AEROŻELE I PIANKI POLIURETANOWE - NOWOCZESNE MATERIAŁY TERMOIZOLACYJNE W BUDOWNICTWIE



Podobne dokumenty
Budownictwo mieszkaniowe

ANALIZA OSZCZĘDNOŚCI ENERGII CIEPLNEJ W BUDOWNICTWIE MIESZKANIOWYM JEDNORODZINNYM

Porofix INNOWACYJNE ROZWIĄZANIA IZOLACYJNE. Porofix Osłona Porofix Rura Porofix Profil Maty Porogel

Ytong + Multipor ETICS System budowy i ocieplania ścian

2. Izolacja termiczna wełną mineralną ISOVER

PIANA PUR OTWARTO-KOMÓRKOWA IZOLACJA PODDASZY OD WEWNĄTRZ

Czym jest aerogel? Izolacja aerogelem zapewnia maksimum ochrony termicznej przy minimalnej wadze i grubości.

THERMANO AGRO PŁYTY TERMOIZOLACYJNE PIR

H-Block. Copyright Solcraft sp. z o.o. All Rights Reserved

Szkła specjalne Wykład 10 Metoda zol żel, aerożele Część 2 Właściwości termiczne aerożeli

THERMANO WIĘCEJ NIŻ ALTERNATYWA DLA WEŁNY I STYROPIANU

Czym jest H-Block H-Block H-Block plus Właściwości izolacyjnej płyty konstrukcyjnej H-Block Kontakt

Płyty warstwowe. IzoSoft

Efektywne zarządzanie energią celem polityki energetycznej

MNIEJ WARSTW -LEPSZA IZOLACJA. Ściana jednowarstwowa. Ytong Energo+ energooszczędność. oddychająca ściana. twarda powierzchnia

YTONG MULTIPOR MINERALNE PŁYTY IZOLACYJNE. Xella Polska sp. z o.o

Wymagania techniczno-montażowe dla lekkiego, drewnianego budownictwa szkieletowego Materiały ochrony przeciwwilgociowej i/izolacje cieplne

DLACZEGO WARTO INWESTOWAĆ W TERMOPARAPETY?

OCIEPLANIE DOMU WEŁNĄ MINERALNĄ

THERMANO AGRO STABILNOŚĆ TERMICZNA I ODPORNOŚĆ NA PLEŚŃ I GRZYBY

Beton komórkowy. katalog produktów

Józef Frączek Jerzy Janiec Ewa Krzysztoń Łukasz Kucab Daniel Paściak

Przedsiębiorstwo Badawczo Innowacyjne Sadyba sp. z o.o. jest kontynuatorem firmy, która działa na rynku budowlanym od 1999 roku.

Przykładowe rozwiązania ścian dwuwarstwowych z wykorzystaniem asortymentu Xella

CHARAKTERYSTYKA I DOBÓR IZOLACJI CIEPLNYCH W PRZEGRODACH ZEWNĘTRZNYCH Z PUNKTU WIDZENIA BEZPIECZEŃSTWA CIEPLNEGO

Dom.pl Projekty domów z garażem i piwnicą: jak ocieplać strop nad pomieszczeniem nieogrzewanym?

Informacje o Aerogel.

Natryskowe systemy poliuretanowe wytwarzane przez Polychem Systems Sp. z o. o. Parametry i zastosowanie

Płyty PolTherma SOFT PIR mogą być produkowane w wersji z bokami płaskimi lub zakładkowymi umożliwiającymi układanie na tzw. zakładkę.

JAK EFEKTYWNIE IZOLOWAĆ DACHY, ŚCIANY I FASADY?

Ceramika tradycyjna i poryzowana

CIEPŁY DOM DREWNIANY SZKIELETOWE DOMY PASYWNE

Żeby uzyskać najwyższą ergonomię cieplną, musimy zdecydować się na odpowiednią dla budynku szerokość warstwy dociepleniowej.

