Badania ultradźwiękowe zbiorników kompozytowych

Podobne dokumenty
Katedra Elektrotechniki Teoretycznej i Informatyki

Badanie ultradźwiękowe grubości elementów metalowych defektoskopem ultradźwiękowym

Defektoskop ultradźwiękowy

LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej

Rok akademicki: 2015/2016 Kod: MIM IS-n Punkty ECTS: 5. Kierunek: Inżynieria Materiałowa Specjalność: Inżynieria spajania

U L T R A ZAKŁAD BADAŃ MATERIAŁÓW

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

STATYCZNA PRÓBA ROZCIĄGANIA

LABORATORIUM NAUKI O MATERIAŁACH

- Strumień mocy, który wpływa do obszaru ograniczonego powierzchnią A ( z minusem wpływa z plusem wypływa)

1. BADANIE SPIEKÓW 1.1. Oznaczanie gęstości i porowatości spieków

OPIS PRZEDMIOTU ZAMÓWIENIA

szkło klejone laminowane szkło klejone z użyciem folii na całej powierzchni.

4. Ultradźwięki Instrukcja

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie

SPRAWOZDANIE Z BADAŃ

Wykład FIZYKA I. 11. Fale mechaniczne. Dr hab. inż. Władysław Artur Woźniak

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Dyfrakcja. interferencja światła. dr inż. Romuald Kędzierski

OFERTA BADAŃ MATERIAŁOWYCH Instytutu Mechaniki i Informatyki Stosowanej Uniwersytetu Kazimierza Wielkiego

SPRAWOZDANIE Z BADAŃ

WYMAGANIA EDUKACYJNE Z FIZYKI

STATYCZNA PRÓBA ROZCIĄGANIA

Fale akustyczne. Jako lokalne zaburzenie gęstości lub ciśnienia w ośrodkach posiadających gęstość i sprężystość. ciśnienie atmosferyczne

Laboratorium Wytrzymałości Materiałów

BADANIA NIENISZCZĄCE I ICH ODPOWIEDZIALNOŚĆ A BEZPIECZEŃSTWO TRANSPORTU SZYNOWEGO Badanie ultradźwiękowe elementów kolejowych

Badania właściwości zmęczeniowych bimetalu stal S355J2- tytan Grade 1

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

ĆWICZENIE 15 WYZNACZANIE (K IC )

STATYCZNA PRÓBA SKRĘCANIA

NORMA ZAKŁADOWA. 2.2 Grubość szkła szlifowanego oraz jego wymiary

Fale dźwiękowe. Jak człowiek ocenia natężenie bodźców słuchowych? dr inż. Romuald Kędzierski

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Karta danych materiałowych. DIN EN ISO 527-3/5/100* minimalna wartość DIN obciążenie 10 N, powierzchnia dolna Współczynik tarcia (stal)

WYTRZYMAŁOŚĆ POŁĄCZEŃ KLEJOWYCH WYKONANYCH NA BAZIE KLEJÓW EPOKSYDOWYCH MODYFIKOWANYCH MONTMORYLONITEM

Karta danych materiałowych. DIN EN ISO 527-3/5/100* minimalna wartość DIN obciążenie 10 N, powierzchnia dolna Współczynik tarcia (stal)

WYTRZYMAŁOŚĆ RÓWNOWAŻNA FIBROBETONU NA ZGINANIE

BADANIA URZĄDZEŃ TECHNICZNYCH ELEMENTEM SYSTEMU BIEŻĄCEJ OCENY ICH STANU TECHNICZNEGO I PROGNOZOWANIA TRWAŁOŚCI

Badanie wytrzymałości elementu betonowego metodą sklerometryczną

Dobór materiałów konstrukcyjnych cz. 8

MATERIAŁY POMOCNICZE DO WYKŁADU Z PODSTAW ZASTOSOWAŃ ULTRADŹWIĘKÓW W MEDYCYNIE (wyłącznie do celów dydaktycznych zakaz rozpowszechniania)

Zachodniopomorski Uniwersytet Technologiczny INSTYTUT INŻYNIERII MATERIAŁOWEJ ZAKŁAD METALOZNAWSTWA I ODLEWNICTWA

