NAPĘDY PRZEKSZTAŁTNIKOWE SILNIKÓW W WYKONANIU PRZECIWWYBUCHOWYM

Podobne dokumenty
Silniki przeciwwybuchowe zasilane z przetwornic częstotliwości

dr inż. Gerard Kałuża Konstrukcja i badania zatapialnych pomp wirowych przeznaczonych do pracy w przestrzeni zagrożonej wybuchem.

CHARAKTERYSTYKA TECHNICZNA

MASZYNY ELEKTRYCZNE CELMA SA

MASZYNY ELEKTRYCZNE CELMA SA

Nieelektryczne urządzenia przeciwwybuchowe

WYSOKONAPIĘCIOWE SILNIKI PRZECIWWYBUCHOWE BUDOWY WZMOCNIONEJ

Silniki w strefach zagrożonych wybuchem zasilane z przemienników częstotliwości

Trójfazowe silniki indukcyjne. serii dskgw do napędu organów urabiających kombajnów górniczych Wkładka katalogowa nr 11a

Tytuł Aplikacji: Współpraca falownika z silnikiem pracującym w strefie zagrożonej wybuchem

Fot. 1. Przekrój nowoczesnego silnika w osłonie ognioszczelnej

CHARAKTERYSTYKA TECHNICZNA STOPIEŃ OCHRONY SKRZYNKA ZACISKOWA

ZWALNIAKI ELEKTROHYDRAULICZNE PRZECIWWYBUCHOWE ExZEM

ZWALNIAKI ELEKTROHYDRAULICZNE PRZECIWWYBUCHOWE ExZE

Elektryczne urządzenia przeciwwybuchowe przeznaczone do pracy w przestrzeniach zagrożonych wybuchem pyłów palnych rodzaje zabezpieczeń

GEK/FZR-KWB/12488/2015. Rogowiec, r. 2. Zamawiający, PGE Górnictwo i Energetyka Konwencjonalna Spółka Akcyjna, działając na

Wiadomości pomocne przy ocenie zgodności - ATEX

Historia bezpieczeństwa przeciwwybuchowego w Polsce

Dyrektywa 94/9/WE ATEX Zestawy utworzone z dwóch lub większej liczby urządzeń Ex Podstawowe zasady

Schemat IECEx w GIG.

Zakres dyrektywy ATEX i przykłady urządzeń z pogranicza dyrektywy. Łukasz Surowy GIG KD BARBARA.

Wykonana są z tworzywa antyelektrostatycznego (PE EL) mogą przetłaczać czynnik o maksymalnej temperaturze +40 C.

MODERNIZACJA NAPĘDU ELEKTRYCZNEGO WIRÓWKI DO TWAROGU TYPU DSC/1. Zbigniew Krzemiński, MMB Drives sp. z o.o.

MM DB AC (DC) Iskrobezpieczny zasilacz 12V/0,8 A,16 V/0,8 A Intrinsically safe power supply 12V/0,8 A, 16 V/0,8 A class.

Przyszłościowe wymagania dotyczące projektowania urządzeń budowy przeciwwybuchowej

MM 3012 DB AC (DC) Iskrobezpieczny zasilacz 12V/1,5 A, 5 V/1,5 A, 16 V/0,9 A Intrinsically safe power supply 12V/1,5 A, 5 V/1,5 A, 16 V/0,9 A

Wykonana są z tworzywa antyelektrostatycznego (PE EL) mogą przetłaczać czynnik o maksymalnej temperaturze +40 C.

SG4(B) 540L-4 i SG4B(B) 540L-4A Strona 1 / 5

Dyrektywa 2014/34/UE vs. 94/9/WE Formalne i techniczne zmiany wprowadzone przez dyrektywę i badania bezpieczeństwa przeciwwybuchowego

Przekaźnik mocy 30 A SERIA 66. Przekaźnik mocy 30 A

Analiza ryzyka jako metoda obniżająca koszty dostosowania urządzeń nieelektrycznych do stref zagrożenia wybuchem.

REMONTY URZĄDZEŃ W WYKONANIU PRZECIWWYBUCHOWYM wg wymagań normy PN-EN :2007

WYMAGANIA TECHNICZNE DLA POMP WIROWYCH DŁAWNICOWYCH STOSOWANYCH W W.S.C.

