z matematyki i zasady oceniania

2. Permutacje definicja permutacji definicja liczba permutacji zbioru n-elementowego

WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY CZWARTEJ H. zakres rozszerzony. Wiadomości i umiejętności

Wymagania edukacyjne na poszczególne oceny Matematyka na czasie dla klasy 2

Rozkład materiału nauczania

WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA IV ZAKRES ROZSZERZONY (210 godz.)

MATeMAtyka 3 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych

Agnieszka Kamińska, Dorota Ponczek. Matematyka na czasie Rozkład materiału i plan wynikowy dla klasy 2

MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY DLA KLASY DRUGIEJ

1. Potęgi. Logarytmy. Funkcja wykładnicza

I. Potęgi. Logarytmy. Funkcja wykładnicza.

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY II A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi

WYMAGANIA EDUKACYJNE

Wymagania edukacyjne klasa druga.

PRZEDMIOTOWY SYSTEM OCENIANIA

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ LICEUM

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

2) R stosuje w obliczeniach wzór na logarytm potęgi oraz wzór na zamianę podstawy logarytmu.

PLAN WYNIKOWY Z MATEMATYKI DLA II KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem. PODSTAWOWE Uczeń zna: POTĘGI I PIERWIASTKI

Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa 1

Jolanta Pająk Wymagania edukacyjne matematyka w zakresie rozszerzonym w klasie 2f 2018/2019r.

MATEMATYKA. Zakres materiału i wymagania edukacyjne KLASA TRZECIA, poziom rozszerzony

MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)

Przedmiotowe Ocenianie Z Matematyki - Technikum. obowiązuje w roku szkolnym 2016 / 2017

Uczeń otrzymuje ocenę dostateczną, jeśli opanował wiadomości i umiejętności konieczne na ocenę dopuszczającą oraz dodatkowo:

MATEMATYKA KL II LO zakres podstawowy i rozszerzony

Matematyka do liceów i techników Szczegółowy rozkład materiału Klasa III zakres rozszerzony 563/3/2014

Planimetria 1 12 godz.

Matematyka do liceów i techników Szczegółowy rozkład materiału Klasa III zakres rozszerzony

Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 2

Kryteria oceniania z matematyki Klasa III poziom podstawowy

Standardy wymagań maturalnych z matematyki - matura

Plan wynikowy klasa 3

1. FUNKCJE DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia

MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1

Elementy logiki (4 godz.)

ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II ( zakres podstawowy)

1. Potęga o wykładniku naturalnym Iloczyn i iloraz potęg o jednakowych podstawach Potęgowanie potęgi 1 LICZBA GODZIN LEKCYJNYCH

MATEMATYKA ZP Ramowy rozkład materiału na cały cykl kształcenia

Wymagania edukacyjne dla klasy drugiej POTĘGI I PIERWIASTKI

Transkrypt:

Plan wynikowy lasa III Technikum ekonomiczne. ształcenie ogólne w zakresie rozszerzonym Oznaczenia: wymagania konieczne, P wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające, W wymagania wykraczające. Podstawa programowa kształcenia ogólnego dla liceów ogólnokształcących, liceów profilowanych i techników określa, że w tych typach szkół, obok przedmiotów, wprowadza się ścieżki. Nasz program zawiera elementy ścieżki j określone jako edukacja czytelnicza i medialna. W ramach realizacji elementów ścieżki j przewidujemy: a) rozwijanie umiejętności czytania ze zrozumieniem i interpretacji tekstów zawierających informacje podane w formie diagramów, tabel, wykresów oraz sporządzanie takich tekstów, b) kształcenie i rozwijanie umiejętności korzystania z urządzeń technicznych typu: kalkulator, kalkulator graficzny, komputer.