KLASYFIKACJI I BUDOWY STATKÓW MORSKICH

Fal podłużna. Polaryzacja fali podłużnej

Metody badań kamienia naturalnego: Oznaczanie wytrzymałości na zginanie pod działaniem siły skupionej

2.2 Wyznaczanie modułu Younga na podstawie ścisłej próby rozciągania

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Źródło światła λ = 850 nm λ = 1300 nm. Miernik. mocy optycznej. Badany odcinek światłowodu MM lub SM

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Nowoczesne sposoby napraw i wzmocnień konstrukcji murowych

PRZEDMOWA WIADOMOŚCI WSTĘPNE ROZWÓJ MOSTÓW DREWNIANYCH W DZIEJACH LUDZKOŚCI 13

ĆWICZENIE 1 STATYCZNA PRÓBA ROZCIĄGANIA METALI - UPROSZCZONA. 1. Protokół próby rozciągania Rodzaj badanego materiału. 1.2.

PL B1. Sposób badania przyczepności materiałów do podłoża i układ do badania przyczepności materiałów do podłoża

Dobór materiałów konstrukcyjnych cz. 11

BADANIA STRUKTURY MATERIAŁÓW. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

PL B1. Sposób wytwarzania kompozytów włóknistych z osnową polimerową, o podwyższonej odporności mechanicznej na zginanie

Temat 2 (2 godziny) : Próba statyczna ściskania metali

PL B1. INSTYTUT PODSTAWOWYCH PROBLEMÓW TECHNIKI POLSKIEJ AKADEMII NAUK, Warszawa, PL BUP 11/

SPECYFIKACJA TECHNICZNA DLA PRZEWODÓW RUROWYCH

PL B1. Sposób wykrywania delaminacji w płytach włókno-cementowych i urządzenie do wykrywania delaminacji w płytach włókno-cementowych

INSTRUKCJA DO CWICZENIA NR 5

LABORATORIUM Z FIZYKI Ć W I C Z E N I E N R 2 ULTRADZWIĘKOWE FALE STOJACE - WYZNACZANIE DŁUGOŚCI FAL

SuperLock. Grodzice kompozytowe nowej generacji. Wszystkie zalety grodzic winylowych, większa. sztywność i wytrzymałość.

D Podbudowa z kruszywa łamanego stabilizowanego mechanicznie

KOOF Szczecin:

WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA

Modele materiałów

WYDZIAŁ EKOLOGII LABORATORIUM FIZYCZNE

HTHA - POMIARY ULTRADŹWIĘKOWE. HTHA wysokotemperaturowy atak wodorowy 2018 DEKRA

Spis treści Bezpośredni pomiar konstrukcji Metodyka pomiaru Zasada działania mierników automatycznych...

Dobór materiałów konstrukcyjnych cz. 10

Laboratorium metrologii

Badanie zmęczenia cieplnego żeliwa w Instytucie Odlewnictwa

Politechnika Białostocka

BŁĘDY W POMIARACH BEZPOŚREDNICH

Zmęczenie Materiałów pod Kontrolą

Politechnika Białostocka

Wydział Inżynierii Mechanicznej i Robotyki PROBLEMY ZWIĄZANE Z OCENĄ STANU TECHNICZNEGO PRZEWODÓW STALOWYCH WYSOKICH KOMINÓW ŻELBETOWYCH

TKANINA WĘGLOWA 2. PLAIN 3K 200 g/m

Drania i fale. Przykład drgań. Drgająca linijka, ciało zawieszone na sprężynie, wahadło matematyczne.

WZORU UŻYTKOWEGO PL Y1. TECHPLAST SPÓŁKA Z OGRANICZONĄ ODPOWIEDZIALNOŚCIĄ, Wieprz, PL BUP 12/

Drgania i fale sprężyste. 1/24

Temat 3 (2 godziny) : Wyznaczanie umownej granicy sprężystości R 0,05, umownej granicy plastyczności R 0,2 oraz modułu sprężystości podłużnej E

Tabela nr Normy (stan aktualny na dzień 20 czerwca 2013r.)

Nauka o Materiałach. Wykład XI. Właściwości cieplne. Jerzy Lis

SuperLock. Grodzice kompozytowe nowej generacji. Wszystkie zalety grodzic winylowych, większa. sztywność i wytrzymałość.

