Nespojitá Galerkinova metoda pro řešení

Podobne dokumenty
Aerodynamics I Compressible flow past an airfoil

Primal Formulation. Find u h V h such that. A h (u h, v h )= fv h dx v h V h, where. u h v h dx. A h (u h, v h ) = DGFEM Primal Formulation.

Helena Boguta, klasa 8W, rok szkolny 2018/2019

A sufficient condition of regularity for axially symmetric solutions to the Navier-Stokes equations

y = The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Explain your answer, write in complete sentences.

Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019

Convolution semigroups with linear Jacobi parameters

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

Linear Classification and Logistic Regression. Pascal Fua IC-CVLab

General Certificate of Education Ordinary Level ADDITIONAL MATHEMATICS 4037/12

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction

Revenue Maximization. Sept. 25, 2018

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

Rachunek lambda, zima

Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application

SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

OpenPoland.net API Documentation

Chapter 1: Review Exercises

Hard-Margin Support Vector Machines

harmonic functions and the chromatic polynomial

Few-fermion thermometry

Gradient Coding using the Stochastic Block Model

Wyk lad z Algebry Liniowej dla studentów WNE UW. Rok akademicki 2017/2018. Przyk lady zadań na ćwiczenia. 1. Które z cia

Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)

DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION

Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2

Zarządzanie sieciami telekomunikacyjnymi

DM-ML, DM-FL. Auxiliary Equipment and Accessories. Damper Drives. Dimensions. Descritpion

Tychy, plan miasta: Skala 1: (Polish Edition)

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

DOI: / /32/37

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

Stability of Tikhonov Regularization Class 07, March 2003 Alex Rakhlin

tum.de/fall2018/ in2357

Physics-Based Animation 4 Mass-spring systems

Unitary representations of SL(2, R)

Instrukcja konfiguracji usługi Wirtualnej Sieci Prywatnej w systemie Mac OSX

Katowice, plan miasta: Skala 1: = City map = Stadtplan (Polish Edition)

Camspot 4.4 Camspot 4.5

Wybrzeze Baltyku, mapa turystyczna 1: (Polish Edition)

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

Zmiany techniczne wprowadzone w wersji Comarch ERP Altum

Modern methods of statistical physics

deep learning for NLP (5 lectures)

RESONANCE OF TORSIONAL VIBRATION OF SHAFTS COUPLED BY MECHANISMS

January 1st, Canvas Prints including Stretching. What We Use

Model standardowy i stabilność próżni

HAPPY ANIMALS L01 HAPPY ANIMALS L03 HAPPY ANIMALS L05 HAPPY ANIMALS L07

HAPPY ANIMALS L02 HAPPY ANIMALS L04 HAPPY ANIMALS L06 HAPPY ANIMALS L08

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015

Counting quadrant walks via Tutte s invariant method

New Roads to Cryptopia. Amit Sahai. An NSF Frontier Center

Egzamin maturalny z języka angielskiego na poziomie dwujęzycznym Rozmowa wstępna (wyłącznie dla egzaminującego)

NONLINEAR BOUNDARY CONDITION FOR ELECTROMAGNETIC FIELD PROBLEMS NIELINIOWE ELEKTROMAGNETYCZNE ZAGADNIENIE I SFORMUŁOWANIE JEGO WARUNKÓW BRZEGOWYCH

The Lorenz System and Chaos in Nonlinear DEs

DO MONTAŻU POTRZEBNE SĄ DWIE OSOBY! INSTALLATION REQUIRES TWO PEOPLE!

Cracow University of Economics Poland

Title: On the curl of singular completely continous vector fields in Banach spaces

Stargard Szczecinski i okolice (Polish Edition)

Anonymous Authentication Using Electronic Identity Documents

Strategic planning. Jolanta Żyśko University of Physical Education in Warsaw

Lecture 18 Review for Exam 1

Previously on CSCI 4622

MaPlan Sp. z O.O. Click here if your download doesn"t start automatically

R E P R E S E N T A T I O N S

ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL

SubVersion. Piotr Mikulski. SubVersion. P. Mikulski. Co to jest subversion? Zalety SubVersion. Wady SubVersion. Inne różnice SubVersion i CVS

Realizacja systemów wbudowanych (embeded systems) w strukturach PSoC (Programmable System on Chip)

Outline of a method for fatigue life determination for selected aircraft s elements

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

n [2, 11] 1.5 ( G. Pick 1899).


