Managing the production of natural gas using gas storage in Poland



Podobne dokumenty
Mo liwoœci rozwoju podziemnych magazynów gazu w Polsce

Helena Boguta, klasa 8W, rok szkolny 2018/2019



Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019

GLOBAL METHANE INITIATIVE PARTNERSHIP-WIDE MEETING Kraków, Poland

SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like

Has the heat wave frequency or intensity changed in Poland since 1950?

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

EGARA Adam Małyszko FORS. POLAND - KRAKÓW r

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis



Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application

Fizyka Procesów Klimatycznych Wykład 11 Aktualne zmiany klimatu: atmosfera, hydrosfera, kriosfera

Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)

OPTYMALIZACJA PUBLICZNEGO TRANSPORTU ZBIOROWEGO W GMINIE ŚRODA WIELKOPOLSKA

Tychy, plan miasta: Skala 1: (Polish Edition)


DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION

System optymalizacji produkcji energii

PORTS AS LOGISTICS CENTERS FOR CONSTRUCTION AND OPERATION OF THE OFFSHORE WIND FARMS - CASE OF SASSNITZ

MaPlan Sp. z O.O. Click here if your download doesn"t start automatically

EPS. Erasmus Policy Statement

Podziemne magazynowanie gazu jako element systemu bezpieczeñstwa energetycznego i rynku gazowego

Revenue Maximization. Sept. 25, 2018

ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS.

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

Financial results of Apator Capital Group in 1Q2014

Domy inaczej pomyślane A different type of housing CEZARY SANKOWSKI


Wyjaśnienie i ilustracje: Wyliczenie kwoty straty dla Wnioskodawcy zmarłego, który złożył wcześniej Wniosek dla osób z uszkodzeniem ciała

Zarządzanie sieciami telekomunikacyjnymi

Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

Zmiany techniczne wprowadzone w wersji Comarch ERP Altum

TRANSPORT W RODZINNYCH GOSPODARSTWACH ROLNYCH

EN/PL COUNCIL OF THE EUROPEAN UNION. Brussels, 25 March /14 Interinstitutional File: 2014/0011 (COD)

PL-DE data test case. Kamil Rybka. Helsinki, November 2017

Analiza porównawcza zmian w rozbiorach wody z uwzględnieniem sposobu jej dostarczania do odbiorców

PROGNOZY ZAPOTRZEBOWANIA NA PODZIEMNE MAGAZYNOWANIE GAZU W POLSCE NA TLE SYTUACJI BIEŻĄCEJ I SCENARIUSZY ROZWOJU RYNKU GAZOWEGO

PERSPEKTYWY ZRÓWNOWAŻONEGO ROZWOJU TRANSPORTU DROGOWEGO W POLSCE DO 2030 ROKU

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and


Formularz recenzji magazynu. Journal of Corporate Responsibility and Leadership Review Form

Effective Governance of Education at the Local Level

Katowice, plan miasta: Skala 1: = City map = Stadtplan (Polish Edition)

ROZPRAWY NR 128. Stanis³aw Mroziñski

Dominika Janik-Hornik (Uniwersytet Ekonomiczny w Katowicach) Kornelia Kamińska (ESN Akademia Górniczo-Hutnicza) Dorota Rytwińska (FRSE)

ZGŁOSZENIE WSPÓLNEGO POLSKO -. PROJEKTU NA LATA: APPLICATION FOR A JOINT POLISH -... PROJECT FOR THE YEARS:.

ELECTRIC AND MAGNETIC FIELDS NEAR NEW POWER TRANSMISSION LINES POLA ELEKTRYCZNE I MAGNETYCZNE WOKÓŁ NOWYCH LINII ELEKTROENERGETYCZNYCH

Sargent Opens Sonairte Farmers' Market

POLITYKA PRYWATNOŚCI / PRIVACY POLICY

SubVersion. Piotr Mikulski. SubVersion. P. Mikulski. Co to jest subversion? Zalety SubVersion. Wady SubVersion. Inne różnice SubVersion i CVS

Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2

Cracow University of Economics Poland


Economical utilization of coal bed methane emitted during exploitation of coal seams energetic and environmental aspects

Filozofia z elementami logiki Klasyfikacja wnioskowań I część 2

Jak zasada Pareto może pomóc Ci w nauce języków obcych?

