Design guidelines for predicting wave resistance of ro-ro ferries at the initial designing stage



Podobne dokumenty
Application artificial neural networks for predicting wave resistance of ro-ro ferry in initial designing stage

Prognozowanie dodatkowego oporu na fali w oparciu o wymiary główne promu ro-ro i parametry falowania. Tomasz Cepowski

Prof. dr hab. inż. Tadeusz Szelangiewicz. transport morski

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

Knovel Math: Jakość produktu

ZESZYTY NAUKOWE NR 2 (74) AKADEMII MORSKIEJ W SZCZECINIE. Prognozowanie kołysań bocznych statku za pomocą sztucznych sieci neuronowych

Streszczenie rozprawy doktorskiej

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

ROZPRAWA DOKTORSKA. Model obliczeniowy ogrzewań mikroprzewodowych

CALCULATION ACCURACY OF SAFE COURSE MADE GOOD IN AN ANTICOLLISION SYSTEM

ZESZYTY NAUKOWE NR 1(73) AKADEMII MORSKIEJ W SZCZECINIE

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions

Probabilistic Methods and Statistics. Computer Science 1 st degree (1st degree / 2nd degree) General (general / practical)

Helena Boguta, klasa 8W, rok szkolny 2018/2019


ROZPRAWY NR 128. Stanis³aw Mroziñski

XXIII Konferencja Naukowa POJAZDY SZYNOWE 2018

POLITECHNIKA WARSZAWSKA. Wydział Zarządzania ROZPRAWA DOKTORSKA. mgr Marcin Chrząścik

The analysis of the energy demand for heating and cooling of the house built on the basis of the traditional Canadian wood-frame construction

DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION

Has the heat wave frequency or intensity changed in Poland since 1950?

Akademia Morska w Szczecinie. Wydział Mechaniczny

Nazwa projektu: Kreatywni i innowacyjni uczniowie konkurencyjni na rynku pracy

Method of determining energy demand for main propulsion, electric power and boiler capacity for modern cruise liners by means of statistic methods

Institutional Determinants of IncomeLevel Convergence in the European. Union: Are Institutions Responsible for Divergence Tendencies of Some

Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019

4. EKSPLOATACJA UKŁADU NAPĘD ZWROTNICOWY ROZJAZD. DEFINICJA SIŁ W UKŁADZIE Siła nastawcza Siła trzymania


Verification of probabilistic method for under keel clearance assessment based on ships entering to Świnoujście, Szczecin and Police ports

Outline of a method for fatigue life determination for selected aircraft s elements

Cracow University of Economics Poland

AKADEMIA MORSKA W SZCZECINIE WYDZIAŁ MECHANICZNY ROZPRAWA DOKTORSKA. mgr inż. Piotr Smurawski

PORTS AS LOGISTICS CENTERS FOR CONSTRUCTION AND OPERATION OF THE OFFSHORE WIND FARMS - CASE OF SASSNITZ

European Crime Prevention Award (ECPA) Annex I - new version 2014

STATISTICAL METHODS IN BIOLOGY

Latent Dirichlet Allocation Models and their Evaluation IT for Practice 2016

Przewody do linii napowietrznych Przewody z drutów okrągłych skręconych współosiowo

BIOPHYSICS. Politechnika Łódzka, ul. Żeromskiego 116, Łódź, tel. (042)

QUANTITATIVE AND QUALITATIVE CHARACTERISTICS OF FINGERPRINT BIOMETRIC TEMPLATES

WOJSKOWE TRASY LOTÓW (MRT) NA MAŁYCH WYSOKOŚCIACH LOW FLYING MILITARY TRAINING ROUTES (MRT)

Medical electronics part 10 Physiological transducers


Parametryczne metody modelowania właściwości morskich statku. Tomasz Cepowski

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

TRANSPORT W RODZINNYCH GOSPODARSTWACH ROLNYCH

Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards

Domy inaczej pomyślane A different type of housing CEZARY SANKOWSKI

Materiałowe i technologiczne uwarunkowania stanu naprężeń własnych i anizotropii wtórnej powłok cylindrycznych wytłaczanych z polietylenu

Compatible cameras for NVR-5000 series Main Stream Sub stream Support Firmware ver. 0,2-1Mbit yes yes yes n/d

ANALIZA ROZKŁADU POLA MAGNETYCZNEGO W KADŁUBIE OKRĘTU Z CEWKAMI UKŁADU DEMAGNETYZACYJNEGO

Zarządzanie sieciami telekomunikacyjnymi

STAŁE TRASY LOTNICTWA WOJSKOWEGO (MRT) MILITARY ROUTES (MRT)

PRACA DYPLOMOWA Magisterska

Lek. Ewelina Anna Dziedzic. Wpływ niedoboru witaminy D3 na stopień zaawansowania miażdżycy tętnic wieńcowych.

