Learning to find good correspondences

Podobne dokumenty
MoA-Net: Self-supervised Motion Segmentation. Pia Bideau, Rakesh R Menon, Erik Learned-Miller

Linear Classification and Logistic Regression. Pascal Fua IC-CVLab

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

Neural Networks (The Machine-Learning Kind) BCS 247 March 2019

Hard-Margin Support Vector Machines

Gradient Coding using the Stochastic Block Model

deep learning for NLP (5 lectures)

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

tum.de/fall2018/ in2357

Label-Noise Robust Generative Adversarial Networks

Logistic Regression. Machine Learning CS5824/ECE5424 Bert Huang Virginia Tech

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction

The Overview of Civilian Applications of Airborne SAR Systems

Supervised Hierarchical Clustering with Exponential Linkage. Nishant Yadav

TSBB15 Computer Vision

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2

Machine Learning for Data Science (CS4786) Lecture 24. Differential Privacy and Re-useable Holdout

SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like

Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application

OpenPoland.net API Documentation

Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2

HOW MASSIVE ARE PROTOPLANETARY/ PLANET HOSTING/PLANET FORMING DISCS?

ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS.

Internet of Things Devices

Helena Boguta, klasa 8W, rok szkolny 2018/2019

Bayesian graph convolutional neural networks

Klaps za karę. Wyniki badania dotyczącego postaw i stosowania kar fizycznych. Joanna Włodarczyk

Revenue Maximization. Sept. 25, 2018

Previously on CSCI 4622

Multimodal Unsupervised Image-to-Image Translation

Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards

MATLAB Neural Network Toolbox przegląd

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

Komunikacja Człowiek-Komputer

Maximum A Posteriori Chris Piech CS109, Stanford University

archivist: Managing Data Analysis Results

16. kwietnia Znajdowanie sekwencji w bazach danych. Bartek Wilczy«ski. Organizacyjne. Why search for sequences

Rozpoznawanie obiektów z użyciem znaczników

1. Wprowadzenie. Tomasz Kornuta

Wykaz linii kolejowych, które są wyposażone w urządzenia systemu ETCS

Formularz recenzji magazynu. Journal of Corporate Responsibility and Leadership Review Form

Wykaz linii kolejowych, które są wyposażone w urzadzenia systemu ETCS

Horseshoe Priors for Bayesian Neural Networks

Wprowadzenie do programu RapidMiner, część 5 Michał Bereta

No matter how much you have, it matters how much you need

MONAA: a Tool for Timed Pattern Matching with Automata-Based Acceleration

MaPlan Sp. z O.O. Click here if your download doesn"t start automatically

Goodman Kraków Airport Logistics Centre. 62,350 sqm available. Units from 1,750 sqm for immediate lease. space for growth+

DODATKOWE ĆWICZENIA EGZAMINACYJNE

A hybrid quantum-classical recommender system. Andrea Skolik

Knovel Math: Jakość produktu

Compressing the information contained in the different indexes is crucial for performance when implementing an IR system

ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL

DEFINING REGIONS THAT CONTAIN COMPLEX ASTRONOMICAL STRUCTURES

ABOUT NEW EASTERN EUROPE BESTmQUARTERLYmJOURNAL

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

Łukasz Reszka Wiceprezes Zarządu

Installation of EuroCert software for qualified electronic signature

The impact of the global gravity field models on the orbit determination of LAGEOS satellites

Tychy, plan miasta: Skala 1: (Polish Edition)

The Lorenz System and Chaos in Nonlinear DEs

STATYSTYKA OD PODSTAW Z SYSTEMEM SAS. wersja 9.2 i 9.3. Szkoła Główna Handlowa w Warszawie

An employer s statement on the posting of a worker to the territory of the Republic of Poland

What does it mean to learn in deep networks? And, how does one detect adversarial attacks?

Convolution semigroups with linear Jacobi parameters

y = The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Explain your answer, write in complete sentences.

harmonic functions and the chromatic polynomial

DM-ML, DM-FL. Auxiliary Equipment and Accessories. Damper Drives. Dimensions. Descritpion

KONSPEKT DO LEKCJI MATEMATYKI W KLASIE 3 POLO/ A LAYER FOR CLASS 3 POLO MATHEMATICS

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Poniżej moje uwagi po zapoznaniu się z prezentowanymi zasadami:

Katowice, plan miasta: Skala 1: = City map = Stadtplan (Polish Edition)

Let's talk about art 07. Porozmawiajmy o sztuce

CEE 111/211 Agenda Feb 17

Wrocław University of Technology. Uczenie głębokie. Maciej Zięba

POLITECHNIKA ŚLĄSKA INSTYTUT AUTOMATYKI ZAKŁAD SYSTEMÓW POMIAROWYCH


Nonlinear data assimilation for ocean applications

Machine Learning for Data Science (CS4786) Lecture 8. Kernel PCA & Isomap + TSNE

Lips code 381. *ASP = Lodz National School of Art. 40 szt. ROZMIARY: 2/S, 3/M, 4/L. nero

Goodman Poznań Airport Logistics Centre 16,734 sqm warehouse space available as from Q Best placed for business+

Configuring and Testing Your Network

New Roads to Cryptopia. Amit Sahai. An NSF Frontier Center

2. Zarys metody SIFT (Scale Invariant Feature Transform)

Detekcja punktów zainteresowania

Multimodal Unsupervised Image-to-Image Translation

Primal Formulation. Find u h V h such that. A h (u h, v h )= fv h dx v h V h, where. u h v h dx. A h (u h, v h ) = DGFEM Primal Formulation.