Akademia Morska w Szczecinie. Wydział Mechaniczny

DM-ML, DM-FL. Auxiliary Equipment and Accessories. Damper Drives. Dimensions. Descritpion

Stargard Szczecinski i okolice (Polish Edition)

OpenPoland.net API Documentation

PROCEEDINGS OF THE INSTITUTE OF VEHICLES 2(106)/2016 (12 pt)

TYRE PYROLYSIS. REDUXCO GENERAL DISTRIBUTOR :: ::

Updated Action Plan received from the competent authority on 4 May 2017

Knovel Math: Jakość produktu

ITIL 4 Certification

SPITSBERGEN HORNSUND

deep learning for NLP (5 lectures)

Financial support for start-uppres. Where to get money? - Equity. - Credit. - Local Labor Office - Six times the national average wage (22000 zł)

BARIERA ANTYKONDENSACYJNA

Linear Classification and Logistic Regression. Pascal Fua IC-CVLab

Doœwiadczenia zwi¹zane z energetycznym wykorzystaniem biogazu ze sk³adowisk odpadów komunalnych

G14L LPG toroidal tank

poltegor - projekt sp. z o.o.

FORMULARZ REKLAMACJI Complaint Form

UMOWY WYPOŻYCZENIA KOMENTARZ

Extraclass. Football Men. Season 2009/10 - Autumn round

Perspectives of photovoltaics in Poland

POLITECHNIKA WARSZAWSKA. Wydział Zarządzania ROZPRAWA DOKTORSKA. mgr Marcin Chrząścik


European Crime Prevention Award (ECPA) Annex I - new version 2014

WPŁYW WYKORZYSTANIA INSTALACJI FOTOWOLTAICZNEJ ZASILAJĄCEJ POMPĘ CIEPŁA W OKRESIE OGRZEWCZYM NA WSKAŹNIK EK I EP CHARAKTERYSTYKI ENERGETYCZNEJ BUDYNKU

Jazz EB207S is a slim, compact and outstanding looking SATA to USB 2.0 HDD enclosure. The case is

Council of the European Union Brussels, 7 April 2016 (OR. en, pl)

Raport bieżący: 44/2018 Data: g. 21:03 Skrócona nazwa emitenta: SERINUS ENERGY plc

BLACKLIGHT SPOT 400W F

PEX PharmaSequence monthly report - January 2018 Total open market (sell-out report)

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

PARLAMENT EUROPEJSKI

shale gas do economics and regulation change at the German-Polish border Pawe Poprawa Polish Geological Institute BSEC, Berlin,

Total proved ("1P") reserves increased by 56% to 196 million barrels

WYDZIAŁ NAUK EKONOMICZNYCH. Studia II stopnia niestacjonarne Kierunek Międzynarodowe Stosunki Gospodarcze Specjalność INERNATIONAL LOGISTICS

Transkrypt:

POLITYKA ENERGETYCZNA Tom 16 Zeszyt 4 2013 ISSN 1429-6675 Piotr KOSOWSKI*, Jerzy STOPA**, Stanis³aw RYCHLICKI** Managing the production of natural gas using gas storage in Poland ABSTRACT. Managing natural gas exploitation which is subject to seasonal changes necessitates gas storage in the periods of lower demand to maintain the stability of gas production. Bearing in mind the natural seasonal character of gas consumption in Poland, it is necessary to use definite working gas volume of underground gas storage facilities (UGS) to maintain a suitable level of gas production from domestic sources in the periods of low gas consumption The main aim of the paper is to investigate the impact of gas storage on gas production strategy from domestic fields based on the example of Poland, and to calculate the amount of gas which should be stored to optimize gas production. The method of calculation, presented in this paper, has been applied to the historical data of methane-rich and nitrogen-rich gas supply and demand in Poland. The storage capacity needed for providing stable production, calculated according to formulas presented in this article was about 1.42 billion m 3 of methane-rich natural gas in the last year, which means that 47.7% of yearly domestic production was stored. Apart from the methane-rich system, two nitrogen-rich gas subsystems are operating in Poland. Those gas systems are regional closed systems, i.e. without the possibility of arbitrarily supplementing with gas deliveries from other transmission systems. The UGS were not used for storing nitrogen-rich gas in the past, therefore production from nitrogen-rich gas fields was increased in the winter and lowered during summer months. At present PGNiG S.A. has at its disposal two nitrogen-rich gas storages: UGS Daszewo and UGS Bonikowo. Working capacity needed for regulating the production of nitrogen-rich gas and calculated according to presented formulas is about 200 million m 3. The use of UGS enables stable exploitation of methane-rich gas fields and steady production * Dr in., ** Prof. dr hab. in. Wydzia³ Wiertnictwa, Nafty i Gazu, AGH Akademia Górniczo-Hutnicza, Kraków. 285