Indukcyjny czujnik szczelinowy

INSTRUKCJA UŻYTKOWANIA CHŁODNICE POWIETRZA

PROJEKTOWANIE URZĄDZENIA I PRZYGOTOWANIE DO PROCESU CERTYFIKACJI W ZAKRESIE DYREKTYWY 2014/34/UE (ATEX)

B pl. Silniki do pracy z przetwornicą częstotliwości w kategorii 2D/3D. Specyfikacja projektowa do B 1091

POPRAWA EFEKTYWNOŚCI ENERGETYCZNEJ UKŁADU NAPĘDOWEGO Z SILNIKIEM INDUKCYJNYM ŚREDNIEGO NAPIĘCIA POPRZEZ JEGO ZASILANIE Z PRZEMIENNIKA CZĘSTOTLIWOŚCI

OFERTA TECHNICZNA. Silnik 60 kw zintegrowany z przemiennikiem WYDANIE 2 czestotliwosci STRONA 1/4

OBUDOWY I ROZDZIELNICE W OSŁONIE OGNIOSZCZELNEJ

Seria Jubileuszowa. Rozwiązania informatyczne. Sprężarki śrubowe Airpol PRM z przetwornicą częstotliwości. oszczędność energii. ochrona środowiska

W tym krótkim artykule spróbujemy odpowiedzieć na powyższe pytania.

MASZYNY ELEKTRYCZNE CELMA SA

INFORMACJA ATEX DLA GAZÓW I PYŁÓW

Napięcia wałowe i prądy łożyskowe w silnikach indukcyjnych

Informacja o produkcie Przepustnica odcinająca w wersji Ex AK-Ex

POPRAWA EFEKTYWNOŚCI ENERGETYCZNEJ UKŁADU NAPĘDOWEGO POMPY WODY ZASILAJĄCEJ DUŻEJ MOCY

Silniki do stref zagrożonych wybuchem Restricted / Siemens AG All Rights Reserved.

ZWARTE PRĘTY ROZRUCHOWE W SILNIKU SYNCHRONICZNYM Z MAGNESAMI TRWAŁYMI O ROZRUCHU BEZPOŚREDNIM

smart thinking APARATURA GÓRNICZA AGREGATY SPRĘŻARKOWE KATALOG PRODUKTÓW

PRZEGLĄD KONSTRUKCJI JEDNOFAZOWYCH SILNIKÓW SYNCHRONICZNYCH Z MAGNESAMI TRWAŁYMI O ROZRUCHU BEZPOŚREDNIM

Stopnie ochrony zapewniane przez obudowy (IP)

wentylatory promieniowe HPB-F

INSTRUKCJA OBSŁUGI ZASILACZ PWS-100RM

Załącznik nr 2 do SOPZ

Trójfazowe silniki klatkowe niskiego napięcia podwyższonej sprawności IE2 serii 2SIE ML 2SIE 355H IE Karta katalogowa nr 30

Wymiary. Dane techniczne

Wiadomości pomocne przy ocenie zgodności - ATEX

Silniki indukcyjne. Ze względu na budowę wirnika maszyny indukcyjne dzieli się na: -Maszyny indukcyjne pierścieniowe. -Maszyny indukcyjne klatkowe.

WYMAGANIA TECHNICZNE DLA POMP WIROWYCH BEZDŁAWNICOWYCH STOSOWANYCH W W.S.C.

Dane techniczne. Dane ogólne Funkcja elementów przełączających NAMUR, NO Nominalny zasięg działania s n 1 mm

PL B1. POLITECHNIKA GDAŃSKA, Gdańsk, PL BUP 10/16. JAROSŁAW GUZIŃSKI, Gdańsk, PL PATRYK STRANKOWSKI, Kościerzyna, PL

INSTRUKCJA INSTALACJI ORAZ UŻYTKOWANIA SILNIKI GŁĘBINOWE NBS4

REFLEKTORY W WYKONANIU PRZECIWWYBUCHOWYM

CHARAKTERYSTYKA TECHNICZNA

UKŁADY NAPĘDOWE W WYKONANIU PRZECIWWYBUCHOWYM OCENA ZAGROŻENIA ZAPŁONEM CZĘŚCI NIEELEKTRYCZNEJ

SILNIK INDUKCYJNY KLATKOWY

wentylatory boczno-kanałowe SC-F

INSTRUKCJA UŻYTKOWANIA

Wymiary. Dane techniczne

Urządzenia elektryczne w przestrzeniach zagrożonych wybuchem X

WYBRANE ZAGADNIENIA BEZPIECZNEGO ZASILANIA KOMPLEKSÓW WYDOBYWCZYCH

ELMAST F S F S F S F S F S F S F S F S ZESTAWY STERUJĄCO-ZABEZPIECZAJĄCE BIAŁYSTOK

ISKROBEZPIECZNY ENKODER INKREMENTALNY typu IEI-1 INSTRUKCJA OBSŁUGI NR BP/IO/10/09

ZNAKOWANIE URZĄDZEŃ PRZEZNACZONYCH DO PRACY W PRZESTRZENI ZAGROŻONEJ WYBUCHEM W ODNIESIENIU DO DYREKTYWY ATEX I NORM ZHARMONIZOWANYCH