5.1. Powstawanie i rozchodzenie się fal mechanicznych.

BADANIE ODPORNOŚCI NA PRZENIKANIE SUBSTANCJI CHEMICZNYCH PODCZAS DYNAMICZNYCH ODKSZTAŁCEŃ MATERIAŁÓW

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 237

GEOFIZYKA STOSOWANA wykład 2. Podstawy sejsmiki

Czujnik ultradźwiękowy serii DBK 4+

Budowa. drewna. Gatunki drewna. Wilgotność drewna w przekroju. Pozyskiwanie drewna budowlanego - sortyment tarcicy. Budowa drewna iglastego

Dane potrzebne do wykonania projektu z przedmiotu technologia odlewów precyzyjnych.

POLITECHNIKA BIAŁOSTOCKA

CIPREMONT. Izolacja drgań i dźwięków materiałowych w konstrukcjach budowlanych oraz konstrukcjach wsporczych maszyn dla naprężeń do 4 N/mm 2

4.7 Pomiar prędkości dźwięku w metalach metodą echa ultradźwiękowego(f9)

Zjawiska w niej występujące, jeśli jest ona linią długą: Definicje współczynników odbicia na początku i końcu linii długiej.

Wykład 8: Lepko-sprężyste odkształcenia ciał

Spis treści. Wstęp Część I STATYKA

Transkrypt:

Władysław Michnowski * Jarosław Mierzwa ** Badania ultradźwiękowe zbiorników kompozytowych 1. Wstęp Zalety materiałów kompozytowych (mk) w wielu konstrukcjach wypierają dotąd tradycyjnie stosowane metale. Ze zrozumiałych względów przodują tu zastosowania w lotnictwie, które osiągnęły wysoki stopień zaawansowania technologicznego w tym także metod kontroli [1]. Wysoka korozyjna odporność materiałów kompozytowych (mk) szczególnie predestynuje je do zastosowań w przemyśle chemicznym, do magazynowania (zbiorniki) żrących materiałów płynnych i gazowych, ale często także wody. Wiele z tych konstrukcji, do budowy których zastosowano materiały kompozytowe (np. zbiorniki, rurociągi), to konstrukcje ciśnieniowe o parametrach wymagających poddania ich pod Dozór Techniczny. Jednak pojawiające się awarie [2] powodują konieczność usprawnienia metod kontroli i możliwie szybkiego ich wdrożenia. Założono, że wprowadzenie badań ultradźwiękowych w zakresie kontroli zbiorników z mk może istotnie podwyższyć ich bezpieczną eksploatację i że można to zrobić względnie szybko. Tematem niniejszego artykułu jest raport z rozpoznania poprawności tego założenia oraz podania uwarunkowań technicznych i ewentualnie organizacyjnych wdrożenia. Badania do opracowania tego raportu wykonano w Zakładzie Ultra, który wykorzystał swoje możliwości techniczne i pokrył całość kosztów. 2. Możliwości i uwarunkowania fizyczne zastosowania badań ultradźwiękowych do badań materiałów kompozytowych Dość powszechnie wiadomo że niektóre mk bada się ultradźwiękowo, a inne nie, choć występuje taka potrzeba. Jest to często związane z ograniczeniami fizycznymi oraz niedopasowaniem typowej aparatury ultradźwiękowej do występujących ograniczeń fizycznych. Podobnie jest z badaniem różnych żeliw, a także innych materiałów, które kolokwialnie określa się jako niejednorodne. Przykładowo świetnie się bada większość stali, choć wiadomo z metalografii o ich ziarnistej strukturze, bada się także betony, choć ich strukturę ziarnistą widać nieuzbrojonym okiem. Ciekawostką może być przykład stali austenitycznych, z których surowe blachy bada się nawet dobrze, a po pospawaniu okolice spoiny albo nie da się badać, albo jest to trudne. Należy zadać pytanie jakie parametry fizyczne badanej przestrzeni określają możliwość badań i jak tę możliwość uwarunkowują? * mgr inż. Władysław Michnowski, dyrektor Zakładu Badań Materiałów ULTRA ** dr inż. Jarosław Mierzwa, wykładowca w Instytucie Cybernetyki Technicznej Politechniki Wrocławskiej