. PLANIMETRIA 6. Długość okręgu i pole koła wzory na długość okręgu i długość łuku okręgu wzory na pole koła i pole wycinka koła. ąty w okręgu pojęcie kąta środkowego pojęcie kąta wpisanego twierdzenie o kącie środkowym i wpisanym, opartych na tym samym łuku twierdzenie o kątach wpisanych, opartych na tym samym łuku twierdzenie o kącie wpisanym, opartym na półokręgu twierdzenie o kącie między styczną a cięciwą okręgu wielokąt wpisany w okrąg 3. Okrąg opisany na trójkącie okrąg opisany na trójkącie wielokąt opisany na okręgu 4. Okrąg wpisany w trójkąt okrąg wpisany w trójkąt wzór na pole trójkąta a b c P r, gdzie a, b, c są długościami boków tego trójkąta, a r długością promienia okręgu wpisanego w ten trójkąt podaje wzory na długość okręgu i długość łuku okręgu oraz wzory na pole koła i pole wycinka koła stosuje poznane wzory do obliczania pól i obwodów figur rozpoznaje kąty wpisane i środkowe w okręgu oraz wskazuje łuki, na których są one oparte stosuje twierdzenie o kącie środkowym i wpisanym, opartych na tym samym łuku oraz twierdzenie o kącie między styczną a cięciwą okręgu rozwiązuje zadania dotyczące wielokąta wpisanego w okrąg formułuje i dowodzi twierdzenia dotyczące kątów w okręgu rozwiązuje zadania związane z okręgiem opisanym na trójkącie stosuje własności środka okręgu opisanego na trójkącie w zadaniach z geometrii analitycznej rozwiązuje zadania dotyczące okręgu wpisanego w trójkąt prostokątny rozwiązuje zadania związane z okręgiem wpisanym w trójkąt przekształca wzory na pole trójkąta i udowadnia je R D W D R D P D D W

5. Czworokąty wypukłe pojęcie figury wypukłej rodzaje czworokątów 6. Okrąg opisany na czworokącie 7. Okrąg wpisany w czworokąt twierdzenie o okręgu opisanym na czworokącie twierdzenie o okręgu wpisanym w czworokąt określa własności czworokątów stosuje własności czworokątów wypukłych do rozwiązywania zadań z planimetrii sprawdza, czy na danym czworokącie można opisać okrąg stosuje twierdzenie o okręgu opisanym na czworokącie do rozwiązywania zadań sprawdza, czy w dany czworokąt można wpisać okrąg stosuje twierdzenie o okręgu wpisanym w czworokąt dowodzi twierdzenia dotyczące okręgu wpisanego w wielokąt 8. Twierdzenie sinusów twierdzenie sinusów stosuje twierdzenie sinusów do rozwiązywania trójkątów stosuje twierdzenie sinusów do rozwiązywania zdań o kontekście praktycznym przeprowadza dowód twierdzenia sinusów 9. Twierdzenie cosinusów twierdzenie cosinusów stosuje twierdzenie cosinusów do rozwiązywania trójkątów stosuje twierdzenie cosinusów do rozwiązywania zdań o kontekście praktycznym przeprowadza dowód twierdzenia cosinusów 0. Powtórzenie wiadomości. Praca klasowa i jej omówienie D P P W D W D W 3 3

. RACHUNE PRAWDOPODOBIEŃSTWA. Zasada mnożenia zasada mnożenia ilustracja zbioru wyników doświadczenia za pomocą drzewa. Permutacje definicja permutacji definicja n! liczba permutacji zbioru n-elementowego 3. Wariacje bez powtórzeń definicja wariacji bez powtórzeń liczba k-elementowych wariacji bez powtórzeń zbioru n-elementowego 4. Wariacje z powtórzeniami definicja wariacji z powtórzeniami liczba k-elementowych wariacji z powtórzeniami zbioru n-elementowego wypisuje wyniki danego doświadczenia stosuje zasadę mnożenia do wyznaczenia liczby wyników spełniających dany warunek przedstawia drzewo ilustrujące zbiór wyników danego doświadczenia oblicza liczbę permutacji elementów danego zbioru wykonuje obliczenia, stosując definicję silni stosuje definicję silni do przekształcania wyrażeń algebraicznych wykorzystuje permutacje oblicza liczbę wariacji bez powtórzeń wykorzystuje wariacje bez powtórzeń oblicza liczbę wariacji z powtórzeniami wykorzystuje wariacje z powtórzeniami do rozwiązywania zadań P R R P R R 4