Karta katalogowa wentylatorów boczno-kanałowych

ELF wentylator przeciwwybuchowy

ELMAST F F F ZESTAWY STERUJĄCO-ZABEZPIECZAJĄCE BIAŁYSTOK. PKWiU Dokumentacja techniczno-ruchowa

Opis serii: Wilo-Drain TP 80/TP 100

Dutchi Motors. Moc jest naszym towarem Świat jest naszym rynkiem INFORMACJE OGÓLNE

Rdzeń stojana umieszcza się w kadłubie maszyny, natomiast rdzeń wirnika w maszynach małej mocy bezpośrednio na wale, a w dużych na piaście.

60539POZNAŃ ax

Opis wyników projektu

INSTRUKCJA OBSŁUGI PRZETWORNICA PWB-190M, PWB-190RM

SILNIKI PRĄDU STAŁEGO SERII G

Parametry elektryczne i czasowe układów napędowych wentylatorów głównego przewietrzania kopalń z silnikami asynchronicznymi

ZAGROŻENIE BEZPIECZEŃSTWA FUNKCJONALNEGO ZWIĄZANE ZE ŚRODOWISKIEM ELEKTOMAGNETYCZNYM W PODZIEMNYCH WYROBISKACH GÓRNICZYCH

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Laboratorium z Elektrotechniki z Napędami Elektrycznymi

INSTRUKCJA OBSŁUGI ZASILACZ PWS-40

Softstarty MCI - układy łagodnego rozruchu i zatrzymania

DROGI PRZEPŁYWU PRĄDÓW ŁOŻYSKOWYCH W ORGANACH URABIAJĄCYCH KOMBAJNÓW GÓRNICZYCH BEARING CURRENT PATH IN CUTTING DRUMS OF HEADING MACHINES

ELEKTRYCZNE NISKIEGO NAPIĘCIA

Dane techniczne. Dane ogólne Funkcja elementów przełączających NAMUR, NC Nominalny zasięg działania s n 4 mm. 2,2 ma Płyta pomiarowa wykryta

4.1. Kontrola metrologiczna przyrządów pomiarowych 4.2. Dokładność i zasady wykonywania pomiarów 4.3. Pomiary rezystancji przewodów i uzwojeń P

POMIARY TEMPERATURY W PROCESIE BADAŃ URZĄDZEŃ W WYKONANIU PRZECIWWYBUCHOWYM

ANALIZA WPŁYWU NIESYMETRII NAPIĘCIA SIECI NA OBCIĄŻALNOŚĆ TRÓJFAZOWYCH SILNIKÓW INDUKCYJNYCH

Kompatybilność elektromagnetyczna urządzeń górniczych w świetle doświadczeń

f r = s*f s Rys. 1 Schemat układu maszyny dwustronnie zasilanej R S T P r Generator MDZ Transformator dopasowujący Przekształtnik wirnikowy

15. UKŁADY POŁĄCZEŃ PRZEKŁADNIKÓW PRĄDOWYCH I NAPIĘCIOWYCH

Transkrypt:

Zeszyty Problemowe Maszyny Elektryczne Nr 1/2014 (101) 159 Michał Górny Główny Instytut Górnictwa. Kopalnia Doświadczalna BARBARA, Mikołów NAPĘDY PRZEKSZTAŁTNIKOWE SILNIKÓW W WYKONANIU PRZECIWWYBUCHOWYM FREQUENCY FED DRIVE OF EXPLOSIONPROOF MOTORS Streszczenie: W niniejszej publikacji przedstawiono aktualne wymagania odnośnie do napędów przekształtnikowych w przestrzeniach zagrożenia wybuchem. Zaprezentowano metody badań układów silnik przekształtnik oraz wyniki badań własnych silników elektrycznych popularnych wielkości mechanicznych. Omówiono również najczęściej spotykane w praktyce przykłady niewłaściwych zastosowań. Abstract: This paper presents present requirements concerning to frequency fed motors in potentially explosive atmospheres. Tests methods for electrical motor frequency converter sets and tests results for popular electrical motor sizes were presented. Discuss concerning to quiet often misuse of such sets. Słowa kluczowe: silnik indukcyjny, przekształtnik, napęd, bezpieczeństwo przeciwwybuchowe Keywords: induction motor, converter, drive, explosionproof safety 1. Wstęp Po wielu latach stosowania napędów wykorzystujących silniki zasilane poprzez przekształtniki, bezsporne są korzyści i szerokie możliwości techniczne, jakie dzięki takim rozwiązaniom są uzyskiwane. Mimo jednak coraz większej powszechności stosowania takich rozwiązań, w dalszym ciągu na szczególne zagrożenia, wynikające z niewłaściwego stosowania, narażone są układy pracujące w przestrzeniach zagrożenia wybuchem. W prawdzie zasady użytkowania urządzeń w przestrzeniach zagrożenia wybuchem są dobrze uregulowane (przepisy, normy, zasady bezpieczeństwa), jednak napędy przekształtnikowe wciąż są tematem, przez niektórych uważanym za kontrowersyjny nieuregulowanym, co nie znajduje odzwierciedlenia w faktach. W latach 90 w Kopalni Doświadczalnej BARBARA 1 prowadzono szerokie badania wpływu zasilania przez różne przetwornice częstotliwości na silniki indukcyjne w wykonaniu przeciwwybuchowym. W ramach badań przeprowadzono próby ruchowe układów składających się z różnych (uznanych za typowe) silników i przetwornic częstotliwości różnych producentów. Dzięki aktywnemu udziałowi jednego z producentów (CELMA INDUKTA SA) badania 1 Kopalnia Doświadczalna BARBARA jest częścią Głównego Instytutu Górnictwa. Więcej informacji na www.kdbex.eu w tym obszarze mocowym przeprowadzano na tych samych egzemplarzach silników. Badania potwierdziły m. in. silny wpływ przetwornicy na dopuszczalny zakres regulacji (patrz Tablica 1). Tablica 1. Skrajne wartości dopuszczalnych zakresów regulacji silnika przy zasilaniu z różnych przetwornic częstotliwości Silnik csg 225... Dopuszczalny zakres regulacji Przetwornica A Przetwornica B (15% - 100%) n N (60% -100%) n N 2. Silniki w wykonaniu przeciwwybuchowym podstawy Historia technik zabezpieczeń przeciwwybuchowych ma już ponad 100 lat. Prace naukowe znalazły odzwierciedlenie w normach i specyfikacjach technicznych, a następnie w przepisach [1]. Aktualnie w Polsce oraz w innych krajach Unii Europejskiej uregulowania mają charakter hierarchiczny najważniejszym dokumentem jest dyrektywa 94/9/WE (tzw. ATEX) 2. Z dyrektywą powiązane są normy zharmonizowane, za pomocą których najprościej wykazać zgodność z wymaganiami dyrektywy. W obsza- 2 Parlament europejski właśnie przyjął nową dyrektywę ATEX (luty 2014)

160 Zeszyty Problemowe Maszyny Elektryczne Nr 1/2014 (101) rach nieuregulowanych normami zharmonizowane stosuje się inne normy międzynarodowe, następnie inne normy krajowe, inne normy branżowe i przepisy lokalne (patrz Rys. 1). Rys. 1. Wymagania w zakresie urządzeń przeciwwybuchowych (na przykładzie silników elektrycznych) Wymagania zawarte w dyrektywie ATEX dotyczą wprowadzania wyrobów przeciwwybuchowych na rynek, więc z zasady obejmują producentów (lub importerów) urządzeń. Producent również, podobnie jak w obszarach nieobjętych dyrektywą ATEX odpowiada za poprawną konstrukcję urządzenia (silnika, układu napędowego) i określenie warunków bezpiecznego użytkowania. Producent posiada odpowiednią wiedzę i to właśnie on najlepiej zna swoje urządzenie. Efektem badań własnych producenta jest zbiór parametrów brzegowych definiujących bezpieczną pracę urządzenia. Zbiorem wymagań i parametrów granicznych urządzenia jest instrukcja obsługi urządzenia, która m. in. zawiera znamionowe parametry techniczne. Podczas procesu certyfikacji urządzenia (np. według wymagań dyrektywy ATEX) oceniane i badane są tylko te aspekty urządzenia, które mają wpływ na bezpieczeństwo przeciwwybuchowe parametry takie podawane są precyzyjnie w certyfikatach. Np. nie ocenia się poziomu hałasu, który jest wymagany przez inne akty prawne. Dyrektywa ATEX nie obejmuje tego aspektu. Producent urządzenia odpowiada za przekazanie użytkownikowi wszystkich niezbędnych informacji w tym również parametrów technicznych uzgodnionych z jednostką badawczą podczas procesu certyfikacji. W praktyce oznacza to, że instrukcja obsługi dostarczana wraz z urządzeniem jest identyczna z tą, która była oceniana przez jednostkę certyfikującą. Obowiązkiem użytkownika jest stosowanie urządzenia zgodnie z przeznaczeniem czyli zgodnie z zapisami instrukcji obsługi producenta. Mimo, iż niektóre zapisy mogą wydawać się niezrozumiałe nie zwalania to z przestrzegania zapisów instrukcji. Użytkownik zawsze ma prawo nie kupić urządzenia, jeśli wymagania instrukcji obsługi wydają mu się zbyt rygorystyczne. Na przykład w instrukcji jednego z certyfikowanych silników pojawił się zapis, że wymiana uszczelnień może być wykonywana tylko przez producenta silnika. Zapis pozornie nadmiarowy miał jednak swoje uzasadnienie ze względu na konstrukcję silnika podczas próby wymiany uszczelnienia dochodziło do uszkodzenia elementów uszczelnień i tylko producent miał odpowiednie narzędzia i wiedzę, aby taką naprawę przeprowadzić. Próba wymiany uszczelnień w warunkach ruchowych (stosując typowe środku techniczne) prowadziła do degradacji poziomu zabezpieczenia przeciwwybuchowego. Instrukcja obsługi jest dla użytkownika dokumentem wiążącym i obowiązkowym. Dyrektywa ATEX wprowadza również podział urządzeń ze względu na kategorie odpowiadający poziomowi zabezpieczenia. Najwyższy poziom bezpieczeństwa zapewniają urządzenia kategorii 1 i M1 oraz systemy ochronne. Silniki indukcyjne są najczęściej urządzeniami kategorii 2 i M2 oraz kategorii 3. Z kategorii urządzenia wynika możliwość stosowania w odpowiedniej strefie zagrożenia wybuchem (patrz tablica 2).