2.1. Przestrzeń akustyczna Badania ultradźwiękowe zbiorników kompozytowych 2/9 Dla uproszczenia opisów wprowadźmy nazwy przestrzeni: akustyczna, nieakustyczna, przejściowa - nieco podobnie do przestrzeni przezroczystej i nieprzezroczystej w optyce. Większość fizycznie występujących przestrzeni to przestrzenie, które mogą na przemian być akustyczne lub nie. Jedyną przestrzenią absolutnie nie akustyczną jest próżnia, i to w całym zakresie częstotliwości od infra- do ultradźwięków. O tym, czy przestrzeń jest akustyczna decyduje nie tylko jej budowa fizyczna, ale także parametry ultradźwiękowe. Ta sama przestrzeń dla różnych parametrów ultradźwiękowych może być akustyczna lub nie. Jest oczywiste, że warunkiem badań ultradźwiękowych materiałów (w tym mk) jest aby tworzyły przestrzeń akustyczną, co osiąga się przez dobór parametrów ultradźwiękowych, choć mogą temu towarzyszyć ograniczenia. Zrozumienie, czy te wymuszone fizycznie ograniczenia mogą być w danym przypadku akceptowalne wymaga wyjaśnienia kilku nieskomplikowanych pojęć. 2.2. Własności akustyczne materiałów stałych Właściwości akustyczne materiałów stałych określają wielkości, których definicje podano niżej. 2.2.1. Prędkość i długość fali Długość fali odległość pomiędzy najbliższymi cząstkami ośrodka drgającymi w tej samej fazie. Pomiędzy długością, częstotliwością i prędkością fali zachodzi następujący związek: = c f (I) gdzie: - prędkość fali, - częstotliwość fali. długość Rys.1 Chwilowy rozkład amplitudy drgań w funkcji długości w materiale W materiałach stałych wyróżnia się trzy podstawowe typy fali: - podłużna cząsteczki drgają w kierunku rozchodzenia się fali, - poprzeczna - cząsteczki drgają prostopadle do kierunku rozchodzenia się fali, - powierzchniowa specjalny typ fali o charakterze podobnym do fali poprzecznej, który propagowany jest na powierzchniach. Prędkość fali - prędkość rozprzestrzeniania się ruchu drgającego w materiale. Wyraża się ją w km/s lub mm/us. Zależy ona od rodzaju materiału (jego modułów sprężystości gęstości, liczby Poissona). Każdy z typów fali ma inną prędkość. 2.2.2. Gęstość i ciężar właściwy Gęstość - masa materiału o jednostkowej objętości (podawana w kg/m 3 lub g/cm 3 ). Ciężar właściwy - ciężar materiału o jednostkowej objętości (wyrażony w kg/m 3 ). 2.2.3. Ciężar średni kompozytu Pojęcie to dotyczy kompozytu składającego się z różnych materiałów. Średni ciężar właściwy to ciężar wycinka kompozytu podzielony przez objętość tego wycinka.