Assessment of ship squat in shallow water using CFD

OCENA MOśLIWOŚCI WYKORZYSTANIA HODOWLI ŚWIŃ RASY ZŁOTNICKIEJ

OPORY W RUCHU OSCYLACYJNYM MECHANIZMÓW MASZYN GÓRNICZYCH

P R A C A D Y P L O M O W A

Krytyczne czynniki sukcesu w zarządzaniu projektami

deep learning for NLP (5 lectures)

ELECTRIC AND MAGNETIC FIELDS NEAR NEW POWER TRANSMISSION LINES POLA ELEKTRYCZNE I MAGNETYCZNE WOKÓŁ NOWYCH LINII ELEKTROENERGETYCZNYCH

ZGŁOSZENIE WSPÓLNEGO POLSKO -. PROJEKTU NA LATA: APPLICATION FOR A JOINT POLISH -... PROJECT FOR THE YEARS:.

General Certificate of Education Ordinary Level ADDITIONAL MATHEMATICS 4037/12

ZESZYTY NAUKOWE NR 10(82) AKADEMII MORSKIEJ W SZCZECINIE. Analiza strat ciśnieniowych w kanałach pompy MP-05

Urbanek J., Jabłoński A., Barszcz T ssswedfsdfurbanek J., Jabłoński A., Barszcz T., Wykonanie pomiarów

WENTYLATORY PROMIENIOWE SINGLE-INLET DRUM BĘBNOWE JEDNOSTRUMIENIOWE CENTRIFUGAL FAN

Wykaz linii kolejowych, które są wyposażone w urządzenia systemu ETCS

RESONANCE OF TORSIONAL VIBRATION OF SHAFTS COUPLED BY MECHANISMS

Regionalny Dyrektor Ochrony Środowiska ul. 28 czerwca 1956 Poznań

DOI: / /32/37

Wstęp C z ę ś ć I Psychologiczne uwarunkowania przeżycia religijnego

Wprowadzenie do programu RapidMiner, część 2 Michał Bereta 1. Wykorzystanie wykresu ROC do porównania modeli klasyfikatorów

Wykaz linii kolejowych, które są wyposażone w urzadzenia systemu ETCS

SPIS TREŚCI SPIS WAŻNIEJSZYCH OZNACZEŃ WSTĘP KRÓTKA CHARAKTERYSTYKA SEKTORA ENERGETYCZNEGO W POLSCE... 14


ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

PRZEPISY RULES PUBLIKACJA NR 83/P PUBLICATION NO. 83/P

Ocena potrzeb pacjentów z zaburzeniami psychicznymi

UMOWY WYPOŻYCZENIA KOMENTARZ

MODELOWANIE CHARAKTERYSTYK MOMENTU OBROTOWEGO I POCHODNYCH CHARAKTERYSTYK UKŁADU NAPĘDOWEGO ZE ŚRUBĄ O STAŁYM SKOKU

Wyniki Finansowe Grupy Kapitałowej Private Equity Managers S.A. za Warszawa, 29 Marca 2017

METODA MACIERZOWA OBLICZANIA OBWODÓW PRĄDU PRZEMIENNEGO

MULTI CRITERIA EVALUATION OF WIRELESS LOCAL AREA NETWORK DESIGNS

Country fact sheet. Noise in Europe overview of policy-related data. Poland

Analiza zmian charakterystyk oporowych statku w aspekcie zapotrzebowania mocy do napędu i zużycia paliwa w czasie eksploatacji

Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytet Mikołaja Kopernika w Toruniu

Revenue Maximization. Sept. 25, 2018

WYNIKI BADAŃ CHARAKTERYSTYKI PRĘDKOŚCIOWEJ MODELU STATKU Z NAPĘDEM HYBRYDOWYM

REHABILITATION OF MEDIUM-HEAD HYDROPOWER PLANTS WITH EXPLOITED TWIN-FRANCIS TURBINES.

Opis Przedmiotu Zamówienia oraz kryteria oceny ofert. Części nr 10

WAVELET TRANSFORM OF SELECTED SIMULATION SIGNALS USING DETAILS AS INFORMATION SOURCE

Selection of controller parameters Strojenie regulatorów

STATYSTYKA OD PODSTAW Z SYSTEMEM SAS. wersja 9.2 i 9.3. Szkoła Główna Handlowa w Warszawie

ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS.