Metody klasyfikacji danych zaszumionych. Stanisław Kaźmierczak

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

Prices and Volumes on the Stock Market

Analiza Sieci Społecznych Pajek

Anette Breu DATA HARMONISATION STEP BY STEP

INSPECTION METHODS FOR QUALITY CONTROL OF FIBRE METAL LAMINATES IN AEROSPACE COMPONENTS

03 April kwietnia 2015 r. Zmiana satelity dostarczającego sygnał Animal Planet HD. Change of Delivery Satellite for Animal Planet HD

Goodman Kraków Airport Logistics Centre. Units from 1,750 sqm for immediate lease. space for growth+

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Emilka szuka swojej gwiazdy / Emily Climbs (Emily, #2)

STATISTICAL METHODS IN BIOLOGY

Latent Dirichlet Allocation Models and their Evaluation IT for Practice 2016

EXPERTS IN ROOFING. Join our talented team and start your career today! Search Tecta America's Careers

Transkrypt:

Learning to find good correspondences K.M. Yi, E. Trulls, Y. Ono, V. Lepetit, M. Salzmann, P. Fua CVPR 2018 (Salt Lake City, UT, USA)

Local features matter Keypoints provide us with a robust way to match points across images.

Local features matter Keypoints: location (x, y), orientation, scale. Descriptors: histograms of gradient orientations. Source: http://medium.com/machine-learning-world/feature-extraction-and-similar-image-search-with-opencv-for-newbies-3c59796bf774

Local features matter Matching large numbers of local features allows us to recover structure! Source: OpenIMAJ (http://openimaj.org)

{<latexit sha1_base64="audfbnkxz8fqqkqu0b14/dsqtaq=">aaab6xicdvbns8naej34wetx1aoxxsj4ckknbb0vvxisyj+gdwwz3brln5uwuxfk6d/w4kerr/4jb/4bn20ffx0w8hhvhpl5qckz0o7zya2srq1vbba2its7u3v7pypdtoptswilxdyw3qarypmglc00p91euhwfnhacyvxud+6pvcwwd3qaud/ci8fcrra20m0/g5tkjn1rr1a8knjsx6m5ftcnlzp37ihxkdnkserzuhrvd2osrlrowrfspddjtj9hqrnhdfbsp4ommezwipymftiiys/ml87qqvggkiylkahrxp0+kefiqwkumm4i67h67exix14v1whdz5hiuk0fwswku450jpk30zbjsjsfgokjzozwrmzyyqjnoeutwten6h/srtiuy7s3xrlxuyyjamdwamfgqg0aca1naagbeb7gcz6tifvovvivi9yvazlzbd9gvx0c+5onpw==</latexit> <latexit sha1_base64="audfbnkxz8fqqkqu0b14/dsqtaq=">aaab6xicdvbns8naej34wetx1aoxxsj4ckknbb0vvxisyj+gdwwz3brln5uwuxfk6d/w4kerr/4jb/4bn20ffx0w8hhvhpl5qckz0o7zya2srq1vbba2its7u3v7pypdtoptswilxdyw3qarypmglc00p91euhwfnhacyvxud+6pvcwwd3qaud/ci8fcrra20m0/g5tkjn1rr1a8knjsx6m5ftcnlzp37ihxkdnkserzuhrvd2osrlrowrfspddjtj9hqrnhdfbsp4ommezwipymftiiys/ml87qqvggkiylkahrxp0+kefiqwkumm4i67h67exix14v1whdz5hiuk0fwswku450jpk30zbjsjsfgokjzozwrmzyyqjnoeutwten6h/srtiuy7s3xrlxuyyjamdwamfgqg0aca1naagbeb7gcz6tifvovvivi9yvazlzbd9gvx0c+5onpw==</latexit> <latexit sha1_base64="audfbnkxz8fqqkqu0b14/dsqtaq=">aaab6xicdvbns8naej34wetx1aoxxsj4ckknbb0vvxisyj+gdwwz3brln5uwuxfk6d/w4kerr/4jb/4bn20ffx0w8hhvhpl5qckz0o7zya2srq1vbba2its7u3v7pypdtoptswilxdyw3qarypmglc00p91euhwfnhacyvxud+6pvcwwd3qaud/ci8fcrra20m0/g5tkjn1rr1a8knjsx6m5ftcnlzp37ihxkdnkserzuhrvd2osrlrowrfspddjtj9hqrnhdfbsp4ommezwipymftiiys/ml87qqvggkiylkahrxp0+kefiqwkumm4i67h67exix14v1whdz5hiuk0fwswku450jpk30zbjsjsfgokjzozwrmzyyqjnoeutwten6h/srtiuy7s3xrlxuyyjamdwamfgqg0aca1naagbeb7gcz6tifvovvivi9yvazlzbd9gvx0c+5onpw==</latexit> <latexit sha1_base64="audfbnkxz8fqqkqu0b14/dsqtaq=">aaab6xicdvbns8naej34wetx1aoxxsj4ckknbb0vvxisyj+gdwwz3brln5uwuxfk6d/w4kerr/4jb/4bn20ffx0w8hhvhpl5qckz0o7zya2srq1vbba2its7u3v7pypdtoptswilxdyw3qarypmglc00p91euhwfnhacyvxud+6pvcwwd3qaud/ci8fcrra20m0/g5tkjn1rr1a8knjsx6m5ftcnlzp37ihxkdnkserzuhrvd2osrlrowrfspddjtj9hqrnhdfbsp4ommezwipymftiiys/ml87qqvggkiylkahrxp0+kefiqwkumm4i67h67exix14v1whdz5hiuk0fwswku450jpk30zbjsjsfgokjzozwrmzyyqjnoeutwten6h/srtiuy7s3xrlxuyyjamdwamfgqg0aca1naagbeb7gcz6tifvovvivi9yvazlzbd9gvx0c+5onpw==</latexit> Why should I care? SIFT (journal paper) (conference paper) 64k citations!