levels in gas processing plants. In addition no major fluctuations were observed in the aspect of high seasonality of natural gas consumption (related to climate and the structure of the gas consumers in Poland). In the summer season methane-rich gas imports exceed demand and its flexibility is strongly limited, which results from the realization of contracts, especially the obligation of receive minimum annual and summer amounts of gas, and technical parameters of the transmission network. By using methane-rich UGS in the analyzed period there was neither correlation between the monthly amount of production and consumption of high-methane gas, nor between the size of production and temperature. In the case of the closed nitrogen-rich gas system there have recently been large fluctuations caused by not using UGS. Since then a new UGS Bonikowo has come into use, thanks to which production could be, to a considerable degree, stabilized. KEY WORDS: underground gas storage, production optimization, working capacity calculation Introduction Natural gas consumption in Poland is strongly dominated by seasonal fluctuations on annual, weekly and daily bases. On the other hand, gas flow stability is very important for natural gas exploitation and transmission. The production conditions providing stability of gas field operation result from individual properties of the exploitation wells and frequently depend on a number of factors, e.g. geological and reservoir conditions, properties of formation rocks, design of the borehole and surface infrastructure. Ensuring optimal operation of the reservoir necessitates pressure difference exerted on the reservoir to be possibly constant and lower than the admissible level, which limits the attainable rate of production. This can eliminate or reduce the negative impact of formation waters (elimination of water cones, cutting off parts of the reservoir) and destabilization of the reservoir structure around the wellbore (migration of sand) (Kosowski et al. 2010). Thus, oil and natural gas reservoirs should be exploited in a stable way, with optimum production rate determined on the basis of measurements and calculations, with no rapid changes involved. Maintaining uniform gas production is also a key factor from the perspective of optimization of costs of natural gas exploitation. Managing natural gas exploitation which is subject to seasonal changes necessitates gas storage in the periods of lower demand to maintain the stability of gas production. Bearing in mind the natural seasonal character of gas consumption in Poland, it is necessary to use definite working gas volume of underground gas storage facilities (UGS) to maintain a suitable level of gas production from domestic sources in the periods of low gas consumption. Thus, the gas storage installations or their parts used for the realization of this purpose should be treated as elements of the exploitation system; they should be considered differently to other gas storage facilities used for other purposes. The third-party access (TPA) rule should not apply especially to gas storage facilities or their parts, including the virtual ones, playing a regulating role in oil and gas production (Kaliski et al. 2009). 286

It should be noted, that according to the third energy liberalization package announced in September 2007 by the European Parliament and the Council to facilitate access to gas storage, the storage volumes necessary for gas recovery can be reserved by the gas producing company and can be excluded from the TPA rules (Directive 2009/73/EC, 2009). However, the company must demonstrate what amount of working capacity is necessary to carry out gas production operations (Interpretative note on directive 2009/73/EC, 2010). This task is not minor because gas streams from extraction, import and storage are mixed in the transmission system and direct measurement is not possible. All import contracts signed by Polish Oil and Gas Company (PGNiG S.A.) have the take or pay clause. These contracts usually impose the obligation to buy a minimum annual amount of natural gas, including predefined quantities of gas in the summer period. Such clauses are common practice when assuming long- and average-length contracts and constitute a basic warranty for gas producers. Assuming the priority of gas imported on the basis of long-term contracts over gas from Polish deposits ( take or pay principle), the UGS have to be used for regulating the domestic gas production level in the summer period. 2. Aims The aim of the paper is to investigate the impact of gas storage on gas production strategy from domestic fields based on the example of Poland, and to calculate the amount of gas which should be stored to optimize gas production. 3. Methods Natural gas market balance can be illustrated with the following equation: P I UGS C UGS R (1) P I where: P deliveries from domestic sources [Nm 3 ], I deliveries from import [Nm 3 ], UGS p deliveries from UGS [Nm 3 ], C consumption (including export) [Nm 3 ], UGS I injection to UGS [Nm 3 ], R other (losses, use for technological needs, change of amount of gas in the transmission system) [Nm 3 ]. 287