Zeszyty Problemowe Maszyny Elektryczne Nr 1/2014 (101) 161 Tablica 2. Kategorie urządzeń, poziomy zabezpieczenia urządzeń (EOL) i odpowiadająca im możliwość stosowania (w strefach) [10] PN-EN 60079-0 Dyrektywa 94/9/WE PN-EN 60079-10-X EPL Grupa Grupa Urządzeń Kategoria Urządzeń Strefy Ma M1 I I Mb M2 Nie dotyczy Ga 1G 0 Gb II 2G 1 Gc 3G 2 II Da 1D 20 Db III 2D 21 Dc 3D 22 W przypadku silników indukcyjnych najbardziej powszechnymi wykonaniami przeciwwybuchowymi są: osłona ognioszczelna Exd, budowa wzmocniona Exe, osłona gazowa z nadciśnieniem Exp, wykonanie nieiskrzące Exn. 3. Podstawowe rodzaje budowy przeciwwybuchowej silników indukcyjnych Osłona ognioszczelna zapewnia, że obudowa wytrzyma ciśnienie wewnętrznego wybuchu oraz, że wybuch nie wydostanie się do otaczającej atmosfery. W przypadku osłony ognioszczelnej szczegółowe wymagania techniczne i badawcze zebrane są w normie PN-EN 60079-1 [2]. Wymagania są zróżnicowane ze względu na grupę i podgrupę wybuchowości (I, IIA, IIB, IIC). Więcej informacji na temat szczególnych właściwości osłony ognioszczelnej podano w innych szczegółowych publikacjach [3][4]. Typowy silnik w osłonie ognioszczelnej przedstawiono na rysunku 2. Rys. 2. Silnik w osłonie ognioszczelnej na stanowisku badawczym Budowa wzmocniona zapewnia, że w urządzeniu nie występują źródła zapłonu w postaci nadmiernych temperatur i elementów iskrzących. Szczegółowe wymagania podano w normie PN-EN 60079-7 [5]. Budowa wzmocniona dotyczy urządzeń kategorii 2 i M2 tzn. obejmuje również bezpieczeństwo w możliwych do przewidzenia stanach awaryjnych (np. utknięcie silnika). Badanie silnika budowy wzmocnionej w warunkach utknięcia przedstawiono na rysunku 3. Rys. 3. Badanie temperaturowe silnika budowy wzmocnionej w warunkach utknięcia (ZME EMIT ) Szczegóły odnośnie oceny i badań wysokonapięciowych silników budowy wzmocnionej podano w innych publikacjach [5]. Osłona gazowa z nadciśnieniem jest rodzajem budowy przeciwwybuchowej zapewniającym, że dzięki nadciśnieniu gazu ochronnego do wnętrza urządzenia nie wnika atmosfera wybuchowa z otaczającej przestrzeni. Jest to stosunkowo prosty i tani rodzaj zabezpieczenia przeciwwybuchowego, jednak jego wadą jest konieczność wyłączenia silnika, a co za tym