2.2.4. Akustyczna oporność falowa (impedancja) Badania ultradźwiękowe zbiorników kompozytowych 3/9 Impedancja - wielkość charakteryzująca dany materiał. Wyrażona jest wzorem: Z = c gdzie: - gęstość ośrodka, - prędkość rozchodzenia się fali w danym materiale. (II) 2.2.5. Tłumienie materiału, współczynnik tłumienia fali Tłumienie zjawisko polegające na osłabieniu amplitudy fali ultradźwiękowej w wyniku rozchodzenia się jej w materiale. Współczynnik tłumienia wartość zmniejszenia amplitudy fali (wyrażona w db) przypadająca na jednostkę długości przebytej drogi w danym materiale (w db/m). Współczynnik tłumienia zależy od długości fali, struktury materiału, jego własności sprężystych, składu chemicznego i temperatury materiału. Współczynniki tłumienia względnie łatwo się mierzy [3]. 2.2.6. Współczynnik odbicia i przenikania Zjawisko odbicia i przenikania następuje podczas padania fali na granicę dwóch ośrodków o różnych impedancjach falowych. Podczas padania na granicę dwóch ośrodków część energii fali padającej odbija się od granicy tworząc falę odbitą (zjawisko odbicia), a część przenika do drugiego materiału (zjawisko przenikania). Współczynnik odbicia wyraża liczbowo zmniejszenie energii fali odbitej w odniesieniu do padającej w wyniku zjawiska odbicia (wartość z zakresu 0..1). Współczynnik przenikania wyraża liczbowo zmniejszenie energii fali w wyniku przejścia do innego materiału (wartość z zakresu 0..1). Suma współczynników odbicia i przenikania wynosi 1. 2.2.7. Przestrzeń ziarnista (włóknista) i akustycznie ciągła Kompozyty należą do grupy materiałów stanowiących celowo dobraną mieszaninę mat szklanych, węglowych itd. klejonych żywicami. Maty tworzą przestrzeń włóknistą w której propagacja fali ultradźwiękowej może być trudna, a nawet niemożliwa. Podobnie jest z wszystkimi naturalnymi przestrzeniami ziarnistymi np. żeliwo, beton itp. Jest to spowodowane tym, że fala ultradźwiękowa trafiając na ziarno lub włókninę może ulegać odbiciu i rozproszeniu. W konsekwencji może to prowadzić do takiego wzrostu tłumienia, że przeprowadzenie jakiekolwiek badań będzie niemożliwe. Jednak zjawiska rozpraszania nie występują w dwóch przypadkach : - gdy oporność akustyczna ziaren lub włókien nie różni się od otaczającego ich materiału - zjawisko odbicia fali nie występuje. Fala przenika przez ziarno (włókninę) i nie ma rozproszenia - dla fali materiał jest jednorodny - gdy długość fali jest wyraźnie większa od wymiaru ziarna (włókniny) Można zatem sformułować pojęcie przestrzeni akustycznej ciągłej w następujący sposób: Materiał o strukturze ziarnistej lub włóknistej tworzy przestrzeń akustycznie ciągłą, jeżeli średnica ziaren lub włókien i długość fali spełniają zależność: d (III) lub oporność akustyczna ziaren z i oporność akustyczna otaczającego je materiału m spełnia zależność: Z z Z m (IV) W praktyce zależność (III) używa się w postaci bardziej przydatnej to jest: min =a d (V) co wyznacza najmniejszą przydatną długość fali min jako wielokrotność średnicy włókien. Współczynnik przyjmuje najczęściej wartość 3 lub więcej.

Badania ultradźwiękowe zbiorników kompozytowych 4/9 2.3.Dobór sprzętu ultradźwiękowego do badań materiałów kompozytowych Dobór sprzętu tak, aby dowolny materiał kompozytowy był przestrzenią akustyczną jest złożony. Występuje szeroki zakres uwarunkowań i doborów np.: częstotliwości, mocy nadajników, czułości odbiorników, a wszystko to w obecności szumów, często nieprzewidywalnych. Cały problem można podzielić na trzy części: - konstrukcyjno - wykonawczy sprzętu (defektoskopy, głowice, wyposażenie), - kwalifikacje personelu badań, - badawczy - dobór właściwego gotowego sprzętu i umiejętność jego użycia i kontroli. Ostatni trzeci problem, który wyłącznie omówimy w tym raporcie jest znacznie prostszy od pozostałych i w zakresie zastosowań do badań mk sprowadza się do doboru głowic i prostych czynności kontrolnych. Zakładając że dobierana głowica ma sprawdzone dopasowanie do posiadanego defektoskopu, co zwykle zapewnia firma dostarczająca równocześnie defektoskop i głowicę, dobór głowic do badania konstrukcji mk to dobór niżej podanych parametrów. 2.3.1. Częstotliwość głowicy Dobór częstotliwości głowicy do badania mk ma znaczenie podstawowe i polega w pierwszej kolejności na zapewnieniu spełnienia podstawowego warunku (III) przedstawionego w rozdziale 2.2.7. Warunek ten mówi, że nie ma możliwości fizycznej propagacji fali ultradźwiękowej w przestrzeni ziarnistej (włóknistej) w której wielkość ziarna jest większa od długości fali. Oznacza to, że dla kompozytów o większej gramaturze należy dobierać niższą częstotliwość. Przykład 1: Według [1] dla laminatów węglowych wykonanych w technologii prepregowej i grubości 0,125 mm (co oznacza, że włókna mają ok. 0,125 mm grubości), użyto głowicy o częstotliwości = 5MHz. Stąd przyjęta wielokrotność według (I) i (V) wynosi: a= min d = c d f = 2,5 0,125 5 =4 Przykład 2: Pomierzona prędkość żywicy w posiadanych próbkach kompozytu wyciętego ze zbiornika wynosi ok. 2,5 mm/ s, widoczna średnica włókna ok. 1,2 mm. Zatem częstotliwość głowicy przy krotności = 4 można obliczyć z zależności (I) oraz (V) i wynosi ona: f = c d a = 2,5 =0,52 MHz 1,2 4 2.3.2. Typ głowicy Wyznaczona w przykładzie 2 pożądana częstotliwość głowicy 0,5 MHz jest niska, co znacznie wydłuża strefę martwą głowicy (rys.2). Powoduje to, że dla zakresu badanych grubości kompozytu rzędu kilku lub kilkunastu milimetrów może być użyta tylko głowica podwójna o konstrukcji przedstawionej na rys.4, która nie posiada strefy martwej (rys.3). Rys.2 Strefa martwa 5cm dla normalnej głowicy 0.5MHz (echo na wzorcu stalowym 200mm). Rys.3 Widoczny brak strefy martwej dla podwójnej głowicy normalnej 0.5MHz (echo na wzorcu stalowym 200mm)

