INFLUENCE SELECTED GEOMETRICAL PARAMETERS ON ELECTROMAGNETIC AND COGGING TORQUE AND DEFORMATION OF STATOR CORE DUE TO MAXWELL FORCES IN BLDC MOTOR



Podobne dokumenty
WPŁYW EKSCENTRYCZNOŚCI STATYCZNEJ WIRNIKA I NIEJEDNAKOWEGO NAMAGNESOWANIA MAGNESÓW NA POSTAĆ DEFORMACJI STOJANA W SILNIKU BLDC

WPŁYW WARUNKÓW BRZEGOWYCH NA FORMĘ ODKSZTAŁCEŃ DRGAŃ WŁASNYCH I WYMUSZONYCH STOJANA SILNIKA BLDC ANALIZA NUMERYCZNA

THE INFLUENCE OF GEOMETRIC DIMENSIONS ON TORQUE VALUE IN A COMPLEX MOTION COMMON MAGNETIC CIRCUIT ELECTRIMAGNETIC CONVERTER

Wpływ kąta przesunięcia segmentów magnesów trwałych na parametry silnika BLDC małej mocy

WPŁYW SKOSU STOJANA NA REDUKCJĘ PULSACJI MOMENTU ELEKTROMAGNETYCZNEGO W BEZSZCZOTKOWYM SILNIKU PRĄDU STAŁEGO

WPŁYW ROZMIESZCZENIA MAGNESÓW NA WŁAŚCIWOŚCI EKSPOATACYJNE SILNIKA TYPU LSPMSM

SPOSÓB MINIMALIZACJI MOMENTU ZACZEPOWEGO W WIELOBIEGUNOWEJ MASZYNIE Z MAGNESAMI TRWAŁYMI

WYZNACZANIE DRGAŃ WŁASNYCH WIRNIKA W BEZSZCZOTKOWYM SILNIKU PRĄDU STAŁEGO Z MAGNESAMI TRWAŁYMI

CONSTRUCTION METHODS OF REDUCING COGGING TORQUE OF A DC BRUSHLESS MOTOR

MOMENT ORAZ SIŁY POCHODZENIA ELEKTROMAGNETYCZNEGO W DWUBIEGOWYM SILNIKU SYNCHRONICZNYM

SILNIK RELUKTANCYJNY PRZEŁĄCZALNY PRZEZNACZONY DO NAPĘDU MAŁEGO MOBILNEGO POJAZDU ELEKTRYCZNEGO

WERYFIKACJA METOD OBLICZENIOWYCH SILNIKÓW TARCZOWYCH Z MAGNESAMI TRWAŁYMI

BADANIA SYMULACYJNE SILNIKÓW RELUKTANCYJNYCH PRZEŁĄCZALNYCH PRZEZNACZONYCH DO NAPĘDU WYSOKOOBROTOWEGO

WPŁYW OSADZENIA MAGNESU NA PARAMETRY SILNIKA MAGNETOELEKTRYCZNEGO O ROZRUCHU BEZPOŚREDNIM

ANALIZA WPŁYWU SPOSOBU NAMAGNESOWANIA MAGNESÓW NA PARAMETRY SILNIKA KOMUTATOROWEGO O MAGNESACH TRWAŁYCH

TRÓJWYMIAROWA ANALIZA POLA MAGNETYCZNEGO W KOMUTATOROWYM SILNIKU PRĄDU STAŁEGO

SPOSOBY OGRANICZANIA PULSACJI MOMENTU ELEKTROMAGNETYCZNEGO W SILNIKACH PRĄDU STAŁEGO WZBUDZANYCH MAGNESAMI TRWAŁYMI

ANALIZA WPŁYWU WYMIARÓW I KSZTAŁTU MAGNESÓW TRWAŁYCH NA MOMENT ELEKTROMAGNETYCZNY BEZSZCZOTKOWEGO SILNIKA PRĄDU STAŁEGO

Detekcja asymetrii szczeliny powietrznej w generatorze ze wzbudzeniem od magnesów trwałych, bazująca na analizie częstotliwościowej prądu