Updated Action Plan received from the competent authority on 4 May 2017

Mgr inż. Krzysztof KRAWIEC. Rozprawa doktorska. Streszczenie

Transkrypt:

Scientific Journals Maritime University of Szczecin Zeszyty Naukowe Akademia Morska w Szczecinie 1, (94) pp. 5 9 1, (94) s. 5 9 Design guidelines for predicting wave resistance of ro-ro ferries at the initial designing stage Wskazówki projektowe do prognozowania dodatkowego oporu na fali promów ro-ro na wstępnym etapie projektowania Tomasz Cepowski Maritime University of Szczecin, Faculty of Navigation, Institut of Marine Navigation Akademia Morska w Szczecinie, Wydział Nawigacyjny, Instytut Nawigacji Morskiej 7-5 Szczecin, ul. Wały Chrobrego 1 Key words: added wave resistance, ro-ro ferries, design guidelines, regression, design parameters Abstract Design guidelines are presented for predicting added wave resistance useful at the early stage of designing ro-ro ferries. The guidelines were prepared on the basis of regression analysis of model values of added wave resistance. The model values were calculated by means of 448 ferry shape variants assuming conventional waving parameters and ferry movement parameters. Such approach permitted the replacement of a complicated numerical model with a simple regression model based on basic design parameters. Słowa kluczowe: dodatkowy opór na fali, prom ro-ro, wskazówki projektowe, regresja, parametry projektowe Abstrakt W pracy przedstawiono wskazówki projektowe dotyczące prognozowania dodatkowego oporu na fali przydatne na wstępnym etapie projektowania promów ro-ro. Wskazówki opracowano w oparciu o analizę regresji wartości wzorcowych dodatkowego oporu na fali. Wartości wzorcowe obliczono za pomocą dokładnych metod numerycznych dla 448 wariantów kształtu promu, przyjmując umowne parametry falowania oraz parametry ruchu promu. Takie podejście pozwoliło zastąpić skomplikowany model numeryczny prostym modelem regresyjnym bazującym na podstawowych parametrach projektowych. Introduction In the process of ship design naval architects seek solutions for fulfilling both economical criteria and technical limitations. Economical criteria consist of a number of requirements set by the ship -owner, among which there are desired internal capacity and operational speed, which significantly affect the profitability of the vessel s operation on a given shipping line. Whether a ship reaches the assumed operational speed depends inter alia on the parameters and work conditions of the propulsion system and the values of total hull resistance. One factor of this resistance is added wave resistance connected with vessel s sailing in stormy conditions. It can constitute even up to 3 5% of the vessel s total resistance [1, ]. Predicting the vessel s added wave resistance is an essential challenge to naval architects due to the economical aspect of propulsion system s parameter selection, fuel consumption and estimation of voyage time. Wave added resistance is significantly affected by the hull s shape and dimension, which is why it should be modelled as early as the stage of initial design. An essential feature of the vessel s initial designing is that the hull s exact shape is presented by means of main dimensions and certain general coefficients characterising hull shape, e.g. block coefficient. This modest amount of information does not permit using known methods of determining added wave resistance based on the classical linear or non-linear theory. Another problem is that Zeszyty Naukowe (94) 5