PolDeck BD I. CHARAKTERYSTYKA OGÓLNA II. WŁAŚCIWOŚCI FIZYCZNE, DANE TECHNICZNE. a. Przeznaczenie. b. Cechy charakterystyczne. a.

H-Block Izolacyjna Płyta Konstrukcyjna Spis treści

KORZYSTNY WSPÓŁCZYNNIK PRZY MNIEJSZEJ GRUBOŚCI

IZOLACJA DACHU WEŁNĄ MINERALNĄ CLIMOWOOL

BUDOWLANE MATERIAŁY IZOLACYJNE

MURY TRÓJWARSTWOWE Z PUSTAKÓW CERAMICZNYCH I CEGIEŁ LICOWYCH

Prawidłowa izolacja cieplna poddaszy

IZOLACJA HAL STALOWYCH

Zakup styropianu - jak wybrać najlepiej?

TERMOIZOLACJA, ENERGOOSZCZĘDNOŚĆ, EKOLOGIA, INNOWACYJNOŚĆ. ETG TO SYSTEM OCIEPLENIA W JEDNYM WORKU

Przedsiębiorstwo Badawczo Innowacyjne Sadyba sp. z o.o. jest kontynuatorem firmy, która działa na rynku budowlanym od 1999 roku.

ETICS = obniżenie kosztów

Wełna mineralna - szklana czy skalna?

Płyty do ogrzewania podłogowego

Dachy skośne porównanie systemu izolacji nakrokwiowej płytami poliuretanowymi z metodami wykorzystującymi tradycyjne materiały budowlane

Płyty w okładzinach elastycznych. PZITB koło nr 4 PP

Termomodernizacja budynków jednorodzinnych ograniczenie smogu i niższe rachunki za ogrzewanie

Energia użytkowa, czyli zadbaj o szczelność domu

Jakie ściany zewnętrzne zapewnią ciepło?

AKU K5 PUSTAK ŚCIENNY MOC W JAKOŚCI

Dom.pl Zmiany w Warunkach Technicznych od 1 stycznia Cieplejsze ściany w domach

DEKLARACJA WŁAŚCIWOŚCI UŻYTKOWYCH NR 24/2016/S/C supor EPS PLUS dach podłoga EPS-EN T2-L3-W3-Sb5-P10-BS100-CS(10)60-DS(N)5-DS(70,-)2-TR100

ENERGOCHŁONNOŚĆ BUDYNKÓW EDUKACYJNYCH I ICH IZOLACYJNOŚĆ CIEPLNA W ŚWIETLE AKTUALNYCH WYMAGAŃ

YTONG MULTIPOR Mineralne płyty izolacyjne

ThermaBitum FR / Sopratherm B FR I. CHARAKTERYSTYKA OGÓLNA I. WŁAŚCIWOŚCI FIZYCZNE, DANE TECHNICZNE. a. Przeznaczenie. b. Cechy charakterystyczne

CZYM OCIEPLIĆ PODDASZE?

PIANKA PUR DO OCIEPLANIA

Cennik materiałów budowlanych

BETON KOMÓRKOWY KATALOG PRODUKTÓW

Budownictwo pasywne i jego wpływ na ochronę środowiska. Anna Woroszyńska

Multipor system izolacji termicznej ścian i stropów. Małgorzata Bartela, Product Manager Xella Polska

mib.gov.pl mib.gov.pl Stan przepisów dot. projektowania budynków. Zamierzenia i kierunek dalszych prac legislacyjnych mib.gov.pl

Tworzy dobry klimat. Mineralna wełna szklana CENNIK Cennik ważny od r.