BADANIE MASZYNY ELEKTRYCZNEJ Z MAGNESAMI TRWAŁYMI I KLINAMI MAGNETYCZNYMI

ANALIZA DRGAŃ STOJANA SILNIKA BLDC POCHODZENIA MAGNETYCZNEGO

MAGNETIC FORCES CALCULATION IN TWO-SPEED, LARGE POWER, SALIENT POLE, SYNCHRONOUS MOTOR


POLOWO OBWODOWY MODEL DWUBIEGOWEGO SILNIKA SYNCHRONICZNEGO WERYFIKACJA POMIAROWA

ANALIZA STRUKTUR MAGNETOELEKTRYCZNYCH SILNIKÓW SYNCHRONICZNYCH O ROZRUCHU CZĘSTOTLIWOŚCIOWYM. OBLICZENIA

SILNIK ELEKTRYCZNY O WZBUDZENIU HYBRYDOWYM

WPŁYW KLINÓW MAGNETYCZNYCH NA WŁAŚCIWOŚCI ROZRUCHOWE SILNIKA INDUKCYJNEGO

COMPARED ANALYSIS OF LSPMSM AND SQUIRREL-CAGE MOTOR EXPLOITATION WITH VARIABLE ROTATIONAL SPEED

Influence of geometrical parameters on static torque characteristics in double-phase switched reluctance motor

WPŁYW SPOSOBU OPTYMALIZACJI NA POZIOM PULSACJI MOMENTU PRZEŁĄCZALNEGO SILNIKA RELUKTANCYJNEGO W PEŁNYM ZAKRESIE PRACY


ZASTOSOWANIE MAGNESÓW TRWAŁYCH W SILNIKU RELUKTANCYJNYM ZE STRUMIENIEM POPRZECZNYM

ROZRUCH SILNIKÓW SYNCHRONICZNYCH Z MAGNESAMI TRWAŁYMI

BADANIE WPŁYWU GRUBOŚCI SZCZELINY POWIETRZNEJ NA WŁAŚCIWOŚCI SILNIKÓW RELUKTANCYJNYCH PRZEŁĄCZALNYCH W OPARCIU O OBLICZENIA POLOWE

METODY OGRANICZANIA PULSACJI MOMENTU ELEKTROMAGNETYCZNEGO PRĄDNICY TARCZOWEJ WZBUDZANEJ MAGNESAMI TRWAŁYMI

Medical electronics part 10 Physiological transducers

SILNIK SYNCHRONICZNY ŚREDNIEJ MOCY Z MAGNESAMI TRWAŁYMI ZASILANY Z FALOWNIKA

SILNIK BEZSZCZOTKOWY O WIRNIKU KUBKOWYM

PRZEGLĄD KONSTRUKCJI JEDNOFAZOWYCH SILNIKÓW SYNCHRONICZNYCH Z MAGNESAMI TRWAŁYMI O ROZRUCHU BEZPOŚREDNIM

WPŁYW SZEROKOŚCI OTWARCIA ŻŁOBKÓW NA STATYCZNE I DYNAMICZNE CHARAKTERYSTYKI SILNIKA INDUKCYJNEGO MAŁEJ MOCY

Właściwości silnika bezszczotkowego prądu stałego z magnesami trwałymi o różnych rozpiętościach uzwojeń stojana

APPLICATIONS OF AN EVOLUTIONARY ALGORITHM IN CONSTRUCTION OPTIMIZATION OF ELECTRICAL MOTORS

PROJEKT SILNIKA PRĄDU STAŁEGO Z KOMUTACJĄ ELEKTRONICZNĄ PRZEZNACZONEGO DO NAPĘDU LEKKIEGO POJAZDU ELEKTRYCZNEGO

OBLICZENIOWE BADANIE ZJAWISK WYWOŁANYCH USZKODZENIEM KLATKI WIRNIKA

KSZTAŁTOWANIE POLA MAGNETYCZNEGO W DWUBIEGOWYCH SILNIKACH SYNCHRONICZNYCH Z MAGNESAMI TRWAŁYMI

WSPÓŁCZYNNIK MOCY I SPRAWNOŚĆ INDUKCYJNYCH SILNIKÓW JEDNOFAZOWYCH W WARUNKACH PRACY OPTYMALNEJ

PORÓWNANIE JEDNOFAZOWEGO SILNIKA INDUKCYJNEGO I JEDNOFAZOWEGO SILNIKA SYNCHRONICZNEGO Z MAGNESAMI TRWAŁYMI. BADANIA EKSPERYMENTALNE