162 Zeszyty Problemowe Maszyny Elektryczne Nr 1/2014 (101) idzie urządzenia napędzanego w przypadku awarii układu przewietrzającego (utrzymującego wewnętrzne nadciśnienie) silnika. Szczegóły odnośnie do wymagań i metod badawczych urządzeń o takim rodzaju zabezpieczenia podano w normie PN-EN 60079-2 [6]. Badanie układu przewietrzającego silnika wykonaniu Exp przedstawiono na rysunku 4. Rys. 4. Silnik w osłonie gazowej z nadciśnieniem na stanowisku badawczym Wykonanie nieiskrzące jest rodzajem budowy przeciwwybuchowej kategorii 3 3 zapewniającym, że w normalnych warunkach pracy (nie rozpatruje się np. stanów przejściowych - rozruchu silnika) nie występują elementy iskrzące i nadmiernie nagrzewające się. Możliwość stosowania takich silników ograniczono do stref 2 i 22. Szczegółowe wymagania techniczne i badawcze przedstawiono w normie PN-EN 60079-15 [8]. 4. Wpływ zasilania przekształtnikowego na bezpieczeństwo przeciwwybuchowe silników Zasilanie silników poprzez przekształtniki powoduje pewne, niekorzystne skutki ze względu na bezpieczeństwo przeciwwybuchowe. Przeciążenie silnika poza okresami komutacji silnik zasilany jest dwufazowo, co skutkuje zmniejszeniem momentu silnika. Prowadzi to do wzrostu temperatury uzwojenia, a co za tym idzie temperatury na powierzchniach zewnętrznych silnika. Zasilanie napięciem odkształconym powoduje wzrost strat w silniku, co prowadzi do wzrostu temperatur silnika. 3 W przypadku urządzeń kategorii 3 nie ma obowiązku udziału Jednostki Notyfikowanej w ocenie zgodności z dyrektywą ATEX. Regulacja prędkości obrotowej prowadzi w przypadku silników z własnym przewietrznikiem do spadku wydajności chłodzenia co również prowadzi do wzrostu temperatur silnika. Zwiększanie prędkości maksymalnej silnika prowadzi do większych obciążeń mechanicznych wirnika, co w przypadku silników nieprzystosowanych do pracy z większymi prędkościami może prowadzić do rozerwania wirnika oraz do wcześniejszego zużycia łożysk. Zmniejsza się trwałość układu izolacyjnego ze względu na narażenie na większe naprężenia dielektryczne niż w przypadku zasilania napięciem i prądem sinusoidalnym. Powstają prądy łożyskowe (obwodowe, ułożyskowania wału, pojemnościowe). Prądy te mogą bezpośrednio prowadzić do zniszczenia łożysk, a co za tym idzie do zniszczenia uszczelnień (decydujących w przypadku silników Exe, Exp, Exn o bezpieczeństwie) i zniszczenia przejść ognioszczelnych wału (w przypadku silników Exd) patrz wymagania odnośnie luzów k oraz m podanych w normie PN-EN 60079-1 [2]. Rys. 5. Prądy łożyskowe silnika. US napięcie wałowe, UF napięcie kadłuba względem ziemi, IC prąd obwodowy, IS prąd ułożyskowania wału [9] Prądy obwodowe mogą prowadzić też do powstawania iskrzenia w miejscach styku poszczególnych elementów składowych urządzenia. Niewłaściwe uziemienie ze względu na asymetrię zasilania w przewodzie neutralnym (powrotnym) mogą płynąć duże prądy, co w przypadku poluzowania lub braku konserwacji połączenia zacisku ochronnego może prowadzić do powstawania nadmiernych temperatur lub iskrzenia. Powyżej wymieniono jedynie główne możliwe skutki zasilania silnika poprzez przekształtnik częstotliwości.