Badania ultradźwiękowe zbiorników kompozytowych 5/9 Rys.4 Konstrukcja i zasada działania podwójnej głowicy normalnej Budowa takiej głowicy o tak niskiej częstotliwości to unikalne osiągnięcie, możliwe tylko przy zastosowaniu Patentu Nr 60137/70,który opracowano w UDT we Wrocławiu (UDT było jego właścicielem w okresie obowiązującej ochrony patentowej. Zasada tego Patentu została ostatnio przypomniana w [4]. Polega ona na oddzieleniu nadajnika od odbiornika głowicy układem płytek, których grubość (dobierana obliczeniowo) tworzy niezwykle skuteczny układ antyrezonansowy. 2.3.4. Walidacja badań W rozdziale 3 podany zostanie zakres wykonywanych badań zbiorników kompozytowych. Badania te sprowadzają się do pomiarów grubości w dużej ilości punktów płaszcza zbiornika. Walidacja tego typu badań jest prosta i polega na okresowych pomiarach kontrolnych na kilku typach wzorców. 3. Ultradźwiękowe badania zbiorników z laminatów i kompozytów Internetowa przeglądarka norm Polskiego Komitetu Normalizacyjnego nie zawiera norm na badania zbiorników z laminatów i kompozytów. Choć spis norm na badania nieniszczące przekracza sto pozycji, to brak w nim norm na ultradźwiękowe badania laminatów i kompozytów. Można przyjąć, że takich norm nie ma. Spis norm zbliżonych (16 pozycji) załączono. Jednak norma określająca wymogi i kompetencje laboratoriów (6) dopuszcza korzystanie z metod nieznormalizowanych pod warunkiem spełnienia wymogów punktu 5.4.4. normy [10]. 3.1. Wady produkcyjne laminatów Rys.5 Wady produkcyjne laminatów Rozróżnia się następujące wady produkcyjne laminatów: - rozwarstwienia - braki połączenia między warstwami laminatu, - ciała obce zalaminowane między warstwami, - porowatości - resztki powietrza nieusunięte spomiędzy warstw, - utrata połączeń kohezyjnych między warstwami wskutek: zabrudzenia, niedopuszczalnych zmian technologicznych, przerw w laminowaniu i przy naprawach, - przekroczenie dopuszczalnych tolerancji zmian grubości.

Wady eksploatacyjne laminatów Badania ultradźwiękowe zbiorników kompozytowych 6/9 Do wad eksploatacyjnych laminatów zalicza się: - różnie skonfigurowane pęknięcia, - wtórne rozwarstwienia w efekcie początkowej utraty połączeń kohezyjnych i ich rozwoju na skutek późniejszych obciążeń, - ubytki korozyjne i uszkodzenia mechaniczne. Rys.6 Wady eksploatacyjne laminatów 3.3. Technika badań 3.3.1. Badanie w punkcie Rys.7 Wskazania na grubości laminatu ok. 20,8 mm w miejscu bez wad Przedstawione poprzednio (3.1 i 3.2.) typy występujących w laminatach wad wykrywane są typową techniką echa identyczną jak pomiar grubości przy użyciu głowicy podwójnej (rys.3 i rys.7). Poniżej przedstawiono graficznie typowe sytuacje w badaniach i odpowiadające im wskazania na ekranie defektoskopu. Rys.8 Rozwarstwienie

