ZESZYTY NAUKOWE NR 1(73) AKADEMII MORSKIEJ W SZCZECINIE

Podobne dokumenty
OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (rzeczywistego) PRACA W WARUNKACH STATYCZNYCH. Opracował. Dr inż. Robert Jakubowski

Rys. 1. Instalacja chłodzenia wodą słodką cylindrów silnika głównego (opis w tekście)

OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (SILNIK IDEALNY) PRACA W WARUNKACH STATYCZNYCH

KONCEPCJA WERYFIKACJI DOŚWIADCZALNEJ ZAMODELOWANYCH OBCIĄŻEŃ CIEPLNYCH WYBRANYCH ELEMENTÓW KOMORY SPALANIA DOŁADOWANEGO SILNIKA Z ZAPŁONEM SAMOCZYNNYM

Instrukcja stanowiskowa

KOMPUTEROWY MODEL UKŁADU STEROWANIA MIKROKLIMATEM W PRZECHOWALNI JABŁEK

ŚRODKI I URZĄDZENIA TRANSPORTU UKŁADY NAPĘDOWE STATKÓW MORSKICH

PL B1. INSTYTUT MASZYN PRZEPŁYWOWYCH IM. ROBERTA SZEWALSKIEGO POLSKIEJ AKADEMII NAUK, Gdańsk, PL BUP 20/14

ZESZYTY NAUKOWE NR 5(77) AKADEMII MORSKIEJ W SZCZECINIE. Wyznaczanie granicznej intensywności przedmuchów w czasie rozruchu

WSPÓŁCZYNNIK PRZEJMOWANIA CIEPŁA PRZEZ KONWEKCJĘ

ZESZYTY NAUKOWE NR 5(77) AKADEMII MORSKIEJ W SZCZECINIE. Wpływ osadów sadzy na opory przepływu spalin i wydajność parową kotła utylizacyjnego

Wymagania edukacyjne Technologia napraw zespołów i podzespołów mechanicznych pojazdów samochodowych

Układ siłowni z organicznymi czynnikami roboczymi i sposób zwiększania wykorzystania energii nośnika ciepła zasilającego siłownię jednobiegową

Mgr inż. Marta DROSIŃSKA Politechnika Gdańska, Wydział Oceanotechniki i Okrętownictwa

Politechnika Gdańska

Obieg Ackeret Kellera i lewobieżny obieg Philipsa (Stirlinga) podstawy teoretyczne i techniczne możliwości realizacji

BADANIE WYMIENNIKA CIEPŁA TYPU RURA W RURZE

Obiegi gazowe w maszynach cieplnych

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU

PL B1. Układ do zasilania silnika elektrycznego w pojazdach i urządzeniach z napędem hybrydowym spalinowo-elektrycznym

BILANSE ENERGETYCZ1TE. I ZASADA TERMODYNAMIKI

TECHNIKI NISKOTEMPERATUROWE W MEDYCYNIE

WYMIANA CIEPŁA W PROCESIE TERMICZNEGO EKSPANDOWANIA NASION PROSA W STRUMIENIU GORĄCEGO POWIETRZA

PORÓWNANIE WYKRESU INDYKATOROWEGO I TEORETYCZNEGO - PRZYKŁADOWY TOK OBLICZEŃ

WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ

Temat: Wpływ właściwości paliwa na trwałość wtryskiwaczy silników jachtów motorowych

BADANIE WYMIENNIKÓW CIEPŁA

AKADEMIA MORSKA w GDYNI WYDZIAŁ MECHANICZNY

Automatyka i sterowania

Skraplarki Claude a oraz Heylandta budowa, działanie, bilans cieplny oraz charakterystyka techniczna

Wyznaczanie współczynnika przenikania ciepła dla przegrody płaskiej

Modelowanie bilansu energetycznego pomieszczeń (1)

Wnikanie ciepła przy konwekcji swobodnej. 1. Wstęp

WOJSKOWA AKADEMIA TECHNICZNA WYDZIAŁ MECHANICZNY INSTYTUT POJAZDÓW MECHANICZNYCH I TRANSPORTU

ZESZYTY NAUKOWE NR 1(73) AKADEMII MORSKIEJ W SZCZECINIE

KONCEPCJA WYKORZYSTANIA CIEPŁA ODPADOWEGO DO WYTWARZANIA CHŁODU NA JEDNOSTKACH PŁYWAJĄCYCH

całkowite rozproszone

Program BEST_RE. Pakiet zawiera następujące skoroszyty: BEST_RE.xls główny skoroszyt symulacji RES_VIEW.xls skoroszyt wizualizacji wyników obliczeń