Sargent Opens Sonairte Farmers' Market

INSTRUKCJE JAK AKTYWOWAĆ SWOJE KONTO PAYLUTION

Mixed-integer Convex Representability

Standardized Test Practice

Extraclass. Football Men. Season 2009/10 - Autumn round

Miedzy legenda a historia: Szlakiem piastowskim z Poznania do Gniezna (Biblioteka Kroniki Wielkopolski) (Polish Edition)

How to translate Polygons

Przewody do linii napowietrznych Przewody z drutów okrągłych skręconych współosiowo

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

First-order logic. Usage. Tautologies, using rst-order logic, relations to natural language

Roland HINNION. Introduction

SG-MICRO... SPRĘŻYNY GAZOWE P.103

Klaps za karę. Wyniki badania dotyczącego postaw i stosowania kar fizycznych. Joanna Włodarczyk

EPS. Erasmus Policy Statement

WYZNACZANIE RUCHU CIECZY LEPKIEJ METODĄ SZTUCZNEJ ŚCIŚLIWOŚCI NA SIATKACH NAKŁADAJĄCYCH SIĘ

PLSH1 (JUN14PLSH101) General Certificate of Education Advanced Subsidiary Examination June Reading and Writing TOTAL

DO MONTAŻU POTRZEBNE SĄ DWIE OSOBY! INSTALLATION REQUIRES TWO PEOPLE!

Dolny Slask 1: , mapa turystycznosamochodowa: Plan Wroclawia (Polish Edition)

Appendix. Studia i Materiały Centrum Edukacji Przyrodniczo-Leśnej R. 10. Zeszyt 2 (17) /

F-Theory duals of heterotic K3 orbifolds

DO MONTAŻU POTRZEBNE SĄ DWIE OSOBY! INSTALLATION REQUIRES TWO PEOPLE!

HAPPY K04 INSTRUKCJA MONTAŻU ASSEMBLY INSTRUCTIONS DO MONTAŻU POTRZEBNE SĄ DWIE OSOBY! INSTALLATION REQUIRES TWO PEOPLE! W5 W6 G1 T2 U1 U2 TZ1

Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions

OBWIESZCZENIE MINISTRA INFRASTRUKTURY. z dnia 18 kwietnia 2005 r.

Pielgrzymka do Ojczyzny: Przemowienia i homilie Ojca Swietego Jana Pawla II (Jan Pawel II-- pierwszy Polak na Stolicy Piotrowej) (Polish Edition)

Machine Learning for Data Science (CS4786) Lecture 24. Differential Privacy and Re-useable Holdout

Transkrypt:

Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Václav Kučera vaclav.kucera@email.cz Univerzita Karlova v Praze Matematicko-fyzikální Fakulta Katedra numerické matematiky Vytvoření a rozvoj týmu pro náročné technické výpočty na paralelních počítačích na TU v Liberci, 21. června 2010 Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 1 / 39

Let Ω R 2 be a bounded domain with boundary Ω = Γ I Γ O Γ W. Find w : Q T = Ω (0, T ) R 4 such that where w t + f s (w) = w = (ρ, ρv 1, ρv 2, e) T R 4, R s (w, w) in Q T, f i (w) = (ρv i, ρv 1 v i + δ 1i p, ρv 2 v i + δ 2i p, (e + p)v i ) T, R i (w, w) = (0, τ i1, τ i2, τ i1 v 1 + τ i2 v 2 + k θ/ x i ) T, τ ij = λδ ij divv + 2µd ij (v), d ij (v) = 1 2 ( vi x j + v j x i ). Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 2 / 39

Let Ω R 2 be a bounded domain with boundary Ω = Γ I Γ O Γ W. Find w : Q T = Ω (0, T ) R 4 such that where w t + f s (w) = w = (ρ, ρv 1, ρv 2, e) T R 4, R s (w, w) in Q T, f i (w) = (ρv i, ρv 1 v i + δ 1i p, ρv 2 v i + δ 2i p, (e + p)v i ) T, R i (w, w) = (0, τ i1, τ i2, τ i1 v 1 + τ i2 v 2 + k θ/ x i ) T, τ ij = λδ ij divv + 2µd ij (v), d ij (v) = 1 2 ( vi x j + v j x i ). Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 2 / 39