Applications: panorama stitching Source: http://karantza.org/wordpress/?p=10

Applications: 3D reconstruction

Applications: camera pose retrieval Source: S.M. Yoon et al, Hierarchical image representation using 3D camera geometry for content-based image retrieval, EAAI 2014.

What about Deep Learning? Recent works by the Computer Vision lab at EPFL: TILDE: A Temporally Invariant Learned DEtector (CVPR 15). Discriminative learning of descriptors (ICCV 15). Learning to assign orientations to feature points (CVPR 16). LIFT: Learned Invariant Feature Transform (ECCV 16). Learning to find good correspondences (CVPR 18). LF-Net: Learning local features from images (arxiv 18).

What about Deep Learning? Recent works by the Computer Vision lab at EPFL: TILDE: A Temporally Invariant Learned DEtector (CVPR 15). Discriminative learning of descriptors (ICCV 15). Learning to assign orientations to feature points (CVPR 16). LIFT: Learned Invariant Feature Transform (ECCV 16). Learning to find good correspondences (CVPR 18). LF-Net: Learning local features from images (arxiv 18).

Matching keypoints (c) Retrieve pose (a) Find putative matches (b) Find inliers (e.g. RANSAC) Fischler & Bolles, Random Sample Consensus. Comm. ACM, 1981

Dense matching with CNNs Current focus of research: Zamir et al, ECCV 16. SfM-Net, arxiv 17. DeMoN, CVPR 17. Lowe et al, CVPR 17. Focus: video, small displacements. General case (wide baselines) remains unsolved.

Where s the challenge?

RANSAC: not always enough

Geometry to the rescue

Geometry to the rescue A geometrically-aware deep network. Input: correspondences. Output: one weight for each. We simultaneously learn to: Perform outlier rejection. Regress to the essential matrix.

Computing the Essential matrix Closed form solution: 8-point algorithm Nx9 matrix {uu0, uv 0, u,...} <latexit sha1_base64="pcmig45y9xtmgmeuc4o5xyekun0=">aaab/xicbvdlssnafj3uv62v+ni5gsyiixisexrzdooygn1ae8pkommhtizhhouair/ixouibv0pd/6nkzylbt1wl4dz7mxundblvcrx/bzkk6tr6xvlzcrw9s7unr1/0jkjfpg0ccis0qmrjixy0lrumdjjbufxyeg7hn3mfntmhkqjf1ctlaqxgnaauyyukxr2kz9pfvadepy3gnqcx5/27krrudpazeivpaoknhr2l99psi4jv5ghkbuem6ogq0jrzmi04mtjuorhaec6hniuexlks+un8nqofrglwhrxckb+3shqloukds1kjnrqlnq5+j/x1sq6djlku60ix/ohis2gsmaebextqbbie0mqfttccveqcysvcaxiqvawv7xmwheo5zre/ww1flpeuqbh4ascaw9cgtq4aw3qbbg8gmfwct6sj+vferc+5qmlq9g5bh9gff4ascytkq==</latexit> 9x9 matrix X> X N correspondences Longuet-Higgins, "A computer algorithm for reconstructing a scene from two projections. Nature, 1981. SVD Essential Matrix