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

Zeszyty Problemowe Maszyny Elektryczne Nr 75/

OBLICZENIA SKŁADNIKÓW MOMENTU ELEKTROMAGNETYCZNEGO W SILNIKU BLDC POD OBCIĄŻENIEM

MASZYNA Z MAGNESAMI O REGULOWANYM WZBUDZENIU WYBRANE WYNIKI PRAC PROJEKTOWYCH

WPŁYW WYMIARÓW UZWOJENIA STOJANA NA SIŁĘ CIĄGU SILNIKA TUBOWEGO Z MAGNESAMI TRWAŁYMI

ANALIZA WPŁYWU SPOSOBU NAMAGNESOWANIA MAGNESÓW NA PRZEBIEGI CZASOWE WIELKOŚCI ELEKTRYCZNYCH I MECHANICZNYCH W SILNIKU BEZSZCZOTKOWYM

TECHNOLOGICZNE I EKSPLOATACYJNE SKUTKI ZMIAN KSZTAŁTU PRĘTA KLATKI SILNIKA INDUKCYJNEGO DUŻEJ MOCY

WPŁYW KSZTAŁTU SZCZELINY POWIETRZNEJ NA WŁAŚCIWOŚCI SILNIKA SYNCHRONICZNEGO WZBUDZANEGO MAGNESAMI TRWAŁYMI

WOLNOOBROTOWY BEZSZCZOTKOWY SILNIK PRĄDU STAŁEGO DO NAPĘDU ROGATKOWEGO

ANALIZA POLOWA I OBWODOWA SILNIKA SYNCHRONICZNEGO Z MAGNESAMI TRWAŁYMI STEROWANEGO REGULATOREM HISTEREZOWYM

SAMOCZYNNA SYNCHRONIZACJA SILNIKÓW LSPMSM

Lecture 18 Review for Exam 1

SILNIK TARCZOWY Z WIRNIKIEM WEWNĘTRZNYM - OBLICZENIA OBWODU ELEKTROMAGNETYCZNEGO

CHARAKTERYSTYKI EKSPLOATACYJNE SILNIKA INDUKCYJNEGO Z USZKODZONĄ KLATKĄ WIRNIKA

Diagnostyka drganiowa trakcyjnych maszyn elektrycznych - przykład asymetrii geometrii promieniowej między stojanem a wirnikiem

Proceedings of XLI International Symposium on Electrical Machines SME 2005, June, Jarnołtówek, Poland

DM-ML, DM-FL. Auxiliary Equipment and Accessories. Damper Drives. Dimensions. Descritpion

WPŁYW PARAMETRÓW UKŁADU NAPĘDOWEGO NA SKUTECZNOŚĆ SYNCHRONIZACJI SILNIKA DWUBIEGOWEGO

ZASTOSOWANIE METODY ELEMENTÓW SKOŃCZONYCH DO WYZNACZANIA PARAMETRÓW ELEKTROMAGNETYCZNYCH SILNIKA PMSM


ANALIZA PORÓWNAWCZA WYBRANYCH MODELI SILNIKÓW TARCZOWYCH Z MAGNESAMI TRWAŁYMI

WPŁYW KLINÓW MAGNETYCZNYCH NA PARAMETRY MASZYNY ELEKTRYCZNEJ Z MAGNESAMI I REGULACJĄ STRUMIENIA

Badania maszyny reluktancyjnej przełączalnej, przeznaczonej do napędu lekkiego pojazdu elektrycznego

ANALIZA WPŁYWU NIESYMETRII OBWODU MAGNETYCZNEGO WIRNIKA NA PARAMETRY ROZRUCHOWE 6-BIEGUNOWEGO SILNIKA MAGNETOELEKTRYCZNEGO SYNCHRONICZNEGO

BADANIA MASZYNY RELUKTANCYJNEJ PRZEŁĄCZALNEJ PRZEZNACZONEJ DO NAPĘDU LEKKIEGO POJAZDU ELEKTRYCZNEGO

Tematyka prac doktorskich 1. Bezczujnikowe sterowanie oraz estymacja parametrów maszyn wielofazowych zasilanych przekształtnikowo