Spis treści. PRZEDMOWA.. 11 WYKAZ WAśNIEJSZYCH OZNACZEŃ.. 13

Spis treści. Przedmowa WPROWADZENIE DO PRZEDMIOTU... 11

Simulink MATLAB Przegląd obiektów i przykłady zastosowań

09 - Dobór siłownika i zaworu. - Opór przepływu w przewodzie - Dobór rozmiaru zaworu - Dobór rozmiaru siłownika

Konspekt Obieg Ackeret-Kellera i lewobieżny obieg Philipsa (Stirlinga) podstawy teoretyczne i techniczne możliwości realizacji.

ANALIZA WYMIANY CIEPŁA OŻEBROWANEJ PŁYTY GRZEWCZEJ Z OTOCZENIEM

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU

MECHANIKA PŁYNÓW LABORATORIUM

BADANIE WŁ A Ś CIWOŚ CI PŁ YNÓW CHŁ ODZĄ CYCH DO UKŁ ADU CHŁ ODZENIA O PODWYŻ SZONEJ TEMPERATURZE

Chłodnictwo i Kriogenika - Ćwiczenia Lista 7

t E termostaty k r A M fazowe r c E t ja ta c k Af A u E M d or r AH f M In o p

Wykaz ważniejszych oznaczeń i skrótów Wprowadzenie... 13

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU

STEROWANIE ADAPTACYJNE WYBRANEJ KLASY PROCESÓW INŻYNIERII ROLNICZEJ

ZMIANA PARAMETRÓW TERMODYNAMICZNYCH POWIETRZA W PAROWNIKU CHŁODZIARKI GÓRNICZEJ Z CZYNNIKIEM R407C***

ZESZYTY NAUKOWE NR 10(82) AKADEMII MORSKIEJ W SZCZECINIE. Analiza strat ciśnieniowych w kanałach pompy MP-05

Metody symulacji komputerowych Modelowanie systemów technicznych

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

PL B1. GULAK JAN, Kielce, PL BUP 13/07. JAN GULAK, Kielce, PL WUP 12/10. rzecz. pat. Fietko-Basa Sylwia

BILANS CIEPLNY CZYNNIKI ENERGETYCZNE

ZESZYTY NAUKOWE NR 10(82) AKADEMII MORSKIEJ W SZCZECINIE

Zasada działania maszyny przepływowej.

Katedra Silników Spalinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI. Badanie pompy ciepła - 1 -

Przemiany termodynamiczne

Obiegi rzeczywisty - wykres Bambacha

Tomasz P. Olejnik, Michał Głogowski Politechnika Łódzka

Zajęcia laboratoryjne z przedmiotu Okrętowe układy napędowe

Numeryczna symulacja rozpływu płynu w węźle

TEMAT: PARAMETRY PRACY I CHARAKTERYSTYKI SILNIKA TŁOKOWEGO

BADANIE SPRĘŻARKOWEJ POMPY CIEPŁA

AKADEMIA MORSKA w GDYNI WYDZIAŁ MECHANICZNY

POMIARY OPORÓW WEWNĘ TRZNYCH SILNIKA SPALINOWEGO

1. Wprowadzenie. 2. Klasyfikacja i podstawowe wskaźniki charakteryzujące pracę silników spalinowych. 3. Paliwa stosowane do zasilania silników

ZESTAW KOMPUTEROWYCH PROGRAMÓW EDUKACYJNYCH. Instrukcja

Zagospodarowanie energii odpadowej w energetyce na przykładzie współpracy bloku gazowo-parowego z obiegiem ORC.