CENNIK SYSTEMÓW NATRYSKU PIANEK 2014

DEKLARACJA WŁAŚCIWOŚCI UŻYTKOWYCH NR 11/2018/S/C

IZOLACJE NATRYSKOWE OCIEPLANIE DOMÓW PIANĄ POLIURETANOWĄ ICYNENE

Perspektywa zmian zapotrzebowania na ciepło systemowe w wyniku poprawy efektywności energetycznej budynków

Letni komfort. z mineralną wełną szklaną URSA. Stockbyte/Thinkstock

PIANOMAT INNOWACYJNOŚĆ POD PODŁOGĄ

Program Czyste Powietrze Szkolenie dla pracowników socjalnych Ośrodków Pomocy Społecznej

ZRÓWNOWAŻONA OCENA NA PRZYKŁADZIE MATERIAŁU TERMOIZOLACYJNEGO

DEKLARACJA WŁAŚCIWOŚCI UŻYTKOWYCH NR 13/2018/S/C

DEKLARACJA WŁAŚCIWOŚCI UŻYTKOWYCH NR 66/2016/S/M/1

Sposób na ocieplenie od wewnątrz

OCENA OCHRONY CIEPLNEJ

Dom.pl Profile aluminiowe. Ciepłe i energooszczędne okna do nowoczesnych domów

Natryskowe izolacje poliuretanowe

Obliczenie rocznych oszczędności kosztów energii uzyskanych w wyniku dociepleniu istniejącego dachu płaskiego płytą TR26FM

DEKLARACJA WŁAŚCIWOŚCI UŻYTKOWYCH NR 7/2016/S/M swisspor EPS 100 dach podłoga EPS-EN T2-L3-W3-Sb5-P10-BS150-CS(10)100-DS(N)5-DS(70,-)2-DLT(1)5

TERMOIZOLACJA NOWYCH I MODERNIZOWANYCH DACHÓW

DEKLARACJA WŁAŚCIWOŚCI UŻYTKOWYCH NR 26/2014/S

Zasoby a Perspektywy

8. IZOLACJA PODŁÓG I STROPÓW

Warunki techniczne co się zmieni w budowie domu?

OFERUJEMY: W zgodzie z naturą. Zalety naszych materiałów: Wymiary bloczków i płytek produkowanych w SOLBET-STALOWA WOLA S.A.

Ytong Panel. System do szybkiej budowy

Projekt domu AC Astrid (mała) G2 CE (DOM AF8-66) spełniający WT2021

Inteligentna izolacja energooszczędnego domu

Podkręć tempo budowy. System do szybkiej budowy. Dlaczego warto budować w systemie Ytong Panel

EKRAN 15. Zużycie ciepłej wody użytkowej

Krajowa Agencja Poszanowania Energii S.A. Warszawa, mgr inż. Dariusz Koc Krajowa Agencja Poszanowania Energii S.A.

NATRYSK IZOLACJI TERMICZNYCH

POTRZEBA MATKĄ WYNALAZKU

Opis przedmiotu zamówienia równoważność. Opis przedmiotu zamówienia PARAMETRY. Wymagane:

A B ITB-KOT-2018/0456 wydanie 1 z 2018 r. ITB-KOT-2018/0454 wydanie 1 z 2018 r. ITB-KOT-2018/0452 wydanie 1 z 2018 r.

WYŻSZA SZKOŁA EKOLOGII I ZARZĄDZANIA Warszawa, ul. Wawelska 14. Część II. Materiały termoizolacyjne z surowców skalnych

The Evolution of Insulation

Transkrypt:

Budownictwo o Zoptymalizowanym Potencjale Energetycznym 2(16) 2015, s. 9-14 Izabela ADAMCZYK-KRÓLAK Politechnika Częstochowska AEROŻELE I PIANKI POLIURETANOWE - NOWOCZESNE MATERIAŁY TERMOIZOLACYJNE W BUDOWNICTWIE W artykule omówiono nowoczesną izolację termiczną obecnie coraz częściej stosowaną w polskim budownictwie mieszkaniowym, dającą możliwość zdecydowanie szczelniejszej izolacji cieplnej niż tradycyjne materiały. Scharakteryzowano najbardziej dostępne na rynku materiały izolacyjne, takie jak aerożele i pianki poliuretanowe. Słowa kluczowe: energooszczędność cieplna, aerożele, pianki poliuretanowe, izolacyjność cieplna WPROWADZENIE Ciepło to główny czynnik wpływający na nasze samopoczucie i wydajność pracy. Utrzymanie prawidłowej temperatury pomieszczeń, czyli zapewnienie odpowiedniego komfortu cieplnego, z uwagi na stale rosnące koszty wpływa w sposób istotny na koszty eksploatacyjne budynku. Dlatego też coraz częściej inwestorzy zwracają uwagę na pojawiające się na rynku nowoczesne materiały, pozwalające uzyskać efektywną izolację przegród budowlanych. Izolacyjność cieplną budynków regulują warunki techniczne, wynikające z Rozporządzenia Ministra Transportu, Budownictwa i Gospodarki Morskiej z dnia 5 lipca 2013, które są wdrażane etapowo: pierwszy etap od 1 stycznia 2014 roku, drugi od 1 stycznia 2017 roku, trzeci od 1 stycznia 2021 roku. Zgodnie z tym rozporządzeniem budynki jednorodzinnej zabudowy mieszkalnej należy tak projektować, by zminimalizować potencjalne straty ciepła przez poszczególne przegrody budowlane, a ilość potrzebnej energii cieplnej na ich ogrzanie była utrzymana na niskim poziomie, tak aby budynki były energetycznie samowystarczalne. Uwzględniając powyższe aspekty, na podstawie ww. warunków technicznych obliczamy wskaźnik EP - rocznego zapotrzebowania budynku na nieodnawialną energię pierwotną zużywaną na ogrzewanie, wentylację, ciepłą wodę bieżącą, chłodzenie, oświetlenie zgodnie ze wzorem [1, 2]: EP = EP H+W + EP C + EP L [kwh/(m 2 rok)] (1) gdzie: EP - energia pierwotna [kwh/(m 2 rok)],

10 I. Adamczyk-Królak EP H+W - cząstkowa maksymalna wartość wskaźnika EP na potrzeby ogrzewania, wentylacji oraz przygotowania ciepłej wody użytkowej [kwh/(m 2 rok)], EP C - cząstkowa maksymalna wartość wskaźnika EP na potrzeby chłodzenia [kwh/(m 2 rok)], EP L - cząstkowa maksymalna wartość wskaźnika EP na potrzeby oświetlenia [kwh/(m 2 rok)]. 1. MATERIAŁY IZOLACJI CIEPLNEJ Zaletą budownictwa energooszczędnego jest przede wszystkim niskie zużycie energii na ogrzewanie domów, które można osiągnąć poprzez prawidłowy dobór ekologicznych i nowoczesnych materiałów o niskim współczynniku przenikania ciepła oraz prawidłowe wykonanie warstwy izolacyjnej. Materiałem izolacji cieplnej powszechnie stosowanym w budownictwie mieszkaniowym jest styropian, czyli spieniony granulowany polistyren, który jest lekki, tani, łatwy w montażu, o współczynniku przewodzenia ciepła rzędu od 0,028 do 0,045 W/(m K). Materiał ten, niestety, po kilku latach użytkowania (powyżej 8 lat) utlenia się, co wpływa na pogorszenie się właściwości izolacyjności cieplnej całej przegrody. Ściana ocieplona styropianem nie oddycha, co może spowodować, że w szczelinach między ścianą a zamontowanym styropianem skrapla się woda, a co za tym idzie - powstaje wilgoć, pleśń i zagrzybienia. Wśród materiałów izolacji cieplnej powszechnie stosowane są również wata szklana, wełna szklana oraz wełna mineralna. Współczynnik przewodzenia ciepła zależy od gęstości powyższych materiałów i mieści się w granicach od 0,032 do 0,050 W/(m K). Zaletami waty i wełny szklanej oraz wełny mineralnej są przede wszystkim dobra izolacyjność termiczna, niepalność i ognioodporność, zdolność pochłaniania dźwięków, stabilność kształtu i wymiaru, sprężystość i wytrzymałość mechaniczna. Dodatkowym atutem jest odporność biologiczna i chemiczna wraz z wodoodpornością i paroprzepuszczalnością. Wadami są natomiast higroskopijność i nasiąkliwość materiałów oraz większy ciężar własny, co skutkuje zwiększeniem kosztów montażu. Bardziej nowoczesną, a zarazem ekologiczną izolacją cieplną jest wełna drzewna i mata drzewna, która wykonana jest z rozwłóknionego drewna (95% naturalnego materiału) i połączona naturalnym lepiszczem. Takie ocieplenie nie odkształca się pod wpływem wilgoci, nie zawiera toksycznych substancji, ma właściwości hydrofobowe, odporne jest na szkodniki roślinne i zwierzęce, jest paroprzepuszczalne, czyli aktywnie oddychające. Może być stosowane zarówno w budownictwie drewnianym, jak i w zabudowie wnętrz. Styropian, wełny mineralne, szklane i drzewne są powszechnie stosowane, jednak cały czas są prowadzone poszukiwania w kierunku takich materiałów izolacji cieplnej, które pozwoliłyby zmniejszyć koszty zapotrzebowania na energię ogrzewania. Obecnie zaczynają być stosowane nowoczesne materiały pochodzenia mineralnego, tj. aerożele, wytworzone z krzemionki, będące rodzajem sztywnej piany o bardzo małej gęstości (ich masę stanowi ponad 99% powietrza, a 1% to materiał porowaty, który tworzy strukturę), oraz pianki i nanopianki poliuretanowe, czyli sztywne pianki o różnych rozmiarach porów w swojej strukturze [3].