Badania ultradźwiękowe zbiorników kompozytowych 7/9 Rys.9 Siatka pęknięć 3.3.2. Wyniki badania w punkcie Występują cztery możliwe wyniki badania w punkcie: a) echo od powierzchni przeciwległej do głowicy i pomiar grubości (rys.7), b) echo od nieznanej powierzchni pomiędzy (rozwarstwienie) (rys.8), c) brak echa od powierzchni przeciwległej - pojawiające się małe echa szumów (rys.9), d) dwa rozróżnialne echa (odosobnione wtrącenie) (rys.10). Rys.10 Pojedyncze wtrącenie 3.3.3. Zapis wyników badania w punkcie Zapis wyników badań w punkcie obejmuje: a) położenie badanego punktu w opisanym przyjętym układzie współrzędnych (np. x, y), b) pomierzona grubość lub wynik c (szumy) lub wynik d (wtrącenia) w tym punkcie. 3.3.4. Siatka badań punktowych W powiązaniu z przyjętym układzie współrzędnych oraz kryterium oceny zbiornika lub według procedury badań opracowanej dla konkretnej grupy zbiorników wyznacza się siatkę punktów do wykonania badań punkt po punkcie. 3.3.5. Powierzchniowe formy zobrazowania wyników badania (C-scan) Wyniki zapisane według 3.3.3. wpisuje się do komputera, którego specjalny (dość prosty) program przetwarza, rysuje, archiwizuje, a w miarę potrzeb drukuje mapy powierzchni badanych z naniesionymi wykrytymi wskazaniami wad. Może też dokonywać samoczynnej oceny zbiornika.

3.3.6.Charakterystyka techniki badań poziom A Badania ultradźwiękowe zbiorników kompozytowych 8/9 Zaletami takiego badania są: rozpoznanie znacznych powierzchni zbiornika i duża wiarygodność badania, mapa wad, archiwizacja, znaczne ograniczenie czynnika subiektywnego personelu badawczego. Wadami takiego badania są: duża pracochłonność badań (którą mogłaby istotnie zmniejszyć mechanizacja). 3.4. Technika badań poziom B Identycznie jak w poziomie A łącznie z punktem 3.3.2., następnie dla każdego osiągniętego wyniku oceniać cały zbiornik na podstawie kryterium przyjętego dla jednego punkt zbadanego. I tak: dla wyniku a akceptować, o ile stwierdzona grubość jest większa od wymaganej, dla wyniku b określić akceptowalną powierzchnię rozwarstwienia, dla wyniku c określić akceptowalną powierzchnię występowania szumów (ostrzej niż dla b ), dla wyniku d akceptować. Sprawozdanie z badania uproszczonego poza opisami podają tylko ogólną ocenę. 4. LITERATURA [1] Góra G., Mackiewicz S., Ultradźwiękowe badania konstrukcji kompozytowych w przemyśle lotniczym, Jedenaste Seminarium Nieniszczące Badania Materiałów, Zakopane 2005 [2] Bełzowski A., Badanie uszkodzeń zbiornika z laminatu wzmocnionego włóknem szklanym, Raport Wydziałowego Zakładu Wytrzymałości Materiałów Politechniki Wrocławskiej, seria SPR nr 9, Wrocław 2004 [3] Michnowski W., Tłumienie fal ultradźwiękowych, Krajowa Konferencja Badań Nieniszczących, Szczyrk 2001 [4] Michnowski W., Badania wzorca odlewu żeliwnego, wykład wygłoszony na Jedenastym Seminarium Badań Nieniszczących, Zakopane 2005 [5] Lipnicki M., Szulwach Z., Podstawy badań ultradźwiękowych, Materiały szkoleniowe, Gdańsk 1987 [6] Urząd Dozoru Technicznego, Warunki techniczne dozoru technicznego. Stałe zbiorniki ciśnieniowe z tworzyw sztucznych,dt-uc-90/z [7] Urząd Dozoru Technicznego, Warunki Urzędu Dozoru Technicznego. Urządzenia ciśnieniowe. Stałe zbiorniki ciśnieniowe z tworzyw sztucznych wzmocnionych włóknem szklanym,wdt-uc- UTS/01:10.2003 [8] Urząd Dozoru Technicznego, Warunki Urzędu Dozoru Technicznego. Urządzenia bezciśnieniowe i niskociśnieniowe, WDT/ZB/2004 [9] Bełzowski A., Kamińska A., Stasieńko J., Ziółkowski B., Niektóre kryteria akceptacji defektów w kompozytach na przykładzie laminatu ciętego strumieniem wody. Kompozyty, nr 4 (2004) [10] PN-EN ISO 17025