Let Ω R 2 be a bounded domain with boundary Ω = Γ I Γ O Γ W. Find w : Q T = Ω (0, T ) R 4 such that where w t + f s (w) = w = (ρ, ρv 1, ρv 2, e) T R 4, R s (w, w) in Q T, f i (w) = (ρv i, ρv 1 v i + δ 1i p, ρv 2 v i + δ 2i p, (e + p)v i ) T, R i (w, w) = (0, τ i1, τ i2, τ i1 v 1 + τ i2 v 2 + k θ/ x i ) T, τ ij = λδ ij divv + 2µd ij (v), d ij (v) = 1 2 ( vi x j + v j x i ). Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 2 / 39

We add the thermodynamical relations p = (γ 1)(e ρ v 2 /2), θ = and the following set of boundary conditions: ( e ρ 1 ) 2 v 2 /c v. Case Γ I : a) ρ ΓI (0,T ) = ρ D, b) v ΓI (0,T ) = v D = (v D1, v D2 ) T, ( ) c) τ ij n i v j + k θ n = 0 on Γ I (0, T ); j=1 i=1 Case Γ W : a) v ΓW (0,T ) = 0, b) θ n = 0 on Γ W (0, T ); Case Γ O : a) τ ij n i = 0, j = 1, 2, b) θ n = 0 on Γ O (0, T ); i=1 Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 3 / 39

Let T h be a partition of the closure Ω t into a finite number of closed triangles K T h. By F h we denote the set of all edges of T h. For a given edge Γ F h we define a unit normal n Γ. Γ 8 n Γ8 K 1 Γ 6 n Γ6 Γ 5 n Γ1 K 2 n Γ5 Γ 1 K 5 Γ2 n Γ2 n Γ7 Γ 7 Γ 4 Γ 3 K 3 n Γ4 n Γ3 K 4 Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 4 / 39

Let T h be a partition of the closure Ω t into a finite number of closed triangles K T h. By F h we denote the set of all edges of T h. For a given edge Γ F h we define a unit normal n Γ. Γ 8 n Γ8 K 1 Γ 6 n Γ6 Γ 5 n Γ1 K 2 n Γ5 Γ 1 K 5 Γ2 n Γ2 n Γ7 Γ 7 Γ 4 Γ 3 K 3 n Γ4 n Γ3 K 4 Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 4 / 39

For each interior face Γ F h there exist two neighbours K (L) Γ, K (R) Γ T h. We use the convention that n Γ is the outer normal to the element K (L) Γ. v (L) = trace of v (L) K Γ v (R) = trace of v (L) K Γ [v] Γ = v (L) v (R), v Γ = 1 2( v (L) + v (R)). on Γ, on Γ, Γ n Γ K (L) Γ K (R) Γ Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 5 / 39

For each interior face Γ F h there exist two neighbours K (L) Γ, K (R) Γ T h. We use the convention that n Γ is the outer normal to the element K (L) Γ. v (L) = trace of v (L) K Γ v (R) = trace of v (L) K Γ [v] Γ = v (L) v (R), v Γ = 1 2( v (L) + v (R)). on Γ, on Γ, Γ n Γ K (L) Γ K (R) Γ Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 5 / 39

Over T h we define the broken Sobolev space H k (Ω, T h ) = {v; v K H k (K) K T ht } We discretize the continuous problem in the space of discontinuous piecewise polynomial functions S h = {v; v K P p (K) K T ht }, where P p (K) is the space of all polynomials on K of degree p. In order to derive a variational formulation, we multiply the N-S equations by a test function ϕ H 2 (Ω, T h ), apply Green s theorem on individual elements and sum over all elements. Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 6 / 39

Over T h we define the broken Sobolev space H k (Ω, T h ) = {v; v K H k (K) K T ht } We discretize the continuous problem in the space of discontinuous piecewise polynomial functions S h = {v; v K P p (K) K T ht }, where P p (K) is the space of all polynomials on K of degree p. In order to derive a variational formulation, we multiply the N-S equations by a test function ϕ H 2 (Ω, T h ), apply Green s theorem on individual elements and sum over all elements. Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 6 / 39

Over T h we define the broken Sobolev space H k (Ω, T h ) = {v; v K H k (K) K T ht } We discretize the continuous problem in the space of discontinuous piecewise polynomial functions S h = {v; v K P p (K) K T ht }, where P p (K) is the space of all polynomials on K of degree p. In order to derive a variational formulation, we multiply the N-S equations by a test function ϕ H 2 (Ω, T h ), apply Green s theorem on individual elements and sum over all elements. Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 6 / 39