1.1. Aerożele Aerożele i pianki poliuretanowe - nowoczesne materiały termoizolacyjne w budownictwie 11 Czysty aerożel (rys. 1) jest materiałem otwartokomórkowym o małej gęstości, od 1,9 do 150 mg/cm 3, oraz najlżejszym stałym materiałem o najniższym współczynniku przewodzenia ciepła λ, od 0,012 do 0,018 W/(m K) [4]. Rys. 1. Aerożele [5] Ma bardzo dobre właściwości termiczne i akustyczne wynikające z jego mikrostruktury (pory o wymiarze od 2 do 50 nm), jest niepalny, nietoksyczny, odporny na wysokie temperatury (swoje właściwości utrzymuje do temperatury 500 C, a jego temperatura topnienia wynosi 1200 C). Dodatkowo jest odporny na ściskanie i rozciąganie, wytrzymuje nacisk na gładką powierzchnię 2000 razy większą od masy własnej (rys. 2). Rys. 2. Cegła ustawiona na aerożelu [3] Wadą aerożeli jest natomiast brak odporności na działanie wody, która powoduje niszczenie ich wewnętrznej struktury, oraz brak odporności na skręcanie i uderzenia. W celu umożliwienia zastosowania aerożelu w budownictwie i jednocześnie wyeliminowania jego wad stosuje się włókna wzmacniające, które tworzą materiał o bardzo dobrych właściwościach i jednocześnie odporny na uderzenia i skręcanie. Wyróżniamy następujące rodzaje aerożeli: organiczne (uretanowe, poliizocyjania-