The amount of stored natural gas after time t can be described as: T S ( T ) S p [ p( t ) i( t ) c( t ) r( t )] dt (2) 0 where: S(T) stored natural gas [nm 3 ], S p initial state [Nm 3 ], p(t) deliveries from domestic sources [Nm 3 /d], i(t) deliveries from import [Nm 3 /d], c(t) consumption [Nm 3 /d], r(t) other [Nm 3 /d]. The required working capacity is equal to Z = max[s(t)] for t [ 0, T] (3) UGS injection rate for natural gas can be described as: q( t ) p( t ) i( t ) c( t ) r( t ) (4) But on the assumption that imported gas has to be used first, the UGS injection rate for gas from domestic sources can be calculated from the formula: If i( t ) c( t ) r( t ) then UGS injection rate equals to q( t ) p( t ) (5) If i( t ) c( t ) r( t ) and simultaneously i( t ) p( t ) c( t ) r( t ) then q( t ) p( t ) [ c( t ) r( t ) i( t )] (6) Otherwise, q( t ) 0 (7) 4. Results The above presented method of calculations has been applied to the historical data of methane-rich and nitrogen-rich gas supply and demand in Poland. Methane-rich gas consumption in Poland has been lately characterized by a gradual increase and seasonality, mainly connected with the climatic conditions (fig. 1). The peak of gas consumption is usually observed in January and the minimum during the summer vacation period. At the same time the imported and domestic gas deliveries cannot be arbitrarily adjusted to the consumption level. The variability of import deliveries is significantly limited, which results from the realization of contracts, especially reception of minimum annual and summer quantities ( take-or-pay ) as well as technical parameters of the gas transfer network. Hence, the fluctuations can be balanced by using underground gas storage facilities (Figs. 2 and 3). Fig. 2 shows the structure of methane-rich gas delivery sources and Fig. 3 presents the structure of its utilization. The key role of UGS in optimizing the gas system is clearly visible. 288

Fig. 1. Monthly consumption of methane-rich natural gas vs. temperature in Poland in 2000 2010 (calculations based on temperature data from http://www.ogimet.com/) Rys. 1. Zale noœæ miesiêcznego zu ycia wysokometanowego gazu ziemnego od temperatury w Polsce w latach 2000 2010 (obliczenia oparte o dane serwisu http://www.ogimet.com/) Fig. 2. Structure of delivery sources of methane-rich natural gas in Poland (source: PGNiG S.A.) Rys. 2. Struktura Ÿróde³ dostaw wysokometanowego gazu ziemnego w Polsce (Ÿród³o: PGNiG S.A.) 289

Fig. 3. Structure of methane-rich natural gas utilization in Poland (source: PGNiG S.A.) Rys. 3. Struktura wykorzystania wysokometanowego gazu ziemnego w Polsce (Ÿród³o: PGNiG S.A.) PGNiG S.A., as a gas producer, is obliged to correctly manage production, i.e. they should try to maintain a uniform level. This task is successfully fulfilled and compared to the strongly seasonal methane-rich gas consumption, the domestic production is stable (Fig. 4). This state was achieved owing to the use of UGS, thanks to which the seasonality of consumption can be balanced and stable domestic production maintained. Fig. 4. Consumption, import and domestic production of methane-rich natural gas in Poland (source: PGNiG S.A.) Rys. 4. Konsumpcja, import i krajowa produkcja wysokometanowego gazu ziemnego w Polsce (Ÿród³o: PGNiG S.A.) 290