PRACA RÓWNOLEGŁA PRĄDNIC SYNCHRONICZNYCH WZBUDZANYCH MAGNESAMI TRWAŁYMI

INFLUENCE OF A NUMBER OF ROTOR SLOTS ON ELECTROMAGNETIC TORQUE OF THE SINGLE-PHASE SHADED POLE INDUCTION MOTOR

ANALIZA BEZSZCZOTKOWEGO SILNIKA PRĄDU STAŁEGO Z MAGNESAMI NdFeB

ZJAWISKA W OBWODACH TŁUMIĄCYCH PODCZAS ZAKŁÓCEŃ PRACY TURBOGENERATORA

PORÓWNANIE SILNIKA INDUKCYJNEGO ORAZ SYNCHRONICZNEGO Z MAGNESAMI TRWAŁYMI I ROZRUCHEM BEZPOŚREDNIM - BADANIA EKSPERYMENTALNE

WENTYLATORY PROMIENIOWE SINGLE-INLET DRUM BĘBNOWE JEDNOSTRUMIENIOWE CENTRIFUGAL FAN

MAGNETOELEKTRYCZNY SILNIK MAŁEJ MOCY Z KOMPAKTOWYM WIRNIKIEM HYBRYDOWYM I Z ROZRUCHEM SYNCHRONICZNYM

PRĄDNICA TRÓJFAZOWA MAŁEJ MOCY WZBUDZANA MAGNESAMI TRWAŁYMI

PORÓWNANIE SILNIKA INDUKCYJNEGO Z SILNIKIEM SYNCHRONICZNYM Z MAGNESAMI TRWAŁYMI I ROZRUCHEM BEZPOŚREDNIM

ANALIZA PORÓWNAWCZA PARAMETRÓW MASZYN MAGNETOELEKTRYCZNYCH ZASILANYCH Z PROSTOWNIKÓW STEROWANYCH I PRZEKSZTAŁTNIKÓW IMPULSOWYCH 1.

Generator z Magnesami trwałymi niesymetryczny reżim pracy jako źródło drgań w maszynie

ZASTOSOWANIE SKOSU STOJANA W JEDNOFAZOWYM SILNIKU SYNCHRONICZNYM Z MAGNESAMI TRWAŁYMI

PROJEKT SILNIKA TARCZOWEGO Z MAGNESAMI TRWAŁYMI

ANALIZA KONSTRUKCJI TRÓJPASMOWEJ SILNIKA RELUKTANCYJNEGO PRZEŁĄCZALNEGO 6/4 O NIESYMETRYCZNYM OBWODZIE STOJANA WYZNACZANIE CHARAKTERYSTYK STATYCZNYCH

OPTYMALIZACJA MASZYNY TARCZOWEJ Z MAGNESAMI TRWAŁYMI Z WYKORZYSTANIEM METOD POLOWYCH

CHARAKTERYSTYKI EKSPLOATACYJNE SILNIKA INDUKCYJNEGO DUŻEJ MOCY Z USZKODZONĄ KLATKĄ WIRNIKA

ANALIZA PARAMETRÓW ROZRUSZNIKÓW SAMOCHODOWYCH O MAGNESACH TRWAŁYCH 1. WPROWADZENIE

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

DIAGNOSTYKA SILNIKA INDUKCYJNEGO Z ZASTOSOWANIEM SYGNAŁU SKUTECZNEJ WARTOŚCI RUCHOMEJ PRĄDU CZĘŚĆ 2 ZASILANIE NIESYMETRYCZNE

MODELOWANIE SILNIKA KOMUTATOROWEGO O MAGNESACH TRWAŁYCH ZASILANEGO Z PRZEKSZTAŁTNIKA IMPULSOWEGO

ANALIZA DRGAŃ WŁASNYCH SILNIKA BLDC

WYKORZYSTANIE EFEKTU WYPIERANIA PRĄDU W ROZRUCHU BEZPOŚREDNIM MASZYN WZBUDZANYCH MAGNESAMI TRWAŁYMI

ANALIZA STRUKTUR MAGNETOELEKTRYCZNYCH SILNIKÓW SYNCHRONICZNYCH O ROZRUCHU CZĘSTOTLIWOŚCIOWYM. MODELOWANIE

SYNCHRONOUS MOTOR PROTOTYPE WITH AN EXTERNAL ROTOR USING PERMANENT MAGNETS TRWAŁYMI

Bezrdzeniowy silnik tarczowy wzbudzany magnesami trwałymi w układzie Halbacha

FAILURE MODE STUDY IN SWITCHED RELUCTANCE MACHINES IN THE GENERATOR MODE

WPŁYW LICZBY PAR BIEGUNÓW WZBUDZENIA NA PRACĘ BEZSZCZOTKOWEGO SILNIKA TARCZOWEGO ZE STRUMIENIEM OSIOWYM W STOJANIE

Transkrypt:

Mariusz KORKOSZ Jerzy PODHAJECKI Adrian MŁOT INFLUENCE SELECTED GEOMETRICAL PARAMETERS ON ELECTROMAGNETIC AND COGGING TORQUE AND DEFORMATION OF STATOR CORE DUE TO MAXWELL FORCES IN BLDC MOTOR ABSTRACT This article deals with electromagnetic and cogging torque and also for stator deformation due to Maxwell forces in BLDC motor. Torque ripple is undesirable because introduces vibrations and noise. One of the main source of vibrations and noise is stator deformation due to Maxwell forces. Results were performed to establish effect change geometric parameters of BLDC machine on the electromagnetic and cogging torque and also on static deformation due to Maxwell forces using finite element program. Keywords: brushless motors, BLDC motors, Maxwell forces, cogging torque Mariusz KORKOSZ, Ph.D., Eng. e-mail: mkosz@prz.edu.pl Department of Electrical Engineering, Technical University of Rzeszow, W. Pola 2, 35-959 Rzeszów, POLAND Jerzy PODHAJECKI, M.Sc., Eng., Adrian MŁOT, Ph.D., Eng. e-mail: jerzypodh@wp.pl, a.mlot@po.ople.pl Department of Electrical Engineering, Automatic Control and Computer Science, Technical University of Opole, Luboszycka 7, 45-036, Opole, POLAND PROCEEDINGS OF ELECTROTECHNICAL INSTITUTE, Issue 240, 2009

210 M. Korkosz, J. Podhajecki, A. Młot 1. INTRODUCTION Brushless Direct Current motors are one of the motor types rapidly gaining popularity. In generally brushless motors are used in drives in controlled values of varies rotor speed. One of the cause of the popularity of the BLDC motors is high efficiency. BLDC motors have many advantages over brushed DC motors and induction motors. A few of these are: better speed versus torque characteristics, high dynamic response, high efficiency, long operating life, noiseless operation, higher speed ranges. In addition, the ratio of torque delivered to the size of the motors is higher. The problem of the minimizing the cogging torque is especially important in electrical machines with permanent magnets (BLDC and PMSM). Usually, these drivers are characterized by relatively high torque ripple. Torque ripple reduction is essential requirement in a wide range of high-performance motion control applications. Torque ripple affects unfavorably in the work of this machines. Problem is widely developed in literature [1-6]. Torque ripple is produced by circumferential component of attractive forces between the magnet and the stator teeth. In a permanent magnet motor the torque ripple appears especially at low speeds, and is undesirable because it introduces vibrations and noise. One of the important factors of usage of the electrical machines is level of generating vibrations and noise. One of the main sources of vibrations and noise in rotating electrical machinery due to stator deformation caused by Maxwell forces. In the phase on the prototyping the vibration behavior of the machine is calculated using magneto-mechanic models [7-8]. In structural analysis the radial Maxwell forces calculated in electromagnetic analysis are loads in structural analysis. Calculations 2D were made using finite element program which can be used in magneto-mechanical analysis. Autors investigated effect of choosing the value of geometric parameters on the electromagnetic and ripple torque and for a size of deformation of the stator core due to Maxwell forces. 2. INFLUENCE SELECTED GEOMETRICAL PARAMETERS ON VALUE OF THE ELECTROMAGNETIC AND COGGING TORQUE Figure 1 shows the geometry of the cross section of the device (only one six of machine is presented) and analyzed parameters of BLDC motor.