Learning to compute weights We learn to compute weights for the 8-point algorithm Nx9 matrix {uu0, uv 0, u,...} 9x9 matrix <latexit sha1_base64="pcmig45y9xtmgmeuc4o5xyekun0=">aaab/xicbvdlssnafj3uv62v+ni5gsyiixisexrzdooygn1ae8pkommhtizhhouair/ixouibv0pd/6nkzylbt1wl4dz7mxundblvcrx/bzkk6tr6xvlzcrw9s7unr1/0jkjfpg0ccis0qmrjixy0lrumdjjbufxyeg7hn3mfntmhkqjf1ctlaqxgnaauyyukxr2kz9pfvadepy3gnqcx5/27krrudpazeivpaoknhr2l99psi4jv5ghkbuem6ogq0jrzmi04mtjuorhaec6hniuexlks+un8nqofrglwhrxckb+3shqloukds1kjnrqlnq5+j/x1sq6djlku60ix/ohis2gsmaebextqbbie0mqfttccveqcysvcaxiqvawv7xmwheo5zre/ww1flpeuqbh4ascaw9cgtq4aw3qbbg8gmfwct6sj+vferc+5qmlq9g5bh9gff4ascytkq==</latexit> X> w X <latexit sha1_base64="dlmfdtqzwoqgkfsgeouhguazgps=">aaacjhicbvdjsgnbeo2jw4xb1koxxhauccomfwuvqs8ei5gfmppq0+ljmvqs9bijw3ymf3/fiwcxphjxw+xjimpiqtev3quiqp4xmyqkzx0yuaxlldw1/hphy3nre6e4u9cqkeky1hheit7ykccmhqquqwskfxocao+rpje8yvtmihbbo/bwjmpibqgfup9ijdxvlv6unuspowpuo+yrqnm0nbtgbegopd9ppr1hrvf3etc5sx+kbrfkmdyk4ckwz6aezlhrfl+dxorvqekjgrkibvuxdbpejcwm6klkkbjhieqttoyhcohwk8mrksxrpgf9iosxsjhhf3ckkbbihhi6mttqzgsz+z/wvti/dxmaxkqsee8h+ypbgchmmdijngdjxhogzknefeib4ghl7wtbm2dpn7wigqembzn2jvwqxs7syimdcaiogq3oqbvcgxqoawzuwsn4bi/gg/fkvbnv09kcmevzb3/c+pwca02j6a==</latexit> sha1_base64="ozm7whtvmxg2ill5gkzzzpldtsg=">aaacjhicbvdjsgnbek2jw4xb1koxxickhghgi4kiohepeuwmzglo6fqktxowelhcepbxvpgruxhwwymxv8werhet6obve1vu1fmtzqrynfcrnze5nt2tny3mzs8slhwxv2oy1olqkol5loo+lpszifyvu5zwe0fx6hn64fdomv3iigrj4uhc9rpadhenygejwbmqvdzf8fktn8tix2vfgdm27q0kxohv1w/s+udsu3hymv5fbg++pfax5njoknbf4h6a0ugwchadajvw8clrx0shnfkeyykbrpoozoqfyortm1vlmmdswx3amddcizxndhtkag0ypo2cwjgxktriv3ekojsyh/qmmttq/tyy8j+tovww10xzlghfiziefgioviwyx1cbcuou7xuaiwbmv0s6wgcijk8fy4l7++s/olzju47tnjmlo2myrx7wyb22wivdoijtqeavcnzceb7g0bqz7q1n62vcmrm+elbhr1hv73kfpbu=</latexit> sha1_base64="hc3b1cm/ub0yvyu95d3xotqjkmm=">aaacjhicbvdjsgnbeo1xjemw9eilmqrfwjdjruheobepecwcmst0dhqsxp6fxpqw5gne8fdy8eccibe/xz4koiywdppqvsqq6nkxo0la9ocxmzs3v7cywtkxv1bx1rmbmxurky5jgucs4jupccjosmqsskzqmsco8bipetfnqv69ivzqklysvzg0atqjqu8xkppqzy/zbqlubggqm/qrqmuy3l7pbkh2pt+p9zuujolv9la53/+rwtmcbdndgnpagypc6ca8ie/fzvir++k2i6wcekrmkbb1x45li0fcusyinqoeirg+rh1s1zbeargnzhhkh+y104z+xpuljryyvzssfajrczxdmw4ojrwu/e+rk+kfnriaxkqsei8g+ypbgchumdimngdjehogzknefeiu4ghl7auptxamt54glqplss3n0s4vz8aommab7ia94ibduaqxoatkaim7mabp4nl4mb6nv+ntvdpjjhu2wj8wpr8azbsnkq==</latexit> SVD Essential Matrix Nx1 weights Deep Net N correspondences