Badania ultradźwiękowe zbiorników kompozytowych 9/9 Spis norm dotyczących materiałów kompozytowych i laminat stan na dzień 20.05.2005 lp. Nr normy Dotyczy 1 PN-EN 2374:1999 Lotnictwo i kosmonautyka. Tworzywa do formowania wzmacniane włóknem szklanym i kompozyty warstwowe. Wytwarzanie płyt do badań 2 PN-EN 12576:2002 Tworzywa sztuczne. Kompozyty wzmocnione włóknem. Przygotowanie płyt do badań z SMC, BMC i DMC metodą prasowania 3 PN-EN 13706-1:2004 Wzmocnione kompozyty tworzywowe. Specyfikacje profili formowanych metodą przeciągania. Część 1: Oznaczenie 4 PN-EN 13706-2:2004 Wzmocnione kompozyty tworzywowe. Specyfikacje profili formowanych metodą przeciągania. Część 2: Metody badań i wymagania ogólne 5 PN-EN 13706-3:2004 Wzmocnione kompozyty tworzywowe. Specyfikacje profili formowanych metodą przeciągania. Część 3: Wymagania szczegółowe 6 PN-EN ISO 14125:2001 Kompozyty tworzywowe wzmocnione włóknem. Oznaczanie właściwości przy zginaniu 7 PN-EN ISO 14125:2001/AC:2003 Kompozyty tworzywowe wzmocnione włóknem. Oznaczanie właściwości przy zginaniu 8 PN-EN ISO 14126:2002 Kompozyty tworzywowe wzmocnione włóknem. Oznaczanie właściwości podczas ściskania równolegle do płaszczyzny laminowania 9 PN-EN ISO 14129:2000 Kompozyty tworzywowe wzmocnione włóknem. Oznaczanie naprężenia ścinającego i odpowiadającego odkształcenia, modułu ścinania i wytrzymałości podczas rozciągania pod kątem +- 45 stopni 10 PN-EN ISO 14130:2001 Kompozyty tworzywowe wzmocnione włóknem. Oznaczanie umownej wytrzymałości na ścinanie międzywarstwowe metodą krótkiej belki 11 PN-EN 2561:1999 Lotnictwo i kosmonautyka. Tworzywa sztuczne wzmocnione włóknem węglowym. Laminaty jednokierunkowe. Próba rozciągania równolegle do kierunku włókna 12 PN-EN 2562:2001 Lotnictwo i kosmonautyka. Tworzywa sztuczne wzmocnione włóknem węglowym. Laminaty jednokierunkowe. Badanie zginania równolegle do kierunku włókien 13 PN-EN 2563:2000 Lotnictwo i kosmonautyka. Tworzywa sztuczne wzmacniane włóknem węglowym. Laminaty jednokierunkowe. Wyznaczanie umownej wytrzymałości na ścinanie międzywarstwowe 14 PN-EN 2564:2001 Lotnictwo i kosmonautyka. Laminaty z włóknem węglowym. Oznaczanie zawartości włókna, żywicy i części lotnych 15 PN-EN 2597:2001 Lotnictwo i kosmonautyka. Tworzywa sztuczne wzmocnione włóknem węglowym. Laminaty jednokierunkowe. Próba rozciągania prostopadle do kierunku włókna 16 PN-EN ISO 1172:2002 Tworzywa sztuczne wzmocnione włóknem szklanym. Preimpregnaty, tłoczywa i laminaty. Oznaczanie zawartości włókna szklanego i napełniacza mineralnego. Metody kalcynowania