Zeszyty Problemowe Maszyny Elektryczne Nr 1/2014 (101) 163 Powyższe zagrożenia są możliwe do uniknięcia, lecz jest to możliwe jedynie, gdy zostały one uwzględnione w fazie produkcji tylko przez producenta. Metody zaradcze: Przeciążenie silnika podczas zasilania z przetwornicy może skutkować np. obniżeniem mocy znamionowej (drugi komplet danych znamionowych silnika). Wzrost temperatur silnika prowadzi do wyznaczenia innej klasy temperaturowej, np. silnik klasy temperaturowej T5 podczas zasilania z przetwornicy osiąga temperatury klasy T4. Spadek wydatku przewietrznika może być kompensowany przez stosowanie obcego (niezależnego) chłodzenia. Odporność na zwiększoną prędkość maksymalną należy potwierdzić podczas badań typu na stacji prób. Zwiększoną odporność układu izolacyjnego można uzyskać stosując inny rodzaj, czy inną konstrukcję izolacji (inne wykonanie pakietu uzwojeń). Prądy łożyskowe można ograniczyć przez stosowanie odpowiednich dodatkowych łączników przewodzących pomiędzy elementami konstrukcyjnymi silnika oraz przez izolowanie jednego z węzłów łożyskowych (np. izolowane łożysko). Dobrą praktyką jest też stosowanie izolujących sprzęgieł. Dodatkowej troski (przeglądy) wymagają zaciski przewodów ochronnych i wyrównawczych. 5. Badania układów napędowych wykorzystujących zasilanie przekształtnikowe Najprostszym rozwiązaniem jest ocena kompletnego układu silnik - przekształtnik. Większość parametrów jest wtedy zdefiniowana, co znacznie ułatwia ocenę i badania. Jednakże w praktyce takie rozwiązania są preferowane przez duże koncerny posiadające w swej ofercie zarówno silniki, jak i przekształtniki. Przedsiębiorstwa oferujące jedynie silniki, które w zamyśle konstruktorów powinny być jak najbardziej uniwersalne, stają przed problemem jak najszerszej (najbardziej uniwersalnej oceny). W latach 90 przeprowadzono szereg takich badań. Wymagania badawcze określono następująco. Postanowiono dokonać szeregu prób nagrzewania zasilając badany silnik poprzez przekształtnik częstotliwości, stosując następujące częstotliwości: 50Hz, 40Hz, 30Hz, 20Hz oraz 10Hz. Badany silnik postanowiono obciążać momentem stałym (niezależnym od prędkości obrotowej) do czasu osiągnięcia dopuszczalnych temperatur, a następnie momentem o charakterystyce kwadratowej (typu wentylatorowo pompowej). Jako dopuszczalną temperaturę przyjęto temperaturę zadziałania czujników temperatury (wbudowanych w czołach uzwojeń oraz w tarczach łożyskowych) lub, dla silników nie wyposażonych w czujniki temperatury, dopuszczalną temperaturę uzwojeń wynikającą z klasy izolacji. Po zakończeniu nagrzewania (pracy silnika) pomiary temperatur kontynuowano, aż do osiągnięcia wartości maksymalnych uchwycenie wzrostu temperatury po wyłączeniu silnika spowodowanego ustaniem chłodzenia. Badania przeprowadzono Laboratorium Prototypów Maszyn Elektrycznych CELMA S.A. w Cieszynie oraz w Branżowym Ośrodku Badawczo Rozwojowym Maszyn Elektrycznych KOMEL w Katowicach. Próby przeprowadzono w układach z silnikami: typu dsg 225 S8-M; typu csg 225 S4-M; typu csg 225 M4-M; typu CSTe 200 L2B; typu BSTe 160 L4; typu CSg 90 L2. Wytypowane silniki pokrywają bardzo szeroko zakres mocowy, uwzględniają różnice znamionowych prędkości obrotowych, różnice w konstrukcji przewietrznika oraz reprezentują różne generacje konstrukcyjne. Silniki zasilane były z przetwornic częstotliwości dwóch wielkości (15kW oraz 45kW), co pozwoliło ocenić pracę układów dobrze dopasowanych oraz niedopasowanych mocowo (przetwornica dużej mocy z silnikiem mniejszej mocy). Rys. 6. Silnik wraz z przetwornicą na stanowisku badawczym

164 Zeszyty Problemowe Maszyny Elektryczne Nr 1/2014 (101) Badania dla zasilania 50Hz poprzez przetwornicę pozornie wydają się bezużyteczne, natomiast pozwalały one ocenić reakcję silnika na zasilanie napięciem i prądem odkształconym. Niestety w realizacjach przemysłowych udaje się znaleźć takie nieekonomiczne zastosowanie przetwornic. Przykładowe uzyskane wyniki z jednej serii prób nagrzewania przedstawiono na rysunku 7. - przy częstotliwości 50 Hz: 552V Rys. 7. Wyniki badań termicznych jednego z silników. Próbą nagrzewania dla 50 Hz zakończono po ok. 3 godzinach wykonując pomiary podczas stygnięcia. Po stygnięciu wykonano nagrzewania dla częstotliwości 40Hz, 30Hz, 20Hz, 10Hz oraz 5 Hz W silnikach ze skrzynką przyłączeniową budowy wzmocnionej odległości izolacyjne są dobierane w zależności od napięcia zasilającego. W związku z tym uznano za konieczne sprawdzenie wartości napięć chwilowych na zaciskach przyłączowych zasilając silnik poprzez przetwornicę częstotliwości napięciem o częstotliwości 50Hz, 40Hz, 30Hz, 20Hz, 10Hz oraz 5Hz. Kształty przebiegów napięć zarejestrowano w skrzynce przyłączowej silnika typu CSTe 200 L2B. Silnik zasilany był z przetwornicy 45kW. Na wejściu przetwornicy podłączono dławik nr 4EP4000-2US ( U=2%). Rejestracje wykonano dla częstotliwości 5Hz, 10Hz, 20Hz, 30Hz, 40Hz oraz 50Hz. W celach identyfikacyjnych wykonano analizę widmową zarejestrowanych przebiegów. Z przebiegów odczytano również chwilowe wartości maksymalne napięcia na zaciskach silnika. Wartości maksymalne napięć: - przy częstotliwości 5 Hz: 744V - przy częstotliwości 10 Hz: 656V - przy częstotliwości 20 Hz: 584V - przy częstotliwości 30 Hz: 572V - przy częstotliwości 40 Hz: 640V Rys. 8. Napięcia w skrzynce silnika (10Hz) wraz z analizą Jak zaznaczono we wstępie badania przeprowadzano dla różnych silników i różnych przekształtników (przekształtników różnych producentów). Dzięki zaangażowaniu jednego z polskich producentów silników, producent ten zyskał bogatą wiedzę popartą wynikami badań i tym samym mógł określić uniwersalne parametry współpracy produkowanych przez siebie silników z przetwornicami. Udało się wyodrębnić część wspólną ze wszystkich badań i tym samym sformułować uniwersalne wymagania stawiane zasilającym przekształtnikom. 6. Podsumowanie Zasilanie silników przeciwwybuchowych poprzez przetwornice częstotliwości stwarza dodatkowe zagrożenia. Większość z tych zagrożeń może być wyeliminowana jedynie uwzględniając je w procesie produkcyjnym i certyfikacyjnym silnika. Silniki, dla których producent przewidział możliwość zasilania przez przetwornice częstotliwości mają dokładnie określone parametry takiej pracy. Parametry te są opisane w certyfikacie. Zasilanie silników przez przetwornice wymaga również dodatkowych zabiegów pod-