Tomasz Cepowski the selection of improper values of main dimensions and block coefficients may cause large wave resistance, as the change of any ship s dimension after construction is economically unprofitable. This study was aimed at working out design guidelines permitting the reduction of the ro-ro ferry s added wave resistance at the initial stage of its designing. The method The aim of research was achieved by an analysis of results obtained from numerical calculations of vessel s motions in waves. The research methods consisted of the following stages: 1) preparing a list of ferries in a wide scope of shapes and sizes; ) simplification and idealisation of connections in the physical model: a) replacing the hull s real shape with shape parameters; b) assuming a conventional operational scenario in which, among other things, real wave conditions were replaced with statistical conditions; 3) preparing a mathematical symbolic model of the phenomenon or feature; 4) using a numerical calculation model; 5) selection of functions approximating the set of discrete results of numerical model; 6) verification and assessment of determined modelling methods; List of ro-ro ferry shape variants Calculating model values of added wave resistance R by means of accurate methods Analysis of results and determining hull parameters X 1, X... X n essentially affecting added wave resistance R Preparing design guidelines for calculating design parameters taking account of added wave resistance R Conventional operational scenario Ferry movement and waving parameters Fig. 1. Algorithm presenting the research method, where: X 1, X X n vessel s design parameters, R added wave resistance Rys. 1. Algorytm przedstawiający metodę badań, gdzie: X 1, X X n parametry projektowe statku, R dodatkowy opór na fali 7) determining the applicability scope and restrictions of particular methods. A detailed research algorithm has been presented in figure 1. Modelling added wave resistance List of ro-ro ferry hull shape variants For preparing a list of ro-ro ferry hull shape variants, guidelines were used contained in the report [3]. A list of 448 variants was made in the research, prepared on the basis of the following ranges of the ferry s design parameters: LBd (L waterplane length, B waterplane breadth, d vessel draft) = 19, 8, 37, 46 m 3 ; L/B = 5.8, 6.6, 7.4, 8.; B/d = 3, 3.5, 4, 4.5, and a set of 7 ro-ro ferry shape variants (Table 1). Table 1. Ro-ro ferry shape variants, where: CB block coefficient, CM frame section coefficient, CB(L) longitudinal block coefficient, CB(V) vertical prismatic coefficient, CWL waterplane block coefficient, XF distance of waterline s geometric centre from after perpendicular, XB distance of buoyancy centre from after perpendicular, Lpp vessel s length between perpendiculars Tabela 1. Warianty kształtu promu ro-ro, gdzie: CB współczynnik pełnotliwości podwodzia, CM współczynnik pełnotliwości owręża, CB(L) wzdłużny współczynnik pełnotliwości podwodzia, CB(V) pionowy współczynnik pełnotliwości podwodzia, CWL współczynnik pełnotliwości wodnicy, XF odległość środka geometrycznego wodnicy od pionu rufowego, XB odległość środka wyporu od pionu rufowego, Lpp długość statku pomiędzy pionami CB CM CB(L) CB(V) CWL XF/Lpp [%] XB/Lpp [%].69.954.639.759.83 46. 47.61.614.963.638.743.86 45.34 48..618.955.647.76.811 45.64 47.4.585.971.64.734.797 43.59 47.16.69.958.657.743.847 45.4 46.6.614.984.645.786.781 45.44 48.11.64.977.657.777.86 44.44 48.79 Model values of added wave resistance For calculating model values of wave resistance the Gerritsma-Beukelman method was applied [1, 4]. This method is restricted to, first of all, the determination of resistance increment on the opposite wave. Of methods used for determining added wave resistance, the Gerritsma-Beukelman method is the simplest and yields results most consistent with the experiment. It is based on comparing energy discharged from a rolling vessel in the form of back wash with the work performed by the added 6 Scientific Journals (94)

Design guidelines for predicting wave resistance of ro-ro ferries at the initial designing stage resistance force [5]. The Gerritsma-Beukelman method permits a fairly accurate determination of added resistance for vessels of any shape, although the accuracy of this method is lower for vessels with low values of block coefficient [6]. Calculations were made by means of the SEA- WAY program. SEAWAY accuracy tests shown in [4, 7] point to a fairly high calculation accuracy. Calculations of added wave resistance were made on statistical wave with a conventional operational scenario assumed: 1) the ferry is proceeding at a progressive speed v = 1 m/s in head waves, ) wave spectrum conforms with JONSWAP, 3) significant wave height H S = 1 6 m at one metre interval, 4) wave reaches characteristic period T, for which there is a maximum value of added wave resistance. The outcome of this part of research was a set of 568 model values of added wave resistance calculated for the assumed ferry shapes and accepted wave parameters. Hull parameters essentially affecting added vessel resistance in waves On the basis of statistical analysis of the set of model values relationship (1) was formulated permitting the prediction of added resistance in waves R:.74.76 B 117.34 C M H R 114 S (1) where: R significant value of added wave resistance [kn], B waterplane breadth [m], C M midship section coefficient, H S wave significant height [m]. Relation (1) is characterised by: 1) high Pearson correlation coefficient R =.99, ) low value of standard deviation = 3 kn, which proves high interrelationship of the above variables and high approximation accuracy. Figures 5 compare the model values calculated by means of accurate numerical methods with values approximated by equation (1). Equation (1) is characterised by trends in conformance with [5, 6, 8]. As the values of coefficient C M are not always known in the initial stage of designing, relation (1) was simplified to this formula ():.81 B HS R () Relation () is characterised by: 1) high Pearson correlation coefficient R =.98, ) standard deviation = 41 kn, which also confirms a fairly high approximation accuracy. Figure 6 presents a comparison of model values with values calculated by means of equation (). It follows from the graph that relation () is characterised by proper trend. 9 7 5 3 1 4 6 8 H S [m] wartość model wzorcowa value aproksymacja approximation wg acc. równania to equation (1) (1) Fig.. Significant values of added resistance in bow waves R (1), H S = var, CM =.97, B = 7.14 m, wave spectrum JONSWAP, vessel speed v = 1 m/s Rys.. Wartości znaczące dodatkowego oporu na fali dziobowej oraz równania (1), H S = var, CM =.97, B = 7.14 m, spectrum falowania JONSWAP, prędkość statku v = 1 m/s 1 9 7 5 3 1 18 3 8 33 B [m] wartość model wzorcowa value aproksymacja approximation wg acc. równania to equation (1) (1) Fig. 3. Significant values of added resistance in bow waves R (1), B = var, CM =.97, H S = 6 m, wave spectrum JONSWAP, vessel speed v = 1 m/s Rys. 3. Wartości znaczące dodatkowego oporu na fali dziobowej oraz równania (1), B = var, CM =.97, H S = 6 m, spectrum falowania JONSWAP, prędkość statku v = 1 m/s Zeszyty Naukowe (94) 7