5. ombinacje definicja kombinacji liczba k-elementowych kombinacji zbioru n-elementowego symbol Newtona wzór dwumianowy Newtona 6. ombinatoryka zadania podstawowe pojęcia kombinatoryki: permutacje, wariacje i kombinacje oblicza wartość symbolu Newtona n, gdzie n k 0 k oblicza liczbę kombinacji wypisuje k-elementowe kombinacje danego zbioru wykorzystuje kombinacje wykorzystuje wzór dwumianowy Newtona do rozwijania wyrażeń postaci a b n i wyznaczania współczynników wielomianów wykorzystuje wzór dwumianowy Newtona w dowodach twierdzeń wykorzystuje podstawowe pojęcia kombinatoryki do rozwiązywania zadań R P D R D W 5

7. Zdarzenia losowe pojęcie zdarzenia elementarnego pojęcie przestrzeni zdarzeń elementarnych definicja zdarzenia losowego wyniki sprzyjające zdarzeniu losowemu zdarzenie pewne, zdarzenie niemożliwe suma, iloczyn i różnica zdarzeń losowych zdarzenia rozłączne (wykluczające się), zdarzenie przeciwne 8. Prawdopodobieństwo klasyczne 9. Rozkład prawdopodobieństwa 0. Własności prawdopodobieństwa pojęcie prawdopodobieństwa klasyczna definicja prawdopodobieństwa rozkład prawdopodobieństwa zdarzenia jednakowo prawdopodobne wartość oczekiwana gry własności prawdopodobieństwa:. P A 0 oraz P A,. P Ø 0, P, 3. jeśli A B, to P A P B, 4. P A' P A. twierdzenie o prawdopodobieństwie sumy zdarzeń określa przestrzeń zdarzeń elementarnych podaje wyniki sprzyjające danemu zdarzeniu losowemu określa zdarzenia pewne i zdarzenia niemożliwe wyznacza sumę, iloczyn i różnicę zdarzeń losowych wypisuje pary zdarzeń przeciwnych oblicza prawdopodobieństwa zdarzeń losowych, stosując klasyczną definicję prawdopodobieństwa podaje rozkład prawdopodobieństwa dla rzutów kostką, monetą oblicza wartość oczekiwaną gry oblicza prawdopodobieństwo zdarzenia przeciwnego stosuje twierdzenie o prawdopodobieństwie sumy zdarzeń stosuje własności prawdopodobieństwa w dowodach twierdzeń P P P P D P R D P R D W 6

. Doświadczenia wieloetapowe. Powtórzenie wiadomości 3. Praca klasowa i jej omówienie ilustracja doświadczenia za pomocą drzewa ilustruje doświadczenie wieloetapowe za pomocą drzewa oblicza prawdopodobieństwa zdarzeń w doświadczeniu wieloetapowym 3. STATYSTYA 0. Średnia arytmetyczna definicja średniej arytmetycznej danych liczb. Mediana i dominanta pojęcie mediany pojęcie dominanty oblicza średnią arytmetyczną danych liczb oblicza średnią arytmetyczną danych przedstawionych na diagramie wykorzystuje średnią arytmetyczną wyznacza medianę i dominantę zestawu danych wyznacza medianę i dominantę danych przedstawionych na diagramie wykorzystuje medianę i dominantę R R R 4 alkulator 7

3. Odchylenie standardowe definicja wariancji definicja odchylenia standardowego pojęcie rozstępu danych pojęcie odchylenia przeciętnego 4. Średnia ważona definicja średniej ważonej liczb z podanymi wagami 5. Powtórzenie wiadomości 6. Praca klasowa i jej omówienie oblicza wariancję i odchylenie standardowe danych oblicza wariancję i odchylenie standardowe danych przedstawionych w tabeli lub na diagramie porównuje odchylenie przeciętne z odchyleniem standardowym oblicza średnią ważoną liczb z podanymi wagami wykorzystuje średnią ważoną 4. FUNCJE WYŁADNICZE I LOGARYTMICZNE 4. Potęga o wykładniku wymiernym definicja pierwiastka n-tego stopnia z liczby nieujemnej definicja potęgi o wykładniku wymiernym liczby dodatniej prawa działań na potęgach o wykładnikach wymiernych oblicza pierwiastek n-tego stopnia z liczby nieujemnej oblicza potęgi o wykładnikach wymiernych zapisuje daną liczbę w postaci potęgi o wykładniku wymiernym upraszcza wyrażenia, stosując prawa działań na potęgach P D P P 3 Ścieżka czytelnicza i medialna alkulator alkulator Przygotowanie projektu przeprowadzenie ankiety i opracowanie jej wyników 8