Learning to compute weights We learn to compute weights for the 8-point algorithm Nx9 matrix {uu0, uv 0, u,...} 9x9 matrix <latexit sha1_base64="pcmig45y9xtmgmeuc4o5xyekun0=">aaab/xicbvdlssnafj3uv62v+ni5gsyiixisexrzdooygn1ae8pkommhtizhhouair/ixouibv0pd/6nkzylbt1wl4dz7mxundblvcrx/bzkk6tr6xvlzcrw9s7unr1/0jkjfpg0ccis0qmrjixy0lrumdjjbufxyeg7hn3mfntmhkqjf1ctlaqxgnaauyyukxr2kz9pfvadepy3gnqcx5/27krrudpazeivpaoknhr2l99psi4jv5ghkbuem6ogq0jrzmi04mtjuorhaec6hniuexlks+un8nqofrglwhrxckb+3shqloukds1kjnrqlnq5+j/x1sq6djlku60ix/ohis2gsmaebextqbbie0mqfttccveqcysvcaxiqvawv7xmwheo5zre/ww1flpeuqbh4ascaw9cgtq4aw3qbbg8gmfwct6sj+vferc+5qmlq9g5bh9gff4ascytkq==</latexit> X> w X <latexit sha1_base64="dlmfdtqzwoqgkfsgeouhguazgps=">aaacjhicbvdjsgnbeo2jw4xb1koxxhauccomfwuvqs8ei5gfmppq0+ljmvqs9bijw3ymf3/fiwcxphjxw+xjimpiqtev3quiqp4xmyqkzx0yuaxlldw1/hphy3nre6e4u9cqkeky1hheit7ykccmhqquqwskfxocao+rpje8yvtmihbbo/bwjmpibqgfup9ijdxvlv6unuspowpuo+yrqnm0nbtgbegopd9ppr1hrvf3etc5sx+kbrfkmdyk4ckwz6aezlhrfl+dxorvqekjgrkibvuxdbpejcwm6klkkbjhieqttoyhcohwk8mrksxrpgf9iosxsjhhf3ckkbbihhi6mttqzgsz+z/wvti/dxmaxkqsee8h+ypbgchmmdijngdjxhogzknefeib4ghl7wtbm2dpn7wigqembzn2jvwqxs7syimdcaiogq3oqbvcgxqoawzuwsn4bi/gg/fkvbnv09kcmevzb3/c+pwca02j6a==</latexit> sha1_base64="ozm7whtvmxg2ill5gkzzzpldtsg=">aaacjhicbvdjsgnbek2jw4xb1koxxickhghgi4kiohepeuwmzglo6fqktxowelhcepbxvpgruxhwwymxv8werhet6obve1vu1fmtzqrynfcrnze5nt2tny3mzs8slhwxv2oy1olqkol5loo+lpszifyvu5zwe0fx6hn64fdomv3iigrj4uhc9rpadhenygejwbmqvdzf8fktn8tix2vfgdm27q0kxohv1w/s+udsu3hymv5fbg++pfax5njoknbf4h6a0ugwchadajvw8clrx0shnfkeyykbrpoozoqfyortm1vlmmdswx3amddcizxndhtkag0ypo2cwjgxktriv3ekojsyh/qmmttq/tyy8j+tovww10xzlghfiziefgioviwyx1cbcuou7xuaiwbmv0s6wgcijk8fy4l7++s/olzju47tnjmlo2myrx7wyb22wivdoijtqeavcnzceb7g0bqz7q1n62vcmrm+elbhr1hv73kfpbu=</latexit> sha1_base64="hc3b1cm/ub0yvyu95d3xotqjkmm=">aaacjhicbvdjsgnbeo1xjemw9eilmqrfwjdjruheobepecwcmst0dhqsxp6fxpqw5gne8fdy8eccibe/xz4koiywdppqvsqq6nkxo0la9ocxmzs3v7cywtkxv1bx1rmbmxurky5jgucs4jupccjosmqsskzqmsco8bipetfnqv69ivzqklysvzg0atqjqu8xkppqzy/zbqlubggqm/qrqmuy3l7pbkh2pt+p9zuujolv9la53/+rwtmcbdndgnpagypc6ca8ie/fzvir++k2i6wcekrmkbb1x45li0fcusyinqoeirg+rh1s1zbeargnzhhkh+y104z+xpuljryyvzssfajrczxdmw4ojrwu/e+rk+kfnriaxkqsei8g+ypbgchumdimngdjehogzknefeiu4ghl7auptxamt54glqplss3n0s4vz8aommab7ia94ibduaqxoatkaim7mabp4nl4mb6nv+ntvdpjjhu2wj8wpr8azbsnkq==</latexit> Fully differentiable! Deep Net N correspondences SVD Essential Matrix Nx1 weights