Dalsze informacje na temat przyporządkowania i obowiązywnania planu konserwacji: patrz Okólnik techniczny (TR) 2167

1. Logika połączeń energetycznych.

WPŁYW TEMPERATURY W POMIESZCZENIACH POMOCNICZYCH NA BILANS CIEPŁA W BUDYNKACH DLA BYDŁA

Laboratorium z Konwersji Energii SILNIK SPALINOWY

wymiana energii ciepła

POLITECHNIKA ŚLĄSKA W GLIWICACH Wydział Mechaniczny Technologiczny PRACA DYPLOMOWA MAGISTERSKA

ZUŻYCIE ENERGII DO OGRZEWANIA LOKALU W BUDYNKU WIELORODZINNYM. Paweł Michnikowski

KATEDRA APARATURY I MASZYNOZNAWSTWA CHEMICZNEGO Wydział Chemiczny POLITECHNIKA GDAŃSKA ul. G. Narutowicza 11/ GDAŃSK

- prędkość masy wynikająca z innych procesów, np. adwekcji, naprężeń itd.

POLITECHNIKA CZĘSTOCHOWSKA. Poszukiwanie optymalnej średnicy rurociągu oraz grubości izolacji

AUTOMATYKA I STEROWANIE W CHŁODNICTWIE, KLIMATYZACJI I OGRZEWNICTWIE L4 STEROWANIE KOLUMNĄ REKTYFIKACYJNĄ

SYMULOWANIE WYBRANYCH NIESPRAWNOŚCI NA SYMULATORZE TURBO DIESEL 4

WPŁYW SZYBKOŚCI STYGNIĘCIA NA WŁASNOŚCI TERMOFIZYCZNE STALIWA W STANIE STAŁYM

Wojskowa Akademia Techniczna Katedra Pojazdów Mechanicznych i Transportu

Kierunkowe efekty kształcenia wraz z odniesieniem do efektów obszarowych. Energetyka studia I stopnia

4. Wentylatory oddymiające powinny mieć klasę:

Procedura modelowania matematycznego

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU

watermark Podgrzewacz silnika model D (pompowy 230V 1850W) Cena : 309,00 zł

Zadania rachunkowe z termokinetyki w programie Maxima

Plan wykładu. 1. Rodzaje chłodzenia 2. Chłodzenie aktywne 3. Chłodzenie pasywne 4. Źródła hałasu 5. Metody zmniejszania hałasu

Obieg Ackereta-Kellera i lewobieżny obieg Philipsa(Stirlinga)

Energetyczna ocena efektywności pracy elektrociepłowni gazowo-parowej z organicznym układem binarnym

Materiały pomocnicze do laboratorium z przedmiotu Metody i Narzędzia Symulacji Komputerowej

Zadanie 1. Zadanie 2.

ZESZYTY NAUKOWE NR 1(73) AKADEMII MORSKIEJ W SZCZECINIE. Symulacja pracy kotła utylizacyjnego z wykorzystaniem jego statycznego modelu

2. Klasyfikacja i podstawowe wskaźniki charakteryzujące pracę silników spalinowych

Transkrypt:

ISSN 0209-2069 Marian Stachowiak ZESZYTY NAUKOWE NR 1(73) AKADEMII MORSKIEJ W SZCZECINIE EXPLO-SHIP 2004 Model matematyczny odprowadzania ciepła w instalacji chłodzenia wodą wolnoobrotowego silnika okrętowego Słowa kluczowe: modelowanie matematyczne, instalacja chłodzenia wolnoobrotowego silnika okrętowego, bilans energii, symulacja komputerowa Przedstawiono matematyczny model procesu chłodzenia wolnoobrotowego silnika okrętowego realizowany przez instalację chłodzenia wodą słodką. Model matematyczny obejmuje zarówno stany pracy silnika ustalone, jak i nieustalone. Wykorzystując przedstawiony model, wykonano program symulacyjny prezentujący proces chłodzenia silnika. A Mathematical Model for the Heat Exchange Process in a Low-Speed Diesel Engine Key words: mathematical modelling, fresh water cooling system of a low-speed diesel engine, energy balance, computer simulation This paper presents a mathematical model for the heat exchange process in a fresh water-cooling system of a low-speed diesel engine. The model describes both stationary and dynamic engine operating conditions. The model is applied in simulation of the engine cooling process. Results of the simulation are discussed. 479