Tomasz Cepowski 1 9 7 5 3 1 1 1.95.96.97.98.99 CM [ ] model value approximation acc. to equation (1) Fig. 4. Significant values of added resistance in bow waves R (1), CM = var, B = 7.1 m, H S = 6 m, wave spectrum JONSWAP, vessel speed v = 1 m/s Rys. 4. Wartości znaczące dodatkowego oporu na fali dziobowej oraz równania (1), CM = var, B = 7.1 m, H S = 6 m, spectrum falowania JONSWAP, prędkość statku v = 1 m/s 1 1 1 1 (114.74 +.76 B 117.34 CM) H S [kn] model value approximation acc. to equation (1) Fig. 5. Significant values of added resistance in bow waves R (1), B = var, CM = var, H S = var, wave spectrum JON- SWAP, vessel speed v = 1 m/s Rys. 5. Wartości znaczące dodatkowego oporu na fali dziobowej oraz równania (1), B = var, CM = var, H S = var, spectrum falowania JONSWAP, prędkość statku v = 1 m/s Fig. 6. Significant values of added resistance on bow wave R (), B = var, H S = var, wave spectrum JONSWAP, vessel speed v = 1 m/s Rys. 6. Wartości znaczące dodatkowego oporu na fali dziobowej oraz równania (), B = var, H S = var, spectrum falowania JONSWAP, prędkość statku v = 1 m/s Conclusions 1 1 1 B H S [kn] model value approximation acc. to equation () Analytical tools for predicting added wave resistance are presented. They can be used as design guidelines for initial designing of ro-ro ferries. The relations worked out are characterised by fairly high accuracy in relation to the model values and proper trends. The approach proposed enables the replacement of a complicated numerical model with a simple linear model characterised by high accuracy within the assumed restrictions. The model values, on the basis of which approximations (1) and () were prepared, were calculated with certain assumptions described in the article. Therefore, approximations (1) and () have limitations resulting from the assumptions made and they concern: limitations of Gerritsma-Beukelman method, assumed waves spectrum JONSWAP, parameters and uprush directions of the statistical wave: bow wave of significant height H S = 1 6 m and characteristic period causing the emergence of maximum values R, vessel speed v = 1 m/s, hull parameters and block coefficients conforming to assumptions, in particular B = 19 33 m, CM =.954.985. 8 Scientific Journals (94)

Design guidelines for predicting wave resistance of ro-ro ferries at the initial designing stage References 1. ARRIBAS F. PÉREZ: Some methods to obtain the added resistance of a ship advancing in waves. Ocean Engineering 34, 7, 946 955.. PAYNE S., DALLINGA R.P., GAILLARDE G.: Queen Mary seakeeping assessment: the owner s requirements, the design verification and operational experience. Cruise & Ferry, 5. 3. Sea Highways Ltd: Future trends in the design of ro-ro and ro-pax vessels operating in the southern Baltic. BALTIC GATEWAY Report, 5. 4. GERRITSMA J., BEUKELMAN W.: Analysis of the Resistance Increase in Waves of a Fast Cargo-ship. International Shipbuilding Progress, 197, 19(17). 5. DUDZIAK J.: Teoria okrętu. FPPOiGM, Gdańsk 8. 6. NABERGOJ R., JASNA PRPIFI-ORŠIFI: A comparison of different methods for added resistance prediction. nd IWWWFB, Plitvice, Croatia 7. 7. JOURNÉE J.M.J.: Verification and Validation of Ship Motions Program SEAWAY. Report 113a, Delft University of Technology, The Netherlands 1. 8. SCHNEEKLUTH H., BERTRAM V.: Ship Design for Efficiency and Economy. Butterworth-Heinemann, 1998. Recenzent: prof. dr hab. inż. Jerzy Girtler Politechnika Gdańska Zeszyty Naukowe (94) 9