Influence selected geometrical parameters on electromagnetic and cogging torque... 211 Fig. 1. Analysed geometrical parameters of BLDC motor 36/6 In the article calculations were made for different values of these geometrical parameters of the machine. Pole-arc width (γ [ ]). The stator slot opening (slo [ ]). The width of the air gap (g [mm]). The height of the permanent magnet (h rmag [mm]). The height of the yoke (h ys [mm]). Rotor rotates for 10 mechanical degree, for every 0.5 position of the rotor cogging torque T cogg is calculated. For estimation the electromagnetic torque T e rotor rotates 60 degree for every 1 degree. The windings are supplied by a rectangular current waveform, thus only two phases can be simultaneously supplied. The current density is constant in the coils. One of the main parameters which influences on value of the cogging torque T eav is angle of the opening of the permanent magnet γ. Figure 2a shows relation between average electromagnetic torque T eav and the angle of opening of permanent magnet γ. Decrease of the angle of the opening of permanent magnet reduces electromagnetic torque. Figure 2b presents effect change the angle of the opening of the permanent magnet γ on maximum cogging torque T cogg max. It can be seen the angle of the opening of permanent magnet γ influences on the maximum cogging torque. For selected different values of the angle of the opening of the permanent magnet it can be seen there are some minima of torque ripple. For considered values of the angle of the opening of the permanent magnet it can be noticed clearly three values for which cogging torque has a minimum value.

212 M. Korkosz, J. Podhajecki, A. Młot Maximum value of the electromagnetic torque is received for the same values of angle of the opening of the permanent magnet. Figure 2c shows the torque ripple factor calculated by: Tcogg max τ = (1) T e max where: T cogg max T emax maximum value of cogging torque, maximum value of electromagnetic torque. It is shown on Fig. 2c effect of changing the angle of opening of permanent magnet on the torque ripple calculated using (1), it is noticed there are some minimum visible on figure. The minima coincides with graph presented on Fig. 2b. Fig. 2. Electromagnetic average value of torque T eav a), maximum value of cogging torque T cogg max (b) and torque ripple (c) versus the angle openning magnet γ The angle of stator slot opening influences also on the value of the cogging torque. Minimization of the angle of stator slot opening reduces value of cogging torque. In the ideal case the value of stator slot opening from minimization the cogging torque of view is zero, which is not possible in practice. Minimum value of the angle of stator slot opening depends on diameter of winding.

Influence selected geometrical parameters on electromagnetic and cogging torque... 213 Figure 3 represents electromagnetic and cogging torque with respect to the angle of stator slot opening slo which is responsible for closing space of slot. Calculations were made assuming the angle of opening the magnets equals γ = 51.5. Minimum value the angle of closing space of slot assumed to be equal the value of angle the stator teeth (2.4 in BLDC motor). Fig. 3. Average value electromagnetic torque T eav (a), maximum value of cogging torque T cogg max (b) and torque ripple τ (c) versus angle of the angle of openning space of slot slo In generally, closing slots reduces cogging torque and causes small increase of electromagnetic torque. Figure 4 shows relationships between width of the air-gap g on electromagnetic, cogging torque and torque ripple. The width of the air-gap is changing in the (0.5-4) mm every 0.5 mm. Outer of delimiter of rotor is set to be a constant, radial parameters of the stator was changed except inner diameter. Reduction width of the air-gap causes growing up the electromagnetic torque, however very small values width of the air-gap bring in consequence grow up the of torque ripple due increase of amplitude of the cogging torque (Fig. 4b). The thickness of magnets affects the electromagnetic torque. The increase of the average electromagnetic torque is not however the linear function of thickness of magnets h rmag. It can be seen on the Fig. 5a that the growth of thickness of magnets can does not give the desirable effect. The minimum of torque ripple exist for the value thickness of magnets near 2 mm in analyzed motor (Fig. 5c).

214 M. Korkosz, J. Podhajecki, A. Młot Fig. 4. Average value electromagnetic torque T eav (a), maximum value of cogging torque T cogg max (b) and torque ripple τ (c) versus the width of the air-gap g Fig. 5. Average electromagnetic torque T eav (a), maximum value of cogging torque T cogg max (b) and torque ripple τ (c) versus height of the permanent magnet h rmag