Convective terms w t + f s (w) = R s (w, w) We multiply the convective term by a test function ϕ H 2 (Ω, T h ), integrate over K, apply Green s theorem: K We sum over all K T h : K T h K f s (w) ϕ dx + K f s (w) ϕ dx + F h f s (w)n s ϕ ds, f s (w)n s [ϕ] ds, Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 7 / 39

Convective terms w t + f s (w) = R s (w, w) We multiply the convective term by a test function ϕ H 2 (Ω, T h ), integrate over K, apply Green s theorem: K We sum over all K T h : K T h K f s (w) ϕ dx + K f s (w) ϕ dx + F h f s (w)n s ϕ ds, f s (w)n s [ϕ] ds, Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 7 / 39

Convective terms w t + f s (w) = R s (w, w) In the second term, incorporate a numerical flux H: F h f s (w)n s [ϕ] ds H(w (L), w (R), n) [ϕ] ds, F h e.g. Lax-Friedrichs H(w (L), w (R), n) =. 1( fs (w (L) )n s +f s (w (R) ) ( )n s +α w (L) w R) 2 Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 8 / 39

Convective terms w t + f s (w) = R s (w, w) In the second term, incorporate a numerical flux H: F h f s (w)n s [ϕ] ds H(w (L), w (R), n) [ϕ] ds, F h e.g. Lax-Friedrichs H(w (L), w (R), n) =. 1( fs (w (L) )n s +f s (w (R) ) ( )n s +α w (L) w R) 2 Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 8 / 39

Convective terms w t + f s (w) = Finally, we define the convective form: b h (w, ϕ) = K T h K R s (w, w) f s (w) ϕ dx+ H(w (L), w (R), n) [ϕ] ds, F h If Γ Ω, then w (R) is not defined. By providing w (R), we impose boundary conditions in some weak sense. Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 9 / 39

Convective terms w t + f s (w) = Finally, we define the convective form: b h (w, ϕ) = K T h K R s (w, w) f s (w) ϕ dx+ H(w (L), w (R), n) [ϕ] ds, F h If Γ Ω, then w (R) is not defined. By providing w (R), we impose boundary conditions in some weak sense. Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 9 / 39

Diffusion terms w t + f s (w) = R s (w, w) Question How does one discretize second order terms using spaces of discontinuous functions? Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 10 / 39

Diffusion terms w t + f s (w) = R s (w, w) Question How does one discretize second order terms using spaces of discontinuous functions? Answer Treat the second order terms as a first order system and apply the discretization from the previous slide. Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 10 / 39

Model problem R s (w, w) = g. Due to properties of R s (w, w) we can write ( K sk (w) w ) = g. x k k=1 We introduce an auxiliary variable σ k and write ( ) K sk (w)σ k = g, k=1 σ k = w x k, k = 1, 2. Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 11 / 39

Model problem R s (w, w) = g. Due to properties of R s (w, w) we can write ( K sk (w) w ) = g. x k k=1 We introduce an auxiliary variable σ k and write ( ) K sk (w)σ k = g, k=1 σ k = w x k, k = 1, 2. Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 11 / 39

Model problem R s (w, w) = g. Due to properties of R s (w, w) we can write ( K sk (w) w ) = g. x k k=1 We introduce an auxiliary variable σ k and write ( ) K sk (w)σ k = g, k=1 σ k = w x k, k = 1, 2. Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 11 / 39

Model problem ( ) K sk (w)σ k = g, k=1 σ k = w x k, k = 1, 2. This first order system for unknowns w, σ 1, σ 2 can be discretized using the discontinuous Galerkin method. Different choices of the numerical flux for this system give different numerical schemes. If the numerical flux is appropriately chosen, it is possible to eliminate σ from the resulting numerical scheme. Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 12 / 39

Model problem ( ) K sk (w)σ k = g, k=1 σ k = w x k, k = 1, 2. This first order system for unknowns w, σ 1, σ 2 can be discretized using the discontinuous Galerkin method. Different choices of the numerical flux for this system give different numerical schemes. If the numerical flux is appropriately chosen, it is possible to eliminate σ from the resulting numerical scheme. Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 12 / 39