If the UGS were not used, the domestic production in summer months would have to be considerably reduced, contracts could not be realized and a gas deficiency in the winter season would be fact. These limitations would be considerable, as imported gas is consumed first. This would lead to unstable and potentially hazardous exploitation of domestic reservoirs. Fulfilling the increased demand for natural gas during the winter months would be hindered as well. As a consequence of using this consumption model a considerable amount of domestic gas has to be stored during the summer period. It comes from reservoirs in southeastern Poland and gas processing plants, which remove nitrogen from nitrogen-rich gas exploited in the Polish Lowland. Thanks to use of USG, the production of methane-rich gas in Poland is not very seasonal and relatively stable (Figs. 5, 6). Fig. 5. Monthly production of methane-rich gas and hypothetical production if the UGS had not been used in Poland in 2004 2011 Rys. 5. Miesiêczna produkcja gazu wysokometanowego i hipotetyczna produkcja w przypadku braku wykorzystania PMG w Polsce w latach 2004 2011 The storage capacity needed for providing stable production, calculated according to formulas presented in this article was about 1.42 billion m3 in 2010. Production from methane-rich gas fields in that year was 1,58 billion m3 and production from gas processing plants was 1,4 billion m3, which means that about 47,7% of yearly domestic production should have been stored. Total gas production (both methane-rich and nitrogen-rich) in Poland in 2010 was 4,22 billion m3 (methane-rich equivalent). In 2011 total production increased to 4,33 billion m3 (methane-rich equivalent). Apart from the methane-rich system, two nitrogen-rich gas subsystems are operating in Poland. Those gas systems are regional closed systems, i.e. without the possibility of arbitrarily supplementing with gas deliveries from other transmission systems. The UGS were not used for storing nitrogen-rich gas in the past, therefore production from ni291

280 Methane -rich gas production [MM of Nm3/month] 260 240 220 200 180 160 140 120 100 80 60 Median 25%-75% Range (without outliers) Outliers 40 20 0 2004 2005 2006 2007 2008 2009 2010 2011 Fig. 6. Variability of the monthly production of methane-rich gas in Poland in 2004 2011 Rys. 6. Zmiennoœæ miesiêcznej produkcji gazu wysokometanowego w Polsce w latach 2004 2011 trogen-rich gas fields was increased in the winter and lowered during summer months. At present PGNiG S.A. has at its disposal two nitrogen-rich gas storages: UGS Daszewo and UGS Bonikowo. The example of UGS not being used is clearly visible in the plots (fig. 7 and 8) illustrating production from the nitrogen-rich gas fields. Contrary to the production of methane-rich gas, Fig. 7. Monthly production of nitrogen-rich gas from fields linked in to the nitrogen-rich gas subsystem in 2006 2011 (source: PGNiG S.A.) Rys. 7. Miesiêczne wydobycie gazu zaazotowanego ze z³ó pod³¹czonych do systemu gazu zaazotowanego w latach 2006 2011 (Ÿród³o PGNiG S.A.) 292

200 Nitrogen-rich gas production [MM of Nm3/month] 180 160 140 120 100 80 60 40 20 0 Median 25%-75% Range (without outliers) Outliers 2006 2007 2008 2009 2010 2011 Fig. 8. Variability of the monthly production of nitrogen-rich gas from fields linked in to the nitrogen-rich gas subsystem in 2006 2011 Rys. 8. Zmiennoœæ miesiêcznej produkcji gazu zaazotowanego ze z³ó pod³¹czonych do systemu gazu zaazotowanego w Polsce w latach 2004 2011 here we observe high seasonality, reduced only from mid 2010 owing to the start of UGS Bonikowo operation. When calculating the storage capacity needed for stabilizing nitrogen-rich gas production, the assumption was made that the calculation will be based on a hypothetical average production level between April and March. To run the production at a constant level over such a period of time, there should exist UGS which could store the production excess and cover the shortages in the period of increased demand. Their minimum working capacity can be calculated by analyzing deviation of the actual production from the assumed average level, and then accumulating them. The minimum storage capacity is the maximum value of accumulated deviations from the average production. For each April-March season, the calculations were made in the following way: 1 p T T 0 p( t ) dt (8) S ( t ) S p [ p c( )] d t 0 (9) where: S(t) accumulated reserves [Nm 3 ], S p initial state [Nm 3 ], p average level of production between April and March [Nm 3 ], p(t) production [Nm 3 /d], c(t) consumption [Nm 3 /d]. 293