Marian Stachowiak Wprowadzenie Celem artykułu jest matematyczny model chłodzenia silnika rozumiany jako opis matematyczny procesów odprowadzania ciepła od silnika do wody zaburtowej lub innych odbiorników. Natomiast ostatecznym celem jest symulacyjny program komputerowy, wykonany na podstawie modelu matematycznego, pozwalającego prezentować modelowane procesy zarówno w stanach ustalonych jak i nieustalonych. Tworząc model odbioru ciepła w instalacji chłodzenia silnika wolnoobrotowego, przyjęto następujące założenia upraszczające: ciepło odprowadzane z komór spalania jest wyznaczane na podstawie strat chłodzenia; model odbioru ciepła jest deterministyczny i dynamiczny; układy w instalacji chłodzenia, będące układami o parametrach rozłożonych w czasie i przestrzeni, zastąpiono układami o parametrach skupionych. Zadaniem instalacji chłodzenia silnika jest utrzymanie właściwej temperatury elementów tworzących komorę spalania głowicy, tłoka i tulei cylindrowej. W pracy przyjęto instalację chłodzenia wodą wolnoobrotowego, sześciocylindrowego silnika okrętowego typu RTA84C o mocy 24000 kw, w którym tuleje cylindrowe i głowice chłodzone są wodą słodką, tłoki zaś olejem. 1. Instalacja chłodzenia wodą słodką Uproszczony schemat instalacji zamieszczono na rysunku 1. Obieg wody słodkiej przez kanały silnika (1) i pozostałe urządzenia instalacji wymusza pompa cyrkulacyjna (3). Do regulacji temperatury wody na wyjściu z silnika służy zawór termostatyczny (7). W instalacji uwzględniono ponadto te urządzenia, w których zachodzą procesy wymiany ciepła a więc: chłodnice wody (2), parowy podgrzewacz wody (5) oraz podciśnieniowy wyparownik (6). Podczas grzania silnika obieg wody jest wymuszany specjalną pompą (4) o znacznie mniejszym wydatku od pomp cyrkulacyjnych (3). 480

Model matematyczny odprowadzania ciepła w instalacji chłodzenia wodą... Rys. 1. Schemat instalacji wody chłodzącej Fig. 1. Fresh water cooling system diagram 2. Straty chłodzenia Bilans cieplny silnika można przedstawić następująco [1, 5]: q d q q [kj/kwh] (1) e gdzie: q d jednostkowa energia cieplna doprowadzona do silnika, kj/kwh; q e jednostkowa energia równoważna energii mechanicznej, kj/kwh; q s jednostkowe całkowite straty energii cieplnej silnika, kj/kwh. s Głównym składnikiem strat energii, obok straty wylotowej, jest strata chłodzenia wynosząca około 25 30% energii doprowadzonej w paliwie. Całkowite straty chłodzenia q ch można wyrazić jako sumę: q ch q q q q q, [kj/kwh] (2) chc gdzie: q chc straty chłodzenia tulei cylindrowych i głowic, q cht straty chłodzenia tłoków, q cho straty chłodzenia oleju smarowego, q chw straty chłodzenia wtryskiwaczy, q chp straty chłodzenia powietrza ładującego. cht cho chw chp 481