Learning to compute weights We learn to compute weights for the 8-point algorithm Nx9 matrix {uu0, uv 0, u,...} 9x9 matrix <latexit sha1_base64="pcmig45y9xtmgmeuc4o5xyekun0=">aaab/xicbvdlssnafj3uv62v+ni5gsyiixisexrzdooygn1ae8pkommhtizhhouair/ixouibv0pd/6nkzylbt1wl4dz7mxundblvcrx/bzkk6tr6xvlzcrw9s7unr1/0jkjfpg0ccis0qmrjixy0lrumdjjbufxyeg7hn3mfntmhkqjf1ctlaqxgnaauyyukxr2kz9pfvadepy3gnqcx5/27krrudpazeivpaoknhr2l99psi4jv5ghkbuem6ogq0jrzmi04mtjuorhaec6hniuexlks+un8nqofrglwhrxckb+3shqloukds1kjnrqlnq5+j/x1sq6djlku60ix/ohis2gsmaebextqbbie0mqfttccveqcysvcaxiqvawv7xmwheo5zre/ww1flpeuqbh4ascaw9cgtq4aw3qbbg8gmfwct6sj+vferc+5qmlq9g5bh9gff4ascytkq==</latexit>? X> w X <latexit sha1_base64="dlmfdtqzwoqgkfsgeouhguazgps=">aaacjhicbvdjsgnbeo2jw4xb1koxxhauccomfwuvqs8ei5gfmppq0+ljmvqs9bijw3ymf3/fiwcxphjxw+xjimpiqtev3quiqp4xmyqkzx0yuaxlldw1/hphy3nre6e4u9cqkeky1hheit7ykccmhqquqwskfxocao+rpje8yvtmihbbo/bwjmpibqgfup9ijdxvlv6unuspowpuo+yrqnm0nbtgbegopd9ppr1hrvf3etc5sx+kbrfkmdyk4ckwz6aezlhrfl+dxorvqekjgrkibvuxdbpejcwm6klkkbjhieqttoyhcohwk8mrksxrpgf9iosxsjhhf3ckkbbihhi6mttqzgsz+z/wvti/dxmaxkqsee8h+ypbgchmmdijngdjxhogzknefeib4ghl7wtbm2dpn7wigqembzn2jvwqxs7syimdcaiogq3oqbvcgxqoawzuwsn4bi/gg/fkvbnv09kcmevzb3/c+pwca02j6a==</latexit> sha1_base64="ozm7whtvmxg2ill5gkzzzpldtsg=">aaacjhicbvdjsgnbek2jw4xb1koxxickhghgi4kiohepeuwmzglo6fqktxowelhcepbxvpgruxhwwymxv8werhet6obve1vu1fmtzqrynfcrnze5nt2tny3mzs8slhwxv2oy1olqkol5loo+lpszifyvu5zwe0fx6hn64fdomv3iigrj4uhc9rpadhenygejwbmqvdzf8fktn8tix2vfgdm27q0kxohv1w/s+udsu3hymv5fbg++pfax5njoknbf4h6a0ugwchadajvw8clrx0shnfkeyykbrpoozoqfyortm1vlmmdswx3amddcizxndhtkag0ypo2cwjgxktriv3ekojsyh/qmmttq/tyy8j+tovww10xzlghfiziefgioviwyx1cbcuou7xuaiwbmv0s6wgcijk8fy4l7++s/olzju47tnjmlo2myrx7wyb22wivdoijtqeavcnzceb7g0bqz7q1n62vcmrm+elbhr1hv73kfpbu=</latexit> sha1_base64="hc3b1cm/ub0yvyu95d3xotqjkmm=">aaacjhicbvdjsgnbeo1xjemw9eilmqrfwjdjruheobepecwcmst0dhqsxp6fxpqw5gne8fdy8eccibe/xz4koiywdppqvsqq6nkxo0la9ocxmzs3v7cywtkxv1bx1rmbmxurky5jgucs4jupccjosmqsskzqmsco8bipetfnqv69ivzqklysvzg0atqjqu8xkppqzy/zbqlubggqm/qrqmuy3l7pbkh2pt+p9zuujolv9la53/+rwtmcbdndgnpagypc6ca8ie/fzvir++k2i6wcekrmkbb1x45li0fcusyinqoeirg+rh1s1zbeargnzhhkh+y104z+xpuljryyvzssfajrczxdmw4ojrwu/e+rk+kfnriaxkqsei8g+ypbgchumdimngdjehogzknefeiu4ghl7auptxamt54glqplss3n0s4vz8aommab7ia94ibduaqxoatkaim7mabp4nl4mb6nv+ntvdpjjhu2wj8wpr8azbsnkq==</latexit> SVD Essential Matrix Nx1 weights Deep Net N correspondences

Exploiting epipolar geometry We do not have dense depth data. But we have the ground truth camera poses. With epipolar geometry we know that points in image 1 map to lines in image 2. Source: wikipedia (https://en.wikipedia.org/wiki/epipolar_geometry)

Adding a classification loss Not perfect (point line)! But good enough for a supervision signal. Hartley & Zisserman, Multiple view geometry in computer vision, 2000.

Complete formulation We jointly train for outlier rejection and regression to the Essential matrix by minimizing the hybrid loss: Classification (Inliers vs outliers) Regression (which inliers help us retrieve E?)