Required minimum working capacity Z = max[s(t)] for t [ 0, T]. Working capacity needed for regulating the production of nitrogen-rich gas and calculated according to above presented formulas is about 200 million m 3. 5. Conclusions Underground gas storage constitutes an important element of natural gas production, transport and distribution. One of the most important functions of UGS is optimization of the process of natural gas exploitation. The working capacity of UGS needed for the realization of the optimization process depends on a number of factors, e.g. demand and supply of natural gas, strategy of gas utilization, geological and formation conditions, as well as technical standards of exploitation, transport and storage infrastructure. Managing the production in conditions of strong gas demand fluctuations necessitates calculating required working capacities of UGS, to be used for its regulation. The formulae presented in this paper are a proper tool for doing so. The use of UGS enabled stable exploitation of methane-rich gas fields and steady production levels in gas processing plants. In addition no major fluctuations were observed in the aspect of high seasonality of natural gas consumption (related to climate and the structure of the gas consumers in Poland). In the summer season methane-rich gas imports exceed demand and its flexibility is strongly limited, which results from the realization of contracts, especially the obligation of receive minimum annual and summer amounts of gas ( take-or-pay ), and technical parameters of the transmission network. By using methane-rich UGS in the analyzed period there was neither correlation between the monthly amount of production and consumption of high-methane gas, nor between the size of production and temperature. This state was achieved by storing almost half (47.7%) of yearly domestic production of methane-rich gas, In the case of the closed nitrogen-rich gas system there have recently been large fluctuations caused by not using UGS. Since then a new UGS Bonikowo has come into use, thanks to which production could be, to a considerable degree, stabilized. References Directive 2009/73/EC of the European Parliament and of the Council of 13 July 2009, http://eur-lex.europa.eu/lexuriserv/lexuriserv.do?uri=celex:32009l0073:en:not Interpretative note on directive 2009/73/EC concerning common rules for the internal market in natural gas third-party access to storage facilities, http://ec.europa.eu/energy/gas_electricity/ interpretative_notes/doc/implementation_notes/2010_01_21_third-party_access_to_storage_ facilities.pdf 294