Zeszyty Problemowe Maszyny Elektryczne Nr 1/2014 (101) 165 czas konserwacji szczególną uwagę należy zwracać na stan zacisków do podłączania przewodów ochronnych i wyrównawczych. Jak w przypadku innych urządzeń najważniejszym dokumentem, do którego zobowiązany jest odnosić się użytkownik jest instrukcja obsługi jest ona zawsze dostarczana z urządzeniem. W niniejszej publikacji nie poruszono tematu urządzeń do łagodnego rozruchu (softstartów). Producent silnika powinien określić maksymalny czas trwania rozruchu również dla softstartów. 7. Literatura Rys. 9. Przykład zdefiniowania dopuszczalnych parametrów współpracy silnika z przetwornicą w certyfikacie badania typu WE (ATEX) [1]. M. Górny, Historia bezpieczeństwa przeciwwybuchowego w Polsce, w Bezpieczeństwo przeciwwybuchowe. Wybrane zagadnienia, Katowice, Główny Instytut Górnictwa, 2013, pp. 7-23. [2]. PN-EN 60079-1 Atmosfery wybuchowe - Cz. 1: Zabezpieczenie urządzeń za pomocą osłon ognioszczelnych "d", Polski Komitet Normaliza-cyjny, 2010. [3]. M. Górny, Ciśnienie wybuchu we wnętrzu ognioszczelnych silników indukcyjnych w niskich temperaturach, ZPME nr 80/2008, pp. 99-105, 2008. [4]. M. Górny, Propagacja wybuchu przez szczelinę powietrzną silnika ognioszczelnego, ZPME nr 2/2013 (99), pp. 121-127, 2013. [5]. PN-EN 60079-7 Atmosfery wybuchowe - Cz. 7: Zabezpieczenie urządzeń za pomocą budowy wzmocnionej "e", Polski Komitet Normalizacyjny, 2010. [6]. M. Górny, Wysokonapięciowe silniki przeciwwybuchowe budowy wzmocnionej, ZPME nr 2/2012 (95), pp. 77-82, 2012. [7]. PN-EN 60079-2 Atmosfery wybuchowe - Cz. 2: Zabezpieczenie urządzeń za pomocą osłon gazowych z nadciśnieniem "p", Polski Komitet Normalizacyjny, 2010. [8]. PN-EN 60079-15 Atmosfery wybuchowe -- Część 15: Zabezpieczenie urządzeń za pomocą budowy typu "n", Polski Komitet Normalizacyjny, 2010. [9]. TS 60034-25 Rotating electrical machines - Part25: Guidance for the design and performance of a.c. motors specifically designed for converter supply, International Electrotechnical Commission, 2007. [10]. PN-EN 60079-0 Atmosfery wybuchowe - Cz. 0: Urządzenia Podstawowe wymagania, Polski Komitet Normalizacyjny. Autor dr inż. Michał Górny Główny Instytut Górnictwa, Kopalnia Doświadczalna BARBARA tel. (32) 32 46 550, fax. (32) 32 24 931 e-mail. m.gorny@gig.eu www.kdbex.eu