Nonsymmetric variant of the diffusion form w t + a N h (w, ϕ) = K T h Fh I + K f s (w) = R s (w, w) ϕ dx R s (w, w) n s [ϕ] ds Fh I R s (w, ϕ) n s [w] ds + Here Rk (w, ϕ) := F D h F D h R s (w, w) R s (w, w)n s ϕ ds R s (w, ϕ)n s w ds, K T sk(w) ϕ and R s (w, w) = k=1 K sk (w) w. Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 13 / 39

Nonsymmetric variant of the diffusion form w t + a N h (w, ϕ) = K T h Fh I + K f s (w) = R s (w, w) ϕ dx R s (w, w) n s [ϕ] ds Fh I R s (w, ϕ) n s [w] ds + Here Rk (w, ϕ) := F D h F D h R s (w, w) R s (w, w)n s ϕ ds R s (w, ϕ)n s w ds, K T sk(w) ϕ and R s (w, w) = k=1 K sk (w) w. Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 13 / 39

Nonsymmetric variant of the diffusion form w t + a N h (w, ϕ) = K T h Fh I + K f s (w) = R s (w, w) ϕ dx R s (w, w) n s [ϕ] ds Fh I R s (w, ϕ) n s [w] ds + F D h F D h R s (w, w) R s (w, w)n s ϕ ds R s (w, ϕ)n s w ds, Nonsymmetric, coercive and suboptimal convergence rate in L 2 -norm for even p. Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 13 / 39

Symmetric variant of the diffusion form w t + f s (w) = R s (w, w) a N h (w, ϕ) = K T h Fh I K R s (w, w) ϕ dx R s (w, w) n s [ϕ] ds Fh I R s (w, ϕ) n s [w] ds F D h F D h R s (w, w)n s ϕ ds R s (w, ϕ)n s w ds, Symmetric, not coercive and optimal convergence rate in L 2 -norm. Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 14 / 39

Symmetric variant of the diffusion form w t + f s (w) = R s (w, w) a N h (w, ϕ) = K T h Fh I K R s (w, w) ϕ dx R s (w, w) n s [ϕ] ds Fh I R s (w, ϕ) n s [w] ds F D h F D h R s (w, w)n s ϕ ds R s (w, ϕ)n s w ds, Symmetric, not coercive and optimal convergence rate in L 2 -norm. Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 14 / 39

Symmetric variant of the diffusion form w t + f s (w) = R s (w, w) a N h (w, ϕ) = K T h Fh I K R s (w, w) ϕ dx R s (w, w) n s [ϕ] ds Fh I R s (w, ϕ) n s [w] ds F D h F D h R s (w, w)n s ϕ ds R s (w, ϕ)n s w ds, Red terms are a result of applying a numerical flux to the first order system. Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 14 / 39

Incomplete variant of the diffusion form w t + f s (w) = R s (w, w) a N h (w, ϕ) = K T h Fh I K R s (w, w) ϕ dx R s (w, w) n s [ϕ] ds F D h R s (w, w)n s ϕ ds Not symmetric, not coercive and suboptimal convergence rate in L 2 -norm for even p. Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 15 / 39

Incomplete variant of the diffusion form w t + f s (w) = R s (w, w) a N h (w, ϕ) = K T h Fh I K R s (w, w) ϕ dx R s (w, w) n s [ϕ] ds F D h R s (w, w)n s ϕ ds Not symmetric, not coercive and suboptimal convergence rate in L 2 -norm for even p. Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 15 / 39

Incomplete variant of the diffusion form w t + f s (w) = R s (w, w) a N h (w, ϕ) = K T h Fh I K R s (w, w) ϕ dx R s (w, w) n s [ϕ] ds F D h R s (w, w)n s ϕ ds Simplest DG discretization of second order terms. Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 15 / 39

Interior and boundary penalty In theory and in practice we need to add the interior and boundary penalty jump terms: 1 J h (w, ϕ) = C W Γ [w][ϕ] ds + C 1 W wϕ ds. Γ F I h This term ensures coercivity, when the constant C W is chosen sufficiently large. The boundary term is balanced on the right-hand side by 1 C W Γ w Bϕ ds, thus enforcing Dirichlet boundary conditions. F D h F D h Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 16 / 39