Our network CORRESPONDENCES: N x 4 4-D ( ) P P Shared P 128-D ( ) P P Shared P RESNET BLOCK 1 CONTEXT NORM BATCH NORM + ReLU P P Shared P CONTEXT NORM BATCH NORM + ReLU + + ( ) + RESNET BLOCK 2 + + ( ) + ( ) RESNET BLOCK 12 128-D P P Shared P 1-D ReLU ReLU ( ) ReLU tanh tanh ( ) tanh WEIGHTS: N x 1 Input: putative matches (SIFT+NN). Coordinates only: Output: Weights, encoding inlier probability. {u, v, u 0,v 0 } 1appleiappleN <latexit sha1_base64="pw8vs6kbouutkehspyuviojapaq=">aaacf3icbvdlssnafj34rpuvdelmsjs6kcerqzcfuvxjbfuajpbjdniontycr6ge/oubf8wnc0xc6s6/cdjmoa0hhns4517u3omnjapp29/g0vlk6tp6yao4ubw9s2vu7tdfrdgmdryzmld9jaijewlikhlpj5yg0gek5q8vmr81ilzqolqt44r4iephnkayss11tavshkgo/cc9nbtdvfxhqapvrzeko7lphegy8gdprnxmumbjtuwp4cjxclicoepd88vtxvifjjkyise6jp1il0vcusyixqkesraeoj7pabqhkagvnd41gwwt9gaqc/0icafq74kuhukmq193zkeies8t//m6sgbnxkqjreks4dmiqdeoy5ifbhuueyzzwboeodv/hxiaomjsr1nuitjzjy+s5onl2jzze1qqxevxfmahoalhwafnoaauqr00aaap4bm8gjfjyxgx3o2pweuskc8cgd8wpn8aitgdzw==</latexit> <latexit sha1_base64="pw8vs6kbouutkehspyuviojapaq=">aaacf3icbvdlssnafj34rpuvdelmsjs6kcerqzcfuvxjbfuajpbjdniontycr6ge/oubf8wnc0xc6s6/cdjmoa0hhns4517u3omnjapp29/g0vlk6tp6yao4ubw9s2vu7tdfrdgmdryzmld9jaijewlikhlpj5yg0gek5q8vmr81ilzqolqt44r4iephnkayss11tavshkgo/cc9nbtdvfxhqapvrzeko7lphegy8gdprnxmumbjtuwp4cjxclicoepd88vtxvifjjkyise6jp1il0vcusyixqkesraeoj7pabqhkagvnd41gwwt9gaqc/0icafq74kuhukmq193zkeies8t//m6sgbnxkqjreks4dmiqdeoy5ifbhuueyzzwboeodv/hxiaomjsr1nuitjzjy+s5onl2jzze1qqxevxfmahoalhwafnoaauqr00aaap4bm8gjfjyxgx3o2pweuskc8cgd8wpn8aitgdzw==</latexit> <latexit sha1_base64="pw8vs6kbouutkehspyuviojapaq=">aaacf3icbvdlssnafj34rpuvdelmsjs6kcerqzcfuvxjbfuajpbjdniontycr6ge/oubf8wnc0xc6s6/cdjmoa0hhns4517u3omnjapp29/g0vlk6tp6yao4ubw9s2vu7tdfrdgmdryzmld9jaijewlikhlpj5yg0gek5q8vmr81ilzqolqt44r4iephnkayss11tavshkgo/cc9nbtdvfxhqapvrzeko7lphegy8gdprnxmumbjtuwp4cjxclicoepd88vtxvifjjkyise6jp1il0vcusyixqkesraeoj7pabqhkagvnd41gwwt9gaqc/0icafq74kuhukmq193zkeies8t//m6sgbnxkqjreks4dmiqdeoy5ifbhuueyzzwboeodv/hxiaomjsr1nuitjzjy+s5onl2jzze1qqxevxfmahoalhwafnoaauqr00aaap4bm8gjfjyxgx3o2pweuskc8cgd8wpn8aitgdzw==</latexit> <latexit sha1_base64="pw8vs6kbouutkehspyuviojapaq=">aaacf3icbvdlssnafj34rpuvdelmsjs6kcerqzcfuvxjbfuajpbjdniontycr6ge/oubf8wnc0xc6s6/cdjmoa0hhns4517u3omnjapp29/g0vlk6tp6yao4ubw9s2vu7tdfrdgmdryzmld9jaijewlikhlpj5yg0gek5q8vmr81ilzqolqt44r4iephnkayss11tavshkgo/cc9nbtdvfxhqapvrzeko7lphegy8gdprnxmumbjtuwp4cjxclicoepd88vtxvifjjkyise6jp1il0vcusyixqkesraeoj7pabqhkagvnd41gwwt9gaqc/0icafq74kuhukmq193zkeies8t//m6sgbnxkqjreks4dmiqdeoy5ifbhuueyzzwboeodv/hxiaomjsr1nuitjzjy+s5onl2jzze1qqxevxfmahoalhwafnoaauqr00aaap4bm8gjfjyxgx3o2pweuskc8cgd8wpn8aitgdzw==</latexit> Network: MLPs. Global context embedded via Context Normalization.