Influence selected geometrical parameters on electromagnetic and cogging torque... 215 Enlargement the thickness of yoke does not affect on value of the electromagnetic or cogging torque. The reducing of the thickness of yoke bring in consequence decrease electromagnetic torque as result of strong saturation the magnetic circuit. 3. STATIC ANALYSIS OF DEFORMATION OF STATOR CORE OF BLDC MOTOR For estimation deformation the stator due to Maxwell rotor rotates for 60 mechanical degree for every 1 degree calculations was made. For selected geometrical parameters such as detailed in part 2 structural analysis was done. Results of calculation of displacement of selected node is shown on Fig. 6. Details of magnetic and mechanic model of BLDC stator and equations governed the magneto-mechanical problem was presented in earlier articles [7]. a) b) Fig. 6. Position of selected point 1/node1 (a) and point 2 (b) On figure 7 is shown relation between the value of radial displacement of selected node and the angle of opening magnets γ. Displacement of chosen points is shown for selected angles of the opening magnets presented on figure 2a and 2b. The growth of the angle of opening of magnets increase deformation due to Maxwell forces.

216 M. Korkosz, J. Podhajecki, A. Młot Fig. 7. Radial displacement point1 (a), point 2 (b) and tangential displacement point 2 (c) of stator core versus angle of rotor magnets γ with respect to rotor positions φ The reduction the stator slot opening angle slo increase the radial displacement, but it also considerable for enlargement the tangential displacement (the Fig. 8). Fig. 8. Radial displacement point1 (a), point 2 (b) and tangential point 2 (c) of stator core for different the stator slot opening angle slo with respect to rotor positions φ

Influence selected geometrical parameters on electromagnetic and cogging torque... 217 Fig. 9. Radial static displacement point1 (a), point 2 (b) and tangential displacement point 2 (c) of stator for different values of the width of air-gap g with respect to rotor positions φ Reduction of the width of air-gap decrease of radial displacement of stator teeth s. A little bit value of the width of the air-gap also results a reduction the tangential displacement of stator teeth s (Fig. 9c). Fig. 10. Static radial displacement of selected point 1 (a), point 2 (b) oraz tangential displacement (c) for different values of permanent magnet height h rmag with respect to rotor positions φ

218 M. Korkosz, J. Podhajecki, A. Młot Reduction of the height of permanent magnet (h rmag [mm]) results increase the electromagnetic torque and tangential displacement of the stator teeth s. Similarly in the case of the small values the width of air-gap the increase of the height of the permanent magnet (h rmag [mm]) increase radial displacement and changes nature of tangential deformation of stator core (Fig. 10). Fig. 11. Radial displacement of selected points point 1 (a), point 2 (b) tangential point 2 (c) of stator core for different values of the height of the yoke h ys with respect to rotor positions φ The height of the yoke h ys has a big influence for values of the deformation. Relatively big values of this parameter causes increase of the stiffness of the stator and in consequence decrease of radial deformation (Fig. 11a,b) and tangential one (Fig. 11c). 4. CONCLUSION Calculations were performed to establish the effect of change selected geometric parameters of machine on the electromagnetic and cogging torque

Influence selected geometrical parameters on electromagnetic and cogging torque... 219 and also for deformation the stator core. The calculations show that the angle of the opening magnet influences on the value of the electromagnetic and cogging torque. Other geometrical parameters as width of the air-gap and height of the magnets have essential influence on values electromagnetic torque but it involves also higher deformation of the stator core due to Maxwell forces. In such considerations in aim minimizing the deformation from Maxwell forces it is worth to consider increase the height of the stator yoke to minimize the deformation. LITERATURE 1. Młot A.: Konstrukcyjne metody ograniczania pulsacji momentu elektromagnetycznego w bezszczotkowym silniku prądu stałego z komutacją elektroniczną, Rozprawa doktorska, Opole 2007 2. Łukaniszyn M., Młot A.: Trójwymiarowa analiza pola magnetycznego w bezszczotkowym silniku prądu stałego z magnesami trwałymi, Materiały XII Sympozjum Podstawowe Problemy Energoelektroniki i Elektromechaniki, PPEE 2005. 3. Łukaniszyn M., Młot A.: Analiza momentu elektromagnetycznego i składowych pulsujących w bezszczotkowym silniku prądu stałego wzbudzanym magnesami trwałymi, Przegląd Elektrotechniczny, styczeń 2005. 4. Łukaniszyn M., Młot A.: Influence of the magnetic cirquit modifications on the electromagnetic torque in a BLDC motor, Zastosowanie Komputerów w Elektrotechnice, ZkwE 2006, Monografia objęta jest patronatem Komitetu Elektrotechniki PAN oraz Institute of Electrical and Electronics Engineers IEEE, Computer Applications in Electrical Engineering, Poznań 2006. 5. Łukaniszyn M., Młot A.: Wpływ zmiennego wektora magnetyzacji na moment zaczepowy bezszczotkowego silnika prądu stałego, Elektrotechnika i Elektronika, 2006. 6. Łukaniszyn M., Młot A.: Torque characteristics of BLDC motor with multipolar excitation, XIV International Symposium on Theoretical Electrical Engineering, ISTET 07, Szczecin, 20 th 23 rd June 2007. 7. Podhajecki J., Młot A., Korkosz M.: Comparison displacement due to Maxwell forces and magnetostriction in BLDC motor static dispacement, Sympozjum Maszyn Elektrycznych SME 2008, Szklarska Poręba, June 2008. 8. Witczak P.: Wyznaczanie drgań mechanicznych silnika indukcyjnego wywołanych siłami magnetycznymi, Praca habilitacyjna, Politechnika Łódzka, 1995. Manuscript submitted 09.02.2009 Reviewed by Jarosław Zadrożny