Interior and boundary penalty In theory and in practice we need to add the interior and boundary penalty jump terms: 1 J h (w, ϕ) = C W Γ [w][ϕ] ds + C 1 W wϕ ds. Γ F I h This term ensures coercivity, when the constant C W is chosen sufficiently large. The boundary term is balanced on the right-hand side by 1 C W Γ w Bϕ ds, thus enforcing Dirichlet boundary conditions. F D h F D h Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 16 / 39

Discrete Problem Definition We say that w h is a DGFE solution of the compressible Navier-Stokes equations if a) w h C 1 ([0, T ]; S h ), b) d dt (w h(t), ϕ h ) + b h (w h (t), ϕ h ) + J h (w h (t), ϕ h ) + a h (w h (t), ϕ h ) = l h (w h, ϕ h )(t), ϕ h S h, t (0, T ), c) w h (0) = w 0 h, where w 0 h is an S h approximation of the initial condition w 0. Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 17 / 39

Semi-implicit d dt (w h, ϕ) + b h (w h, ϕ) + J h (w h, ϕ) + a h (w h, ϕ) = l h (w h, ϕ) A fully implicit scheme requires the solution of a nonlinear system. In the semi-implicit scheme we linearize the nonlinear terms using their specific properties. We solve only one linear system per time level. The scheme has good stability properties. Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 18 / 39

Semi-implicit d dt (w h, ϕ) + b h (w h, ϕ) + J h (w h, ϕ) + a h (w h, ϕ) = l h (w h, ϕ) A fully implicit scheme requires the solution of a nonlinear system. In the semi-implicit scheme we linearize the nonlinear terms using their specific properties. We solve only one linear system per time level. The scheme has good stability properties. Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 18 / 39

Semi-implicit d dt (w h, ϕ) + b h (w h, ϕ) + J h (w h, ϕ) + a h (w h, ϕ) = l h (w h, ϕ) We introduce a partition 0 = t 0 < t 1 < < t N = T and define τ n = t n+1 t n. Time derivative: d ( wh (t n+1 ), ϕ ) wn+1 h wh n dt τ n Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 18 / 39

Semi-implicit d dt (w h, ϕ) + b h (w h, ϕ) + J h (w h, ϕ) + a h (w h, ϕ) = l h (w h, ϕ) We introduce a partition 0 = t 0 < t 1 < < t N = T and define τ n = t n+1 t n. Time derivative: d ( wh (t n+1 ), ϕ ) wn+1 h wh n dt τ n Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 18 / 39

Semi-implicit d dt (w h, ϕ) + b h (w h, ϕ) + J h (w h, ϕ) + a h (w h, ϕ) = l h (w h, ϕ) Convective terms: K T h K f s (w n+1 ) ϕ dx+ H(w (L),n+1, w (R),n+1, n) ϕ ds F h Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 19 / 39

Semi-implicit d dt (w h, ϕ) + b h (w h, ϕ) + J h (w h, ϕ) + a h (w h, ϕ) = l h (w h, ϕ) Convective terms: K T h K It holds that f s (w n+1 ) ϕ dx+ H(w (L),n+1, w (R),n+1, n) ϕ ds F h f s (w) = A s (w)w, We therefore linearize where A s (w) = Df s(w) Dw. f s (w n+1 ) A s (w n )w n+1. Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 19 / 39

Semi-implicit d dt (w h, ϕ) + b h (w h, ϕ) + J h (w h, ϕ) + a h (w h, ϕ) = l h (w h, ϕ) Convective terms: K T h K f s (w n+1 ) ϕ dx+ H(w (L),n+1, w (R),n+1, n) ϕ ds F h We choose the Vijayasundaram numerical flux for f H(w (L), w (R), n) = P + ( w, n) w (L) + P ( w, n) w (L) and linearize H(w n+1 (L) Γ, wn+1 (R) Γ, n Γ) P + ( w n, n Γ ) w n+1 (L) Γ +P ( w n, n Γ ) w n+1 (R) Γ. P ± = TD ± T 1, where A s n s = TDT 1. Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 19 / 39

Semi-implicit d dt (w h, ϕ) + b h (w h, ϕ) + J h (w h, ϕ) + a h (w h, ϕ) = l h (w h, ϕ) Interior and boundary penalty jump terms are linear J h (w n+1, ϕ) = 1 C W Γ [wn+1 ][ϕ] ds + C W F I h F D h 1 Γ wn+1 ϕ ds. Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 19 / 39