<latexit sha1_base64="pw8vs6kbouutkehspyuviojapaq=">aaacf3icbvdlssnafj34rpuvdelmsjs6kcerqzcfuvxjbfuajpbjdniontycr6ge/oubf8wnc0xc6s6/cdjmoa0hhns4517u3omnjapp29/g0vlk6tp6yao4ubw9s2vu7tdfrdgmdryzmld9jaijewlikhlpj5yg0gek5q8vmr81ilzqolqt44r4iephnkayss11tavshkgo/cc9nbtdvfxhqapvrzeko7lphegy8gdprnxmumbjtuwp4cjxclicoepd88vtxvifjjkyise6jp1il0vcusyixqkesraeoj7pabqhkagvnd41gwwt9gaqc/0icafq74kuhukmq193zkeies8t//m6sgbnxkqjreks4dmiqdeoy5ifbhuueyzzwboeodv/hxiaomjsr1nuitjzjy+s5onl2jzze1qqxevxfmahoalhwafnoaauqr00aaap4bm8gjfjyxgx3o2pweuskc8cgd8wpn8aitgdzw==</latexit> <latexit sha1_base64="pw8vs6kbouutkehspyuviojapaq=">aaacf3icbvdlssnafj34rpuvdelmsjs6kcerqzcfuvxjbfuajpbjdniontycr6ge/oubf8wnc0xc6s6/cdjmoa0hhns4517u3omnjapp29/g0vlk6tp6yao4ubw9s2vu7tdfrdgmdryzmld9jaijewlikhlpj5yg0gek5q8vmr81ilzqolqt44r4iephnkayss11tavshkgo/cc9nbtdvfxhqapvrzeko7lphegy8gdprnxmumbjtuwp4cjxclicoepd88vtxvifjjkyise6jp1il0vcusyixqkesraeoj7pabqhkagvnd41gwwt9gaqc/0icafq74kuhukmq193zkeies8t//m6sgbnxkqjreks4dmiqdeoy5ifbhuueyzzwboeodv/hxiaomjsr1nuitjzjy+s5onl2jzze1qqxevxfmahoalhwafnoaauqr00aaap4bm8gjfjyxgx3o2pweuskc8cgd8wpn8aitgdzw==</latexit> <latexit sha1_base64="pw8vs6kbouutkehspyuviojapaq=">aaacf3icbvdlssnafj34rpuvdelmsjs6kcerqzcfuvxjbfuajpbjdniontycr6ge/oubf8wnc0xc6s6/cdjmoa0hhns4517u3omnjapp29/g0vlk6tp6yao4ubw9s2vu7tdfrdgmdryzmld9jaijewlikhlpj5yg0gek5q8vmr81ilzqolqt44r4iephnkayss11tavshkgo/cc9nbtdvfxhqapvrzeko7lphegy8gdprnxmumbjtuwp4cjxclicoepd88vtxvifjjkyise6jp1il0vcusyixqkesraeoj7pabqhkagvnd41gwwt9gaqc/0icafq74kuhukmq193zkeies8t//m6sgbnxkqjreks4dmiqdeoy5ifbhuueyzzwboeodv/hxiaomjsr1nuitjzjy+s5onl2jzze1qqxevxfmahoalhwafnoaauqr00aaap4bm8gjfjyxgx3o2pweuskc8cgd8wpn8aitgdzw==</latexit> <latexit sha1_base64="pw8vs6kbouutkehspyuviojapaq=">aaacf3icbvdlssnafj34rpuvdelmsjs6kcerqzcfuvxjbfuajpbjdniontycr6ge/oubf8wnc0xc6s6/cdjmoa0hhns4517u3omnjapp29/g0vlk6tp6yao4ubw9s2vu7tdfrdgmdryzmld9jaijewlikhlpj5yg0gek5q8vmr81ilzqolqt44r4iephnkayss11tavshkgo/cc9nbtdvfxhqapvrzeko7lphegy8gdprnxmumbjtuwp4cjxclicoepd88vtxvifjjkyise6jp1il0vcusyixqkesraeoj7pabqhkagvnd41gwwt9gaqc/0icafq74kuhukmq193zkeies8t//m6sgbnxkqjreks4dmiqdeoy5ifbhuueyzzwboeodv/hxiaomjsr1nuitjzjy+s5onl2jzze1qqxevxfmahoalhwafnoaauqr00aaap4bm8gjfjyxgx3o2pweuskc8cgd8wpn8aitgdzw==</latexit> Embedding context Batch CONTEXT NORM Non-parametric normalization of the mean/std of feature maps. Applied over each image pair in the batch separately. Also known as Instance Norm, used in image stylization. Correspondences Image pair Image pair Image pair Perceptron - Mean & Variance Coords: {u, v, u 0,v 0 } 1appleiappleN

Results Train on only two sequences: one indoors & one outdoors (10k pairs from each): (i) St. Peter s Square (2.5k images) (ii) Brown (video, 8k images) Test on completely different sequences (1k pairs from each):

Results Ours RANSAC Outdoors: great performance. Indoors: slightly better than dense methods.

RANSAC (SIFT, 2000 keypoints) OURS (SIFT, 2000 keypoints)

Collaborators Kwang Yi (U. Victoria) Eduard Trulls (EPFL) Yuki Ono (Sony) Mathieu Salzmann Vincent Lepetit (EPFL) (U. Bordeaux) Pascal Fua (EPFL) Code and models: github.com/vcg-uvic/learned-correspondence-release

Thanks for your attention. Questions?