Marian Stachowiak Do określenia ilości ciepła odprowadzanego w instalacji chłodzenia wodą wykorzystano straty chłodzenia tulei cylindrowych i głowic q chc. Orientacyjne wartości jednostkowego ciepła chłodzenia, dla nominalnych obciążeń silnika, przyjęto na podstawie danych zawartych w pracy [5]. Pozwoliło to wyznaczyć strumienie ciepła przekazywane do określonych elementów silnika jako funkcje aktualnej mocy silnika. 3. Model procesu chłodzenia (model przebiegu zjawisk) Złożone procesy związane z chłodzeniem silnika wymagają pewnych uproszczeń czyli określenia modelu zjawisk [2]. Będący celem pracy matematyczny model chłodzenia silnika jest opisem matematycznym tego modelu zjawisk. Wymiana ciepła pomiędzy czynnikiem roboczym (spalinami) a elementami silnika tworzącymi komorę spalania jest procesem nieustalonym i bardzo złożonym. Zmianie ulega powierzchnia wymiany ciepła w funkcji kąta OWK, zmieniają się temperatury ścianek oraz współczynniki przejmowania ciepła. W modelu zjawisk zrezygnowano z opisu procesu przetwarzania energii w silniku, wyznaczania strumienia ciepła wydzielanego w procesie spalania oraz modelowania procesów związanych z wymianą ładunku. Ciepło przekazywane z komór spalania do tulei i głowic silnika wyznaczono jako funkcję jednostkowych strat chłodzenia i mocy efektywnej silnika. Obok czasu za podstawową wielkość niezależną przyjęto moc efektywną silnika. Ciepło, będące wynikiem spalania paliwa, przenikające do tulei cylindrowych i głowic jest odbierane następnie przez wodę chłodzącą. W pracy wyznaczono je na podstawie strat chłodzenia tulei cylindrowych i głowic q chc. Drugim źródłem ciepła jest zjawisko tarcia. Ciepło to, generowane na styku pierścieni tłokowych i tulei cylindrowych, przenika zarówno do tulei cylindrowych jak i tłoków. Strumień tego ciepła określono na podstawie strat mechanicznych silnika. Występujące w modelu procesu chłodzenia strumienie ciepła przedstawiono na rysunku 2. W pracy nie uwzględniono natomiast strumienia Q' ks-tł przenikającego z komory spalania do tłoka oraz strumienia ciepła przekazywanego od tłoka do oleju chłodzącego Q' tł-ol. Podobnie nie uwzględniono, zależnego od różnicy temperatur pomiędzy tłokami i tulejami cylindrowymi, strumienia Q' tł-cl oraz będącego wynikiem tarcia strumienia ciepła od pierścieni tłokowych do tłoków Q' tr-pt. W omawianym modelu matematycznym procesu chłodzenia uwzględniono natomiast: strumień ciepła z komory spalania do tulei cylindrowej Q' ks cl, strumień z tulei cylindrowej do wody chłodzącej Q' cl wch, strumień ciepła od wody chłodzącej do bloków cylindrowych Q' wch bc oraz strumień z bloków cylindrowych do otoczenia Q' bc ot. W modelu uwzględniono także strumień ciepła wody chłodzącej na wejściu do przestrzeni wodnej pomiędzy tulejami 482

Model matematyczny odprowadzania ciepła w instalacji chłodzenia wodą... a blokami cylindrowymi Q' wch dl oraz strumień ciepła wody chłodzącej na jej wylocie z głowic Q' wch wl. Wymienione strumienie ciepła wyznaczono niezależnie dla każdego układu korbowo-tłokowego. Umożliwiło to obliczenie temperatury wody chłodzącej na wylocie z poszczególnych układów jako funkcję wtryskiwanej do nich dawki paliwa. W programie symulacyjnym, obok zmiany nastawy listwy paliwowej, umożliwiono różnicowanie dawki paliwa podawanej do poszczególnych cylindrów. Rys. 2. Strumienie ciepła występujące w modelu procesu chłodzenia Fig. 2. Heat fluxes in a model of heat exchange process Do wyznaczenia opisanych wyżej strumieni ciepła wykorzystano przede wszystkim zasadę zachowania energii. Wymagało to wydzielenia z instalacji chłodzenia silnika określonych układów i podukładów. Jako układy główne przyjęto silnik, chłodnice, podgrzewacz parowy oraz wyparownik. Są to więc złożone urządzenia, w których zachodzą procesy wymiany ciepła. Układy te podzielono na podukłady i np. w przypadku silnika głównego są to: tuleje cylindrowe i głowice, chłodząca je woda oraz bloki cylindrowe. Taka dekompozycja instalacji chłodzenia umożliwia wyznaczenie większej ilości dyskretnych wartości parametrów intensywnych [2], na przykład temperatur. Do matematycznego opisu procesów zachodzących w wymienionych podukładach przyjęto modele 483

Marian Stachowiak o parametrach skupionych, a więc modele pomijające rozkłady parametrów wewnątrz układów i przedstawiające je za pomocą wartości średnich. Podukłady, składające się na silnik główny wraz ze strumieniami ciepła przez nie przepływającymi przedstawiono na rysunku 3. Strumienie ciepła niesione przez wodę chłodzącą, zależne od jej wydatku i temperatury, umożliwiają wyznaczenie związków pomiędzy głównymi układami (urządzeniami) instalacji. Przykładami takich strumieni są: strumienie ciepła wody chłodzącej na dolocie Q' wch dl oraz na wylocie Q' wch wl z silnika głównego. Rys. 3. Schemat blokowy podukładów silnika uczestniczących w wymianie ciepła (tuleje cylindrowe i głowice, woda chłodząca oraz bloki cylindrowe) oraz przepływające między nimi strumienie ciepła Fig. 3. Block diagram of subsystems of main engine participating in heat exchange process (cylinder liners, cylinder covers, cooling water) and flow- through heat fluxes 4. Modelowanie przepływu ciepła Proces przepływu ciepła w instalacjach chłodzenia jest realizowany w układzie otwartym (przepływowym) [2, 6]. Cechuje go obok przepływu energii także przepływ substancji. Dla układu otwartego obowiązują następujące równania termodynamiki: równanie bilansu energii: d E( t) Q d ( t) Q w( t) hd ( t) m d ( t) hw ( t) m w( t) (3) dt 484