. Potęga o wykładniku rzeczywistym określenie potęgi o wykładniku rzeczywistym liczby dodatniej prawa działań na potęgach 3. Funkcje wykładnicze definicja funkcji wykładniczej i jej wykres własności funkcji wykładniczej zapisuje daną liczbę w postaci potęgi o danej podstawie upraszcza wyrażenia, stosując prawa działań na potęgach porównuje liczby przedstawione w postaci potęg wyznacza wartości funkcji wykładniczej dla podanych argumentów sprawdza, czy punkt należy do wykresu danej funkcji wykładniczej szkicuje wykres funkcji wykładniczej i określa jej własności porównuje liczby, korzystając z własności funkcji wykładniczej wyznacza wzór funkcji wykładniczej i szkicuje jej wykres, znając współrzędne punktu należącego do jej wykresu rozwiązuje równania i nierówności, korzystając z wykresu funkcji wykładniczej P P 9

4. Przekształcenia wykresu funkcji wykładniczej 5. Własności funkcji wykładniczej metody szkicowania wykresów funkcji wykładniczych w różnych przekształceniach różnowartościowość funkcji wykładniczej monotoniczność funkcji wykładniczej 6. Logarytm definicja logarytmu liczby dodatniej równości: log a x x, a log b a a b, gdzie a 0 i a, b 0 szkicuje wykres funkcji wykładniczej, stosując przesunięcie o wektor i określa jej własności ustala właściwą kolejność przekształceń wykresu funkcji wykładniczej, mając dany wzór funkcji i określa jej własności na podstawie wykresów funkcji odczytuje rozwiązania równań i nierówności rozwiązuje równania wykładnicze, korzystając z różnowartościowości funkcji wykładniczej rozwiązuje nierówności wykładnicze, korzystając z monotoniczności funkcji wykładniczej oblicza logarytm danej liczby stosuje równości wynikające z definicji logarytmu do obliczeń wyznacza podstawę logarytmu lub liczbę logarytmowaną, gdy dana jest jego wartość, podaje odpowiednie założenia dla podstawy logarytmu oraz liczby logarytmowanej R R 0

7. Własności logarytmów twierdzenia o logarytmie iloczynu, ilorazu oraz potęgi 8. Funkcje logarytmiczne funkcja logarytmiczna, jej dziedzina i wykres własności funkcji logarytmicznej stosuje twierdzenia o logarytmie iloczynu, ilorazu oraz potęgi do obliczania wartości wyrażeń z logarytmami podaje założenia i zapisuje wyrażenia zawierające logarytmy w prostszej postaci dowodzi twierdzenia o logarytmach szkicuje wykres funkcji logarytmicznej wyznacza wzór funkcji logarytmicznej, mając współrzędne punktu należącego do jej wykresu szkicuje wykres funkcji logarytmicznej typu y log a ( x p) q i określa jej własności wyznacza zbiór wartości funkcji logarytmicznej o podanej dziedzinie rozwiązuje prostą nierówność logarytmiczną, posługując się wykresem odpowiedniej funkcji wykorzystuje własności funkcji logarytmicznej do rozwiązywania zadań różnych typów R D W P P R D

9. Przekształcenia wykresu funkcji logarytmicznej 0. Zmiana podstawy logarytmu metody szkicowania wykresów funkcji logarytmicznych w różnych przekształceniach twierdzenie o zmianie podstawy logarytmu. Zastosowania zastosowania funkcji wykładniczej i logarytmicznej. Powtórzenie wiadomości 3. Praca klasowa i jej omówienie szkicuje wykres funkcji będący efektem jednego przekształcenia wykresu funkcji logarytmicznej i określa jej własności szkicuje wykres funkcji będący efektem kilku przekształceń wykresu funkcji logarytmicznej i określa jej własności stosuje wykresy funkcji logarytmicznych do rozwiązywania zadań, w tym również do ustalenia liczby rozwiązań równania w zależności od parametru zamienia podstawę danego logarytmu na inną, wskazaną stosuje twierdzenie o zmianie podstawy logarytmu do obliczania wartości wyrażeń z logarytmami wykorzystuje twierdzenie o zmianie podstawy logarytmu w zadaniach na dowodzenie stosuje funkcje wykładniczą i logarytmiczną do rozwiązywania zadań o kontekście praktycznym R D D W 4