12 I. Adamczyk-Królak nowe, poliolefinowe, rezorcynowoformaldehydowe), nieorganiczne (aerożel krzemionkowy) i hybrydowe. Tabela 1. Porównanie parametrów najczęściej stosowanych materiałów do ociepleń budynków z aerożelem [7] Parametr Aerożel Styropian Wełna mineralna Współczynnik przenikania ciepła deklarowany przez producentów 0,014 0,016 W/(m K) 0,031 0,042 W/(m K) 0,030 0,045 W/(m K) Gęstość objętościowa 117 143 kg/m 3 14 19 kg/m 3 135 170 kg/m 3 Odporność ogniowa, klasa reakcji na ogień Zakres temperatury stosowania Naprężenie ściskające przy 10% odkształceniu względnym Wytrzymałość na rozciąganie prostopadle do powierzchni czołowych Klasa A lub D (trudnozapalny, niekapiący i nieodpadający pod wpływem ognia) Zakres temperatury, w którym zachowane są właściwości: od 270 C do +650 C Klasa E Klasa A (samogasnący, gaśnie po (materiał niepalny) usunięciu źródła ognia) Powyżej 80 C może ulec odkształceniu, powyżej 100 C ulega odkształceniu, topi się Włókna mineralne wytrzymują temperaturę nawet 600 C, powyżej 1000 C topią się Powyżej 70 kpa Powyżej 70 kpa Powyżej 15 kpa W poprzek włókien więcej niż 20 kpa, wzdłuż włókien więcej niż 80 kpa Nie mniej niż 100 kpa Nie mniej niż 10 kpa Izolacyjność akustyczna Bardzo dobra Mała Bardzo dobra Współczynnik paroprzepuszczalności Zachowanie w kontakcie z wodą Odporność na związki chemiczne Wpływ na zdrowie ludzi Powyżej 45x10 9 Pa m s 3x10 9 Pa m s 133x10 9 Pa m s Wyjątkowo odporny na działanie wody i wilgoci, hydrofobowy, zwilżalny przez oleje Odporny Może podrażniać skórę i drogi oddechowe wykonawców ociepleń, nieszkodliwy dla użytkowników ocieplonych budynków Odporny na działanie wody i wilgoci, nie chłonie wody z powietrza Nieodporny na działanie rozpuszczalników organicznych, pęcznieje pod wpływem benzyny i ropy Nieszkodliwy dla wykonawców i użytkowników Mniejsza trwałość w warunkach większego zawilgocenia, higroskopijność i nasiąkliwość Odporna Może podrażniać skórę i drogi oddechowe wykonawców ociepleń, nieszkodliwa dla użytkowników ocieplonych budynków Obecnie produkowane maty izolacyjne na bazie aerożelu charakteryzują się izolacyjnością cieplną U na poziomie 0,014 W/(m 2 K). Pozwala to, zakładając ścianę nośną z bloczków o grubości 215 mm z U = 0,45 W/(m 2 K), osiągnąć wartość

Aerożele i pianki poliuretanowe - nowoczesne materiały termoizolacyjne w budownictwie 13 współczynnika dla całej ściany U = 0,16 W/(m 2 K) już przy warstwie izolacji termicznej grubości 80 mm. Można dzięki temu zaoszczędzić trochę miejsca oraz łatwiej zlikwidować mostki termiczne, zwłaszcza biorąc pod uwagę giętkość mat na bazie aerożelu, wzmocnionych włóknem szklanym [6]. Na rynku obecnie dostępne są maty o grubościach 5 i 10 mm. W zależności od gęstości i zakresu temperatury ich użycia maty aerożelowe mają różne zastosowanie. W starym budownictwie, wymagającym termoizolacji od środka budynku, w nowoczesnych projektach architektonicznych, rurociągach, systemach solarnych czy przemyśle samochodowym i komputerowym stosuje się Porogel Medium Spaceloft MPS o gęstości 150 kg/m 3. W przemyśle kolejowym, lotniczym, budowlanym, gazowym, wodociągowym stosuje się Porogel Plus Pyrogel PPP, o gęstości 180 kg/m 3. W przemyśle chłodniczym, lotniczym, paliwowym stosuje się Porogel Minus Cryogel PMC o gęstości 130 kg/m 3. W tabeli 1 zestawiono właściwości i parametry aerożeli w porównaniu z typowymi, powszechnie stosowanymi materiałami izolacji cieplnej, jak styropian i wełna mineralna. 1.2. Pianki ceramiczne i poliuretanowe, nanopianki Kolejnym nowoczesnym materiałem izolacji cieplnej, który coraz częściej jest dostępny na rynku, jest pianka ceramiczna o porowatej mikrostrukturze z pęcherzykami powietrza (rys. 3a). Pianki mają dobrą wytrzymałość na ściskanie f c = 3,5 4,5 MPa, są odporne na wysoką temperaturę (ponad 1700 C), mają wysoką termoizolacyjność, co zdecydowanie pozwala na mniejsze zużycie energii na ogrzanie mieszkań. Następny materiał termoizolacyjny to poliuretanowe pianki, sztywne pianki o średnicy porów około 150 nm (rys. 3b). Rys. 3. Porowata struktura pianki ceramicznej (a), struktura poliuretanowych pianek i nanopianek (b) [3] Im mniejsze są średnice porów pianek, tym jest niższa przewodność cieplna, a co za tym idzie - zwiększa się izolacyjność termiczna, która osiąga dwukrotnie większą wydajność od tradycyjnych pianek stosowanych w budownictwie. Współczynnik przewodzenia ciepła dla pianek poliuretanowych wynosi od 0,02 do 0,03 W/(m K). Pianki są niepalne, paroprzepuszczalne, nasiąkliwe, łatwe w montażu. Naukowcom udało się stworzyć pianki o średnicy porów 30 razy mniejszej