Model matematyczny odprowadzania ciepła w instalacji chłodzenia wodą... równanie bilansu masy: gdzie wielkościami zależnymi od czasu są: d m m d ( t) m w ( t) (4) dt E(t) energia całkowita układu, Q d (t) strumień ciepła doprowadzany do układu, Q w (t) strumień ciepła odprowadzany z układu, m d (t) masowy wydatek mediów doprowadzanych do układu, m w (t) masowy wydatek mediów odprowadzanych z układu, h d(t) entalpia mediów doprowadzanych do układu, h w(t) entalpia mediów odprowadzanych z układu. Dekompozycja układów na podukłady pozwala na standaryzację równań bilansowych masy i energii dla każdego z podukładów. Mają one postać: d E dt n n d m mi ( t) dt (5) i 1 i 1 n Q ( t) h ( t) m ( t) (6) i Prawa strona równania (5) przedstawia sumę algebraiczną masowych wydatków mediów dopływających i wypływających z układu. W równaniu (6) prawa strona jest sumą strumieni ciepła. Jest to układ dwóch równań różniczkowych zwyczajnych, których rozwiązanie pozwala wyznaczyć wartości parametrów wyjściowych jako funkcję parametrów wejściowych. i 1 i i 5. Współczynniki przejmowania ciepła Wymianę ciepła między powierzchnią ciała stałego a opływającym je płynem nazywamy przejmowaniem ciepła [7]. Gęstość strumienia przejmowanego ciepła określa prawo Newtona: q ( T p ) s T [W/m 2 ] (7) gdzie: współczynnik przejmowania ciepła, W/m 2 K; T s temperatura powierzchni ścianki, K; T p temperatura płynu, K. 485

Marian Stachowiak Wartości współczynników przejmowania ciepła zależą od wielu czynników. Obok rodzaju płynu, jego własności, w bardzo istotnym stopniu zależą od prędkości i charakteru przepływu. Dla wody chłodzącej cylinder i głowicę zastosowano równanie Sonnekena [8]: gdzie w prędkość przepływu wody chłodzącej, m/s. w 349 2099 w (8) Zakładając konwekcyjny proces przejmowania ciepła, zmieniające się w czasie strumienie ciepła można wyznaczyć ze związku: Q ( t) ( v) F T ( t) T ( t) (9) gdzie: (v) współczynnik przejmowania ciepła, zależny od prędkości przepływu, W/m 2 K; F powierzchnia wymiany ciepła, m 2 ; T s(t) zmienna w czasie temperatura ścianki, K; T p(t) zmienna w czasie temperatura płynu, K. Przy doborze wielu wartości współczynników przejmowania ciepła skorzystano z danych zawartych w pracach [1, 5, 8]. Część danych jak: powierzchnie wymiany ciepła (np. tuleja cylindrowa woda opływająca), masy tulei cylindrowych czy bloków cylindrowych przyjęto szacunkowo. Mimo, iż w instalacji chłodzenia nie zakłada się zmiennej prędkości przepływu wody, w pracy uwzględniono możliwość wyłączenia pomp cyrkulacyjnych czyli brak przepływu medium chłodzącego oraz zwiększenie wydatku w wyniku uruchomienia innych pomp. Opisując wymianę ciepła w chłodnicach, gdzie prędkość przepływu wody zmienia się znacząco, uwzględniono także wpływ prędkości przepływu na wielkość współczynników przejmowania ciepła. 6. Modele pozostałych urządzeń instalacji chłodzenia Modelując wymianę ciepła w podgrzewaczu parowym, wyparowniku i chłodnicach, wydzielone z nich podukłady przyjęto jako modele o parametrach skupionych. Wyznaczenie potrzebnych temperatur i strumieni ciepła polegało również na rozwiązaniu równań bilansowych masy i energii. Ograniczona w artykule liczba stron, nie pozwala na dokładniejsze omówienie modelowania tych układów. s p 486