Semi-implicit d dt (w h, ϕ) + b h (w h, ϕ) + J h (w h, ϕ) + a h (w h, ϕ) = l h (w h, ϕ) Diffusion terms (for instance incomplete variant): a I h(w, ϕ) = K T h Fh I K R s (w, w) ϕ dx R s (w, w) n s [ϕ] ds It holds that R s (w, w) = We can linearize k=1 R s (w n+1, w n+1 ) F D h R s (w, w)n s ϕ ds. K sk (w) w. k=1 K sk (w n ) wn+1. Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 19 / 39

Boundary Conditions - Inlet, outlet Semi-implicit BCs at Γ I, Γ O are imposed by choosing the outside boundary state w (R) in the numerical flux. Appropriate coordinate system, neglecting the tangential derivatives and linearization give: q t + f 1(q) = 0 q x 1 t + A 1(q i ) q = 0, x 1 We seek q j such that the linearized problem has sense. Eigenvectors of A 1 (q i ) form a basis and eigenvalues are real. q i = 4 α s r s, q j = 4 β s r s. Substitution into the system reduces it to four independent equations that have an analytical solution. Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 20 / 39

Boundary Conditions - Inlet, outlet Semi-implicit BCs at Γ I, Γ O are imposed by choosing the outside boundary state w (R) in the numerical flux. Appropriate coordinate system, neglecting the tangential derivatives and linearization give: q t + f 1(q) = 0 q x 1 t + A 1(q i ) q = 0, x 1 We seek q j such that the linearized problem has sense. Eigenvectors of A 1 (q i ) form a basis and eigenvalues are real. q i = 4 α s r s, q j = 4 β s r s. Substitution into the system reduces it to four independent equations that have an analytical solution. Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 20 / 39

Boundary Conditions - Inlet, outlet Semi-implicit BCs at Γ I, Γ O are imposed by choosing the outside boundary state w (R) in the numerical flux. Appropriate coordinate system, neglecting the tangential derivatives and linearization give: q t + f 1(q) = 0 q x 1 t + A 1(q i ) q = 0, x 1 We seek q j such that the linearized problem has sense. Eigenvectors of A 1 (q i ) form a basis and eigenvalues are real. q i = 4 α s r s, q j = 4 β s r s. Substitution into the system reduces it to four independent equations that have an analytical solution. Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 20 / 39

Boundary Conditions - Inlet, outlet Semi-implicit BCs at Γ I, Γ O are imposed by choosing the outside boundary state w (R) in the numerical flux. Appropriate coordinate system, neglecting the tangential derivatives and linearization give: q t + f 1(q) = 0 q x 1 t + A 1(q i ) q = 0, x 1 We seek q j such that the linearized problem has sense. Eigenvectors of A 1 (q i ) form a basis and eigenvalues are real. q i = 4 α s r s, q j = 4 β s r s. Substitution into the system reduces it to four independent equations that have an analytical solution. Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 20 / 39

Boundary Conditions - Inlet, outlet Semi-implicit BCs at Γ I, Γ O are imposed by choosing the outside boundary state w (R) in the numerical flux. Appropriate coordinate system, neglecting the tangential derivatives and linearization give: q t + f 1(q) = 0 q x 1 t + A 1(q i ) q = 0, x 1 We seek q j such that the linearized problem has sense. Eigenvectors of A 1 (q i ) form a basis and eigenvalues are real. q i = 4 α s r s, q j = 4 β s r s. Substitution into the system reduces it to four independent equations that have an analytical solution. Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 20 / 39

Boundary Conditions - Inlet, outlet Semi-implicit Conclusion: depending on the sign of eigenvalues of A 1 (q i ) we either prescribe or extrapolate α s, β s When prescribing β s, we evaluate from an appropriate state (e.g. far-field). Finally q j := q i = Tα α = T 1 q i, q 0 j = Tβ β = T 1 q 0 j. 4 γ s r s = Tγ, where γ s = { α s, λ s 0, β s, λ s < 0. Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 21 / 39

Boundary Conditions - Inlet, outlet Semi-implicit Conclusion: depending on the sign of eigenvalues of A 1 (q i ) we either prescribe or extrapolate α s, β s When prescribing β s, we evaluate from an appropriate state (e.g. far-field). Finally q j := q i = Tα α = T 1 q i, q 0 j = Tβ β = T 1 q 0 j. 4 γ s r s = Tγ, where γ s = { α s, λ s 0, β s, λ s < 0. Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 21 / 39