KALISKI M., FR CZEK P., SZURLEJ A., 2009 Liberalizacja rynku gazu ziemnego a rozwój podziemnych magazynów gazu w Polsce. Polityka Energetyczna t. 13, z. 2, PL ISSN 1429-6675, s. 199 218. KOSOWSKI P., STOPA J., RYCHLICKI S., 2010 Analiza rynku gazu ziemnego w Polsce w latach 2003 2009 i prognozy na lata 2010 2012. Nafta Gaz/Instytut Górnictwa Naftowego i Gazownictwa, Instytut Technologii Nafty, Stowarzyszenie In ynierów i Techników Przemys³u Naftowego i Gazowniczego; ISSN 0867-8871, 66 nr 11, s. 993 999. Polish Oil and Gas Company (PGNiG S.A.), http://www.pgnig.pl/ STOPA J., HOSZOWSKI A., 2010 Wp³yw podziemnego magazynowania gazu na efektywnoœæ eksploatacji z³ó w PGNiG SA, Oddzia³ w Sanoku. Nafta Gaz/Instytut Górnictwa Naftowego i Gazownictwa, Instytut Technologii Nafty, Stowarzyszenie In ynierów i Techników Przemys³u Naftowego i Gazowniczego, ISSN 0867-8871, 66 nr 5, s. 362 367. STOPA J., KOSOWSKI P., 2010 Podziemne magazyny gazu w Polsce: historia, stan obecny i perspektywy. Profesjonalne gazownictwo, red. nacz. Katarzyna Urbañczyk-Kogut, PGNiG, Kraków, AKNET-Press, s. 35 43. Weather Information Service, http://www.ogimet.com/ Piotr KOSOWSKI, Jerzy STOPA, Stanis³aw RYCHLICKI* Wykorzystanie podziemnych magazynów gazu do zarz¹dzania produkcj¹ gazu ziemnego w Polsce Streszczenie Wykorzystanie magazynów gazu jest niezbêdnym czynnikiem pozwalaj¹cym na prawid³ow¹ eksploatacjê z³ó gazu ziemnego. W okresach zwiêkszonego popytu magazyny u³atwiaj¹ jego zaspokojenie, a w czasie niskiego zapotrzebowania umo liwiaj¹ stabilizacjê produkcji. Bior¹c pod uwagê siln¹ sezonowoœæ konsumpcji gazu ziemnego w Polsce istnieje potrzeba przeznaczenia okreœlonej wielkoœci pojemnoœæ czynnych podziemnych magazynów gazu na regulacjê krajowego wydobycia. G³ównym celem tego artyku³u jest pokazanie wp³ywu magazynowania gazu na przebieg eksploatacji krajowych z³ó gazu ziemnego oraz kalkulacja iloœci gazu, który powinien byæ zmagazynowany w celu optymalizacji krajowego wydobycia. Na podstawie historycznych danych dotycz¹cych wydobycia i konsumpcji gazu ziemnego w Polsce i z wykorzystaniem metody kalkulacji pojemnoœci czynnych, zaprezentowanej w niniejszym artykule, obliczone zosta³y pojemnoœci czynne podziemnych magazynów gazu, niezbêdne do regulacji krajowego wydobycia gazu wysokometanowego. Wynios³y oko³o 1,4 mld m 3, co oznacza, e oko³o 48% rocznego wydobycia wysokometanowego gazu ziemnego powinno byæ magazynowane. Brak wykorzystania podziemnych magazynów gazu skutkowa³by koniecznoœci¹ znacznego ograniczania wydobycia krajowego i produkcji gazu w odazotowniach w miesi¹cach letnich, uniemo liwia³by realizacjê zawartych umów kontraktowych oraz powodowa³ deficyt gazu w miesi¹cach zimowych. 295

Oprócz systemu gazu wysokometanowego w Polsce eksploatowane s¹ dwa podsystemy gazu zaazotowanego. Systemy gazu zaazotowanego s¹ regionalnymi systemami zamkniêtymi, tzn. nie istnieje mo liwoœæ dowolnego uzupe³nienia dostaw gazu z krajowego (lub innego) systemu przesy- ³owego. Poniewa do niedawna nie eksploatowano PMG na gaz zaazotowany wydobycie ze z³ó gazu zaazotowanego by³o zwiêkszane w okresie zimowym i zmniejszane w lecie. Obecnie jednak PGNiG S.A. dysponuje dwoma magazynami na gaz zaazotowany: PMG Daszewo (system gazu Ls) i PMG Bonikowo (system gazu Lw). Pojemnoœci, niezbêdne do regulacji wydobycia ze z³ó pod³¹czonych do podsystemu gazu zaazotowanego Lw skalkulowane przez autorów niniejszej pracy wynosz¹ oko³o 200 mln nm 3. Dziêki wykorzystaniu podziemnych magazynów wydobycie ze z³ó gazu wysokometanowego i produkcja w odazotowniach w Polsce ma stabilny przebieg i nie wykazuje silnych wahañ pomimo bardzo silnej sezonowoœci zu ycia gazu ziemnego, wynikaj¹cej m.in. z warunków klimatycznych w Polsce oraz ze struktury odbiorców gazu. W przypadku zamkniêtego systemu gazu zaazotowanego Lw do niedawna wystêpowa³y silne wahania wydobycia, co by³o konsekwencj¹ braku wykorzystywania podziemnych magazynów gazu. Od niedawna w tym systemie funkcjonuje PMG Bonikowo, co pozwoli³o na znaczn¹ stabilizacjê wydobycia. S OWA KLUCZOWE: podziemne magazynowanie gazu, optymalizacja wydobycia, kalkulacja pojemnoœci czynnej