Model matematyczny odprowadzania ciepła w instalacji chłodzenia wodą... 7. Program symulacyjny Na podstawie opisanego w pracy modelu matematycznego wykonano program symulacyjny, w którym obliczane oraz prezentowane są ważne wielkości fizyczne, opisujące proces odprowadzania ciepła w instalacji chłodzenia wodą wolnoobrotowego silnika okrętowego. Program ten napisano dla środowiska Windows z użyciem kompilatora Delphi4. Tło programu stanowi schemat graficzny modelowanej instalacji. Umieszczone na nim aktywne komponenty pozwalają włączać bądź wyłączać pompy, otwierać lub zamykać zawory oraz uruchamiać lub wyłączać urządzenia takie jak: wyparownik czy podgrzewacz wody chłodzącej. Program pozwala włączać oraz wyłączać silnik główny oraz zmieniać jego obciążenia. Możliwa jest także zmiana temperatury wody zaburtowej, jak i temperatury w siłowni. Szybkość działania programu jest wielokrotnie większa od szybkości przebiegu opisywanych procesów. Możliwa jest zmiana szybkości działania programu. Na rysunku 4 przedstawiono zmieniające się temperatury przed t psg i za t zsg silnikiem głównym oraz temperatury wody morskiej przed t wm-dl i za t wm-wl chłodnicami po uruchomieniu się zaworu termostatycznego. Rys. 4. Temperatury w instalacji chłodzenia Fig. 4. Temperatures in a fresh water cooling system Wnioski Opisany w pracy model matematyczny chłodzenia silnika okrętowego oraz jego aplikacja w postaci programu symulacyjnego potwierdzają słuszność przyjętych założeń a przyjęte uproszczenia wydają się dopuszczalne. Program symulacyjny działa sprawnie zarówno w stanach ustalonych jak i nieustalonych. Na podstawie wyników jego działania można stwierdzić, że: sprawdził się przyjęty sposób dekompozycji instalacji chłodzenia na układy i podukłady; 487

Marian Stachowiak przyjęcie podukładów jako układów o parametrach skupionych pozwoliło osiągnąć założone cele pracy; uzyskane wyniki mogą stanowić podstawę do opracowania znacznie doskonalszego modelu matematycznego dla konkretnej, rzeczywistej instalacji chłodzenia. Pozwoliłoby to na weryfikację modelu; zaproponowana metoda modelowania jest uniwersalna w tym sensie, że może być zastosowana do innych instalacji siłowni (np. paliwowej, rozruchowej); mimo znacznej ilości modelowanych procesów oraz ich złożoności program symulacyjny działa szybko. Możliwa jest także zmiana szybkości jego działania. Literatura 1. Balcerski A., Siłownie okrętowe, Wydawnictwo Politechniki Gdańskiej, Gdańsk 1990. 2. Mikielewicz J., Modelowanie procesów cieplno-przepływowych, Ossolineum, Wrocław 1995. 3. Mikielewicz J. i inni, Wymiana ciepła, IPM Gdańsk, Gdańsk 1996. 4. Piekarski M., Poniewski M., Dynamika i sterowanie procesami wymiany ciepła i masy, Wydawnictwo Naukowo-Techniczne, Warszawa 1994. 5. Piotrowski I., Witkowski K., Okrętowe silniki spalinowe, Trademar, Gdynia 1996. 6. Pudlik W., Termodynamika, Wydawnictwo Politechniki Gdańskiej, Gdańsk 1995. 7. Wiśniewski S., Wymiana ciepła, Państwowe Wydawnictwo Naukowe. Warszawa 1979. 8. Włodarski J. K., Stany eksploatacyjne okrętowych silników spalinowych, Wyższa Szkoła Morska, Gdynia 1998. Recenzenci dr hab. inż. Oleh Klyus, prof. AM dr hab. inż. Zbigniew Matuszak, prof. AM Adres Autora mgr inż. Marian Stachowiak Akademia Morska Wydział Mechaniczny, Katedra Podstaw Techniki ul. Morska 81-87, 81-225 Gdynia 488 Wpłynęło do redakcji w lutym 2004 r.