Boundary Conditions - Inlet, outlet Semi-implicit Conclusion: depending on the sign of eigenvalues of A 1 (q i ) we either prescribe or extrapolate α s, β s When prescribing β s, we evaluate from an appropriate state (e.g. far-field). Finally q j := q i = Tα α = T 1 q i, q 0 j = Tβ β = T 1 q 0 j. 4 γ s r s = Tγ, where γ s = { α s, λ s 0, β s, λ s < 0. Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 21 / 39

Shock Capturing Semi-implicit In transonic and supersonic flows it is common that solutions develop discontinuities. In these cases spurious under and overshoots occur on elements near the discontinuity. Especially in the semi-implicit case, it is desirable to avoid such phenomena. We therefore locally add artificial diffusion to suppress these effects. Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 22 / 39

Shock Capturing Semi-implicit To the scheme we add two artificial viscosity forms. Internal diffusion: Φ 1 h (wn h, wn+1 h, ϕ) = ν 1 h K G n (K) w n+1 h ϕ dx K T K h with ν 1 = O(1) a given constant. Here G(K) is a discontinuity indicator which measures interelement jumps of the solution: { G k 1 if interelement jumps of wh n (K) = are large near K i, 0 otherwise. Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 23 / 39

Shock Capturing Semi-implicit Interelement diffusion: Φ 2 h (wn h, wn+1 h, ϕ) = ν 2 G n [w n+1 Fh I h ] [ϕ] ds, with ν 2 = O(1) a given constant. This term allows to strengthen the influence of neighbouring elements and improves the behavior of the method in the case, when strongly unstructured and/or anisotropic meshes are used. Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 24 / 39

Flow around cylinder, M = 10 4 Semi-implicit Figure: Velocity isolines of exact and numerical solution, respectively. Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 25 / 39

Flow around cylinder, M = 10 4 Semi-implicit 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0 1 0 1 2 3 4 Figure: Velocity distribution on cylinder surface. Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 26 / 39

Semi-implicit Corner eddies around cylinder, M = 10 4 L.E. Fraenkel: On Corner Eddies in Plane Inviscid Shear Flow, 1961 Figure: Streamlines, exact solution. Figure: Streamlines, numerical solution. Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 27 / 39

Semi-implicit Corner eddies around cylinder, M = 10 4 L.E. Fraenkel: On Corner Eddies in Plane Inviscid Shear Flow, 1961 0.8 0.6 0.4 0.2 0 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 Figure: Velocity distribution on cylinder surface: exact solution of incompressible flow, numerical solution. Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 28 / 39

Semi-implicit Flow around Žukovsky profile, M = 10 4 Figure: Velocity isolines: exact solution of incompressible flow, numerical solution. Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 29 / 39

Semi-implicit Flow around Žukovsky profile, M = 10 4 1.4 1.2 1 0.8 0.6 0.4 0.2 1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1 Figure: Velocity distribution on profile surface: exact solution of incompressible flow, numerical solution. Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 30 / 39

Semi-implicit Flow around Žukovsky profile, M = 10 4 4 2 0 2 4 1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1 Figure: Pressure distribution on profile surface: exact solution of incompressible flow, numerical solution. Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 31 / 39

Semi-implicit Supersonic flow around Žukovsky profile, M = 2.0 Figure: M = 0.8, Mach number isolines. Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 32 / 39

Semi-implicit Supersonic flow around Žukovsky profile, M = 2.0 Figure: M = 2.0, Mach number isolines. Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 33 / 39

Flow in GAMM channel, M = 0.67 Semi-implicit 1 0.8 0.6 0.4 0.2 0 Figure: Mach number isolines. Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 34 / 39

Flow in GAMM channel, M = 0.67 Semi-implicit 1 0.8 0.6 0.4 0.2 0 Figure: Entropy isolines. Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 35 / 39

Flow in GAMM channel, M = 0.67 Semi-implicit 1 0.8 0.6 0.4 0.2 0 Figure: Entropy. Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 36 / 39

Flow in GAMM channel, M = 0.67 Semi-implicit Figure: Entropy. Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 37 / 39

NACA 0012 viscous flow Semi-implicit Figure: M = 0.5, Re = 5000, α = 2, Mach isolines. Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 38 / 39

NACA 0012 viscous flow Semi-implicit Figure: M = 0.5, Re = 5000, α = 25, Mach isolines. Václav Kučera Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Liberec 2010 39 / 39