220 M. Korkosz, J. Podhajecki, A. Młot WPŁYW WYMIARÓW GEOMETRYCZNYCH SILNIKA NA WARTOŚĆ MOMENTU ZACZEPOWEGO ORAZ DEFORMACJE STOJANA SILNIKA BLDC M. KORKOSZ, J. PODHAJECKI, A. MŁOT STRESZCZENIE W artykule poruszono problem wpływu wybranych wymiarów geometrycznych maszyny na wytwarzaną wartość momentu elektromagnetycznego oraz ograniczania zjawiska pasożytniczego w tej maszynie jakim jest moment zaczepowy. Moment zaczepowy jest jednym ze źródeł drgań maszyny pochodzenia magnetycznego. Dla wybranych przypadków przeprowadzono statyczną analizę przemieszczeń wybranych punktów stojana maszyny z zastosowaniem metody numerycznej. Zainteresowanie maszynami elektrycznymi z komutacją elektroniczna utrzymuje się na wysokim poziomie już od kilku lat. Ogólnie maszyny bezszczotkowe z komutacją elektroniczną są przeznaczone do napędów o regulowanej prędkości obrotowej. Jedną z przyczyn takiego stanu rzeczy jest wysoka sprawność maszyn bezszczotkowych. Dotyczy to szczególnie maszyn w których są wykorzystane wysokoenergetyczne magnesy trwałe (BLDC i PMSM). W maszynach w których jako wzbudzenie wykorzystuje się magnesy trwałe powstaje problem momentu zaczepowego. Problem ten jest szeroko opisany w literaturze [1-6]. Moment zaczepowy wpływa bardzo niekorzystnie na pracę maszyny. Jest jednym ze źródeł pulsacji momentu elektromagnetycznego oraz dodatkowym źródłem drgań oraz hałasu pochodzenia magnetycznego. W chwili obecnej szczególna uwagę zwraca się na poziom generowanego hałasu poprzez maszyny elektryczne już w trakcie ich projektowania. Wymaga to odmiennego niż dotychczas podejścia do zagadnienia procesu projektowania. Dotychczasowy proces projektowania maszyny musi zostać uzupełniony o zaawansowaną analizę strukturalną maszyny. Jako dane wejściowe do analizy strukturalnej wykorzystuje się wyniki z analizy elektromagnetycznej [7-8]. Obliczenia wykonuje się z wykorzystaniem metod numerycznych (FEM). Odpowiedni dobór wymiarów geometrycznych ma dość istotny wpływ na wartość wytwarzanego momentu elektromagnetycznego oraz wartość momentu zaczepowego. W artykule dokonano analizy wpływu zmiany wybrany wybranych wymiarów geometrycznych na wartość średnią wytwarzanego momentu elektromagnetycznego, kształt momentu zaczepowego silnika BLDC. Dodatkowo przeprowadzono analizę deformacji stojana wywołanej siłami (Maxwella) naciągu magnetycznego poprzez obserwację przemieszczania się wybranych punktów stojana.