14 I. Adamczyk-Królak od tradycyjnych, jednak obecnie trwają badania nad osiągnięciem średnicy porów 300 razy mniejszej niż tradycyjne pianki (nanopianki poliuretanowe). Zdecydowanie poprawiłoby to wydajność izolacji termicznych, a co za tym idzie - zwiększyłoby energooszczędność, która wpłynęłaby na zmniejszenie kosztów eksploatacji i nie byłoby to obciążeniem dla środowiska. PODSUMOWANIE Powszechnie stosowane materiały izolacji cieplnej, tj. styropian i wełna mineralna, powoli zastępowane są nowoczesnymi i bardziej efektywnymi materiałami, jak aerożele czy pianki poliuretanowe. Materiały termoizolacyjne o niskim współczynniku przewodzenia ciepła cieszą się coraz większym zainteresowaniem inwestorów z uwagi na szybki rozwój budownictwa energooszczędnego i pasywnego. Powszechne zastosowanie tego typu materiałów jest ograniczone z uwagi na ich wysoką cenę. Obecnie materiały te stosuje się w ograniczonej ilości, jedynie w miejscach, gdzie nie mamy możliwości zastosowania tradycyjnego materiału izolacyjnego o dużej grubości. LITERATURA [1] Adamczyk-Królak I., Analiza oszczędności energii cieplnej w budownictwie mieszkaniowym jednorodzinnym, Budownictwo o Zoptymalizowanym Potencjale Energetycznym 2014, 1(13), 9-14. [2] Rozporządzenie Ministra Transportu, Budownictwa i Gospodarki Morskiej z dnia 5 lipca 2013, DzU 2013, poz. 926. [3] www.ecosquad.pl (10.05.2015 r.). [4] www.termoswiat.pl (16.05.2015 r.). [5] www.novet.poznan.pl (22.05.2015 r.). [6] Prezentacja Aerogels Poland Nanotechnology: Aspen Aerogels. [7] Zastawna-Rufin A., Izolacja aerożelowa na tle izolacji tradycyjnych, Izolacje 2010, 9, 32. [8] Czarnecki L., Nanotechnologia w budownictwie, Przegląd Budowlany 2011, 1, 40-53. [9] Czarnecki L., Nanotechnologia - wyzwaniem inżynierii materiałów budowlanych, Inżynieria i Budownictwo 2006, 9, 465-469. AEROGELS AND POLYURETHANE FOAMS - MODERN BUILDING INSULATION MATERIALS IN BUILDING INDUSTRY In the article there has been presented modern thermal insulation used more and more often in Polish single-family housing, which gives the opportunity to insulate tighter with thermal insulation than traditional materials. The most accessible insulation materials on the market, such as aerogels and polyurethane foams, have been characterized. Keywords: energy efficiency thermal, aerogels and polyurethane